718c41634f
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
162 lines
6.8 KiB
C++
162 lines
6.8 KiB
C++
// Tencent is pleased to support the open source community by making ncnn available.
|
|
//
|
|
// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
|
|
//
|
|
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
|
// in compliance with the License. You may obtain a copy of the License at
|
|
//
|
|
// https://opensource.org/licenses/BSD-3-Clause
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software distributed
|
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations under the License.
|
|
|
|
#include "layer/dequantize.h"
|
|
#include "testutil.h"
|
|
|
|
static int test_dequantize(const ncnn::Mat& a, int scale_data_size, int bias_data_size)
|
|
{
|
|
ncnn::ParamDict pd;
|
|
pd.set(0, scale_data_size);
|
|
pd.set(1, bias_data_size);
|
|
|
|
std::vector<ncnn::Mat> weights(bias_data_size ? 2 : 1);
|
|
weights[0] = RandomMat(scale_data_size);
|
|
if (bias_data_size)
|
|
weights[1] = RandomMat(bias_data_size);
|
|
|
|
int flag = TEST_LAYER_DISABLE_AUTO_INPUT_CASTING;
|
|
int ret = test_layer<ncnn::Dequantize>("Dequantize", pd, weights, a, 0.001, 0, flag);
|
|
if (ret != 0)
|
|
{
|
|
fprintf(stderr, "test_dequantize failed a.dims=%d a=(%d %d %d) scale_data_size=%d bias_data_size=%d\n", a.dims, a.w, a.h, a.c, scale_data_size, bias_data_size);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int test_dequantize_pack8(const ncnn::Mat& a, int scale_data_size, int bias_data_size)
|
|
{
|
|
ncnn::ParamDict pd;
|
|
pd.set(0, scale_data_size);
|
|
pd.set(1, bias_data_size);
|
|
|
|
std::vector<ncnn::Mat> weights(bias_data_size ? 2 : 1);
|
|
weights[0] = RandomMat(scale_data_size);
|
|
if (bias_data_size)
|
|
weights[1] = RandomMat(bias_data_size);
|
|
|
|
int flag = TEST_LAYER_DISABLE_AUTO_INPUT_CASTING | TEST_LAYER_ENABLE_FORCE_INPUT_PACK8;
|
|
int ret = test_layer<ncnn::Dequantize>("Dequantize", pd, weights, a, 0.001, 0, flag);
|
|
if (ret != 0)
|
|
{
|
|
fprintf(stderr, "test_dequantize_pack8 failed a.dims=%d a=(%d %d %d) scale_data_size=%d bias_data_size=%d\n", a.dims, a.w, a.h, a.c, scale_data_size, bias_data_size);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int test_dequantize_0()
|
|
{
|
|
return 0
|
|
|| test_dequantize(RandomIntMat(5, 7, 24), 1, 24)
|
|
|| test_dequantize(RandomIntMat(5, 7, 24), 1, 1)
|
|
|| test_dequantize(RandomIntMat(5, 7, 24), 1, 0)
|
|
|| test_dequantize(RandomIntMat(5, 7, 24), 24, 24)
|
|
|| test_dequantize(RandomIntMat(5, 7, 24), 24, 1)
|
|
|| test_dequantize(RandomIntMat(5, 7, 24), 24, 0)
|
|
|| test_dequantize(RandomIntMat(7, 9, 12), 1, 12)
|
|
|| test_dequantize(RandomIntMat(7, 9, 12), 1, 1)
|
|
|| test_dequantize(RandomIntMat(7, 9, 12), 1, 0)
|
|
|| test_dequantize(RandomIntMat(7, 9, 12), 12, 12)
|
|
|| test_dequantize(RandomIntMat(7, 9, 12), 12, 1)
|
|
|| test_dequantize(RandomIntMat(7, 9, 12), 12, 0)
|
|
|| test_dequantize(RandomIntMat(3, 5, 13), 1, 13)
|
|
|| test_dequantize(RandomIntMat(3, 5, 13), 1, 1)
|
|
|| test_dequantize(RandomIntMat(3, 5, 13), 1, 0)
|
|
|| test_dequantize(RandomIntMat(3, 5, 13), 13, 13)
|
|
|| test_dequantize(RandomIntMat(3, 5, 13), 13, 1)
|
|
|| test_dequantize(RandomIntMat(3, 5, 13), 13, 0);
|
|
}
|
|
|
|
static int test_dequantize_1()
|
|
{
|
|
return 0
|
|
|| test_dequantize(RandomIntMat(15, 24), 1, 24)
|
|
|| test_dequantize(RandomIntMat(15, 24), 1, 1)
|
|
|| test_dequantize(RandomIntMat(15, 24), 1, 0)
|
|
|| test_dequantize(RandomIntMat(15, 24), 24, 24)
|
|
|| test_dequantize(RandomIntMat(15, 24), 24, 1)
|
|
|| test_dequantize(RandomIntMat(15, 24), 24, 0)
|
|
|| test_dequantize(RandomIntMat(17, 12), 1, 12)
|
|
|| test_dequantize(RandomIntMat(17, 12), 1, 1)
|
|
|| test_dequantize(RandomIntMat(17, 12), 1, 0)
|
|
|| test_dequantize(RandomIntMat(17, 12), 12, 12)
|
|
|| test_dequantize(RandomIntMat(17, 12), 12, 1)
|
|
|| test_dequantize(RandomIntMat(17, 12), 12, 0)
|
|
|| test_dequantize(RandomIntMat(19, 15), 1, 15)
|
|
|| test_dequantize(RandomIntMat(19, 15), 1, 1)
|
|
|| test_dequantize(RandomIntMat(19, 15), 1, 0)
|
|
|| test_dequantize(RandomIntMat(19, 15), 15, 15)
|
|
|| test_dequantize(RandomIntMat(19, 15), 15, 1)
|
|
|| test_dequantize(RandomIntMat(19, 15), 15, 0);
|
|
}
|
|
|
|
static int test_dequantize_2()
|
|
{
|
|
return 0
|
|
|| test_dequantize(RandomIntMat(128), 1, 128)
|
|
|| test_dequantize(RandomIntMat(128), 1, 1)
|
|
|| test_dequantize(RandomIntMat(128), 1, 0)
|
|
|| test_dequantize(RandomIntMat(128), 128, 128)
|
|
|| test_dequantize(RandomIntMat(128), 128, 1)
|
|
|| test_dequantize(RandomIntMat(128), 128, 0)
|
|
|| test_dequantize(RandomIntMat(124), 1, 124)
|
|
|| test_dequantize(RandomIntMat(124), 1, 1)
|
|
|| test_dequantize(RandomIntMat(124), 1, 0)
|
|
|| test_dequantize(RandomIntMat(124), 124, 124)
|
|
|| test_dequantize(RandomIntMat(124), 124, 1)
|
|
|| test_dequantize(RandomIntMat(124), 124, 0)
|
|
|| test_dequantize(RandomIntMat(127), 1, 127)
|
|
|| test_dequantize(RandomIntMat(127), 1, 1)
|
|
|| test_dequantize(RandomIntMat(127), 1, 0)
|
|
|| test_dequantize(RandomIntMat(127), 127, 127)
|
|
|| test_dequantize(RandomIntMat(127), 127, 1)
|
|
|| test_dequantize(RandomIntMat(127), 127, 0);
|
|
}
|
|
|
|
static int test_dequantize_3()
|
|
{
|
|
return 0
|
|
|| test_dequantize_pack8(RandomIntMat(5, 7, 24), 1, 24)
|
|
|| test_dequantize_pack8(RandomIntMat(5, 7, 24), 1, 1)
|
|
|| test_dequantize_pack8(RandomIntMat(5, 7, 24), 1, 0)
|
|
|| test_dequantize_pack8(RandomIntMat(5, 7, 24), 24, 24)
|
|
|| test_dequantize_pack8(RandomIntMat(5, 7, 24), 24, 1)
|
|
|| test_dequantize_pack8(RandomIntMat(5, 7, 24), 24, 0)
|
|
|| test_dequantize_pack8(RandomIntMat(15, 24), 1, 24)
|
|
|| test_dequantize_pack8(RandomIntMat(15, 24), 1, 1)
|
|
|| test_dequantize_pack8(RandomIntMat(15, 24), 1, 0)
|
|
|| test_dequantize_pack8(RandomIntMat(15, 24), 24, 24)
|
|
|| test_dequantize_pack8(RandomIntMat(15, 24), 24, 1)
|
|
|| test_dequantize_pack8(RandomIntMat(15, 24), 24, 0)
|
|
|| test_dequantize_pack8(RandomIntMat(128), 1, 128)
|
|
|| test_dequantize_pack8(RandomIntMat(128), 1, 1)
|
|
|| test_dequantize_pack8(RandomIntMat(128), 1, 0)
|
|
|| test_dequantize_pack8(RandomIntMat(128), 128, 128)
|
|
|| test_dequantize_pack8(RandomIntMat(128), 128, 1)
|
|
|| test_dequantize_pack8(RandomIntMat(128), 128, 0);
|
|
}
|
|
|
|
int main()
|
|
{
|
|
SRAND(7767517);
|
|
|
|
return 0
|
|
|| test_dequantize_0()
|
|
|| test_dequantize_1()
|
|
|| test_dequantize_2()
|
|
|| test_dequantize_3();
|
|
}
|