deepin-ocr/3rdparty/ncnn/tests/test_squeezenet.cpp
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

329 lines
10 KiB
C++

// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "platform.h"
#include "net.h"
#include "testutil.h"
#include <stdio.h>
#ifdef __EMSCRIPTEN__
#include <emscripten.h>
#endif
static ncnn::Mat generate_ncnn_logo(int pixel_type_to, int w, int h)
{
// clang-format off
// *INDENT-OFF*
static const unsigned char ncnn_logo_data[16][16] =
{
{245, 245, 33, 245, 245, 245, 245, 245, 245, 245, 245, 245, 245, 33, 245, 245},
{245, 33, 33, 33, 245, 245, 245, 245, 245, 245, 245, 245, 33, 33, 33, 245},
{245, 33, 158, 158, 33, 245, 245, 245, 245, 245, 245, 33, 158, 158, 33, 245},
{ 33, 117, 158, 224, 158, 33, 245, 245, 245, 245, 33, 158, 224, 158, 117, 33},
{ 33, 117, 224, 224, 224, 66, 33, 33, 33, 33, 66, 224, 224, 224, 117, 33},
{ 33, 189, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 189, 33},
{ 33, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 33},
{ 33, 224, 224, 97, 97, 97, 97, 224, 224, 97, 97, 97, 97, 224, 224, 33},
{ 33, 224, 224, 97, 33, 0, 189, 224, 224, 97, 0, 33, 97, 224, 224, 33},
{ 33, 224, 224, 97, 33, 0, 189, 224, 224, 97, 0, 33, 97, 224, 224, 33},
{ 33, 224, 224, 97, 97, 97, 97, 224, 224, 97, 189, 189, 97, 224, 224, 33},
{ 33, 66, 66, 66, 224, 224, 224, 224, 224, 224, 224, 224, 66, 66, 66, 33},
{ 66, 158, 158, 66, 66, 224, 224, 224, 224, 224, 224, 66, 158, 158, 66, 66},
{ 66, 158, 158, 208, 66, 224, 224, 224, 224, 224, 224, 66, 158, 158, 208, 66},
{ 66, 224, 202, 158, 66, 224, 224, 224, 224, 224, 224, 66, 224, 202, 158, 66},
{ 66, 158, 224, 158, 66, 224, 224, 224, 224, 224, 224, 66, 158, 224, 158, 66}
};
// *INDENT-ON*
// clang-format on
const unsigned char* p_ncnn_logo_data = (const unsigned char*)ncnn_logo_data;
ncnn::Mat logo = ncnn::Mat::from_pixels(p_ncnn_logo_data, ncnn::Mat::PIXEL_GRAY | (pixel_type_to << ncnn::Mat::PIXEL_CONVERT_SHIFT), 16, 16);
ncnn::Mat m;
ncnn::Option opt;
opt.num_threads = 1;
ncnn::resize_nearest(logo, m, w, h, opt);
return m;
}
struct compare_score_index
{
inline bool operator()(const std::pair<float, int>& a, const std::pair<float, int>& b)
{
return a.first > b.first;
}
};
static int check_top2(const std::vector<float>& cls_scores, float epsilon = 0.001)
{
// partial sort topk with index
int size = cls_scores.size();
std::vector<std::pair<float, int> > vec;
vec.resize(size);
for (int i = 0; i < size; i++)
{
vec[i] = std::make_pair(cls_scores[i], i);
}
std::partial_sort(vec.begin(), vec.begin() + 2, vec.end(), compare_score_index());
int expect_indexes[2] = {532, 920};
float expect_scores[2] = {0.189459f, 0.082801f};
for (int i = 0; i < 2; i++)
{
int index = vec[i].second;
float score = vec[i].first;
if (index != expect_indexes[i])
{
fprintf(stderr, "top %d index not match expect %d but got %d\n", i, expect_indexes[i], index);
return -1;
}
if (!NearlyEqual(score, expect_scores[i], epsilon))
{
fprintf(stderr, "top %d score not match expect %f but got %f\n", i, expect_scores[i], score);
return -1;
}
}
return 0;
}
static void fread_or_error(void* buffer, size_t size, size_t count, FILE* fp, const char* s)
{
if (count != fread(buffer, size, count, fp))
{
fprintf(stderr, "Couldn't read from file: %s\n", s);
fclose(fp);
exit(EXIT_FAILURE);
}
}
static std::string read_file_string(const char* filepath)
{
FILE* fp = fopen(filepath, "rb");
if (!fp)
{
fprintf(stderr, "fopen %s failed\n", filepath);
return std::string();
}
fseek(fp, 0, SEEK_END);
int len = ftell(fp);
rewind(fp);
std::string s;
s.resize(len + 1); // +1 for '\0'
fread_or_error((char*)s.c_str(), 1, len, fp, filepath);
fclose(fp);
s[len] = '\0';
return s;
}
static ncnn::Mat read_file_content(const char* filepath)
{
FILE* fp = fopen(filepath, "rb");
if (!fp)
{
fprintf(stderr, "fopen %s failed\n", filepath);
return ncnn::Mat();
}
fseek(fp, 0, SEEK_END);
int len = ftell(fp);
rewind(fp);
ncnn::Mat m(len, (size_t)1u, 1);
fread_or_error(m, 1, len, fp, filepath);
fclose(fp);
return m;
}
static int test_squeezenet(const ncnn::Option& opt, int load_model_type, float epsilon = 0.001)
{
ncnn::Net squeezenet;
squeezenet.opt = opt;
#ifdef __EMSCRIPTEN__
#define MODEL_DIR "/working"
#else
#define MODEL_DIR "../../examples"
#endif
std::string param_str;
ncnn::Mat param_data;
ncnn::Mat model_data;
if (load_model_type == 0)
{
// load from plain model file
squeezenet.load_param(MODEL_DIR "/squeezenet_v1.1.param");
squeezenet.load_model(MODEL_DIR "/squeezenet_v1.1.bin");
}
if (load_model_type == 1)
{
// load from plain model memory
param_str = read_file_string(MODEL_DIR "/squeezenet_v1.1.param");
model_data = read_file_content(MODEL_DIR "/squeezenet_v1.1.bin");
squeezenet.load_param_mem((const char*)param_str.c_str());
squeezenet.load_model((const unsigned char*)model_data);
}
if (load_model_type == 2)
{
// load from binary model file
squeezenet.load_param_bin(MODEL_DIR "/squeezenet_v1.1.param.bin");
squeezenet.load_model(MODEL_DIR "/squeezenet_v1.1.bin");
}
if (load_model_type == 3)
{
// load from binary model memory
param_data = read_file_content(MODEL_DIR "/squeezenet_v1.1.param.bin");
model_data = read_file_content(MODEL_DIR "/squeezenet_v1.1.bin");
squeezenet.load_param((const unsigned char*)param_data);
squeezenet.load_model((const unsigned char*)model_data);
}
ncnn::Mat in = generate_ncnn_logo(ncnn::Mat::PIXEL_BGR, 227, 227);
const float mean_vals[3] = {104.f, 117.f, 123.f};
in.substract_mean_normalize(mean_vals, 0);
ncnn::Extractor ex = squeezenet.create_extractor();
ncnn::Mat out;
if (load_model_type == 0 || load_model_type == 1)
{
ex.input("data", in);
ex.extract("prob", out);
}
if (load_model_type == 2 || load_model_type == 3)
{
ex.input(0, in);
ex.extract(82, out);
}
std::vector<float> cls_scores;
cls_scores.resize(out.w);
for (int j = 0; j < out.w; j++)
{
cls_scores[j] = out[j];
}
return check_top2(cls_scores, epsilon);
}
int main()
{
SRAND(7767517);
#ifdef __EMSCRIPTEN__
EM_ASM(
FS.mkdir('/working');
FS.mount(NODEFS, {root: '../../examples'}, '/working'););
#endif // __EMSCRIPTEN__
ncnn::UnlockedPoolAllocator g_blob_pool_allocator;
ncnn::PoolAllocator g_workspace_pool_allocator;
ncnn::Option opts[4];
opts[0].use_packing_layout = false;
opts[0].use_fp16_packed = false;
opts[0].use_fp16_storage = false;
opts[0].use_fp16_arithmetic = false;
opts[0].use_shader_pack8 = false;
opts[0].use_image_storage = false;
opts[1].use_packing_layout = true;
opts[1].use_fp16_packed = true;
opts[1].use_fp16_storage = false;
opts[1].use_fp16_arithmetic = false;
opts[1].use_shader_pack8 = true;
opts[1].use_image_storage = false;
opts[2].use_packing_layout = true;
opts[2].use_fp16_packed = true;
opts[2].use_fp16_storage = true;
opts[2].use_fp16_arithmetic = false;
opts[2].use_bf16_storage = true;
opts[2].use_shader_pack8 = true;
opts[2].use_image_storage = true;
opts[2].blob_allocator = &g_blob_pool_allocator;
opts[2].workspace_allocator = &g_workspace_pool_allocator;
opts[3].use_packing_layout = true;
opts[3].use_fp16_packed = true;
opts[3].use_fp16_storage = true;
opts[3].use_fp16_arithmetic = false; // FIXME enable me
opts[3].use_bf16_storage = false;
opts[3].use_shader_pack8 = true;
opts[3].use_image_storage = true;
opts[3].blob_allocator = &g_blob_pool_allocator;
opts[3].workspace_allocator = &g_workspace_pool_allocator;
int load_model_types[4] = {0, 1, 2, 3};
for (int i = 0; i < 4; i++)
{
opts[i].num_threads = 1;
}
for (int i = 0; i < 4; i++)
{
const ncnn::Option& opt = opts[i];
float epsilon;
if (opt.use_bf16_storage || opt.use_fp16_packed || opt.use_fp16_storage)
{
epsilon = 0.1;
}
else
{
epsilon = 0.01;
}
int ret;
ncnn::Option opt_cpu = opt;
opt_cpu.use_vulkan_compute = false;
ret = test_squeezenet(opt_cpu, load_model_types[i], epsilon);
if (ret != 0)
{
fprintf(stderr, "test_squeezenet cpu failed use_packing_layout=%d use_fp16_packed=%d use_fp16_storage=%d use_shader_pack8=%d use_bf16_storage=%d use_image_storage=%d\n", opt.use_packing_layout, opt.use_fp16_packed, opt.use_fp16_storage, opt.use_shader_pack8, opt.use_bf16_storage, opt.use_image_storage);
return ret;
}
#if NCNN_VULKAN
ncnn::Option opt_gpu = opt;
opt_gpu.use_vulkan_compute = true;
ret = test_squeezenet(opt_gpu, load_model_types[i], epsilon);
if (ret != 0)
{
fprintf(stderr, "test_squeezenet gpu failed use_packing_layout=%d use_fp16_packed=%d use_fp16_storage=%d use_shader_pack8=%d use_bf16_storage=%d use_image_storage=%d\n", opt.use_packing_layout, opt.use_fp16_packed, opt.use_fp16_storage, opt.use_shader_pack8, opt.use_bf16_storage, opt.use_image_storage);
return ret;
}
#endif // NCNN_VULKAN
}
return 0;
}