718c41634f
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2857 lines
84 KiB
C++
2857 lines
84 KiB
C++
// Tencent is pleased to support the open source community by making ncnn available.
|
|
//
|
|
// Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved.
|
|
//
|
|
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
|
// in compliance with the License. You may obtain a copy of the License at
|
|
//
|
|
// https://opensource.org/licenses/BSD-3-Clause
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software distributed
|
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations under the License.
|
|
|
|
#ifdef _MSC_VER
|
|
#define _CRT_SECURE_NO_DEPRECATE
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
// ncnn public header
|
|
#include "datareader.h"
|
|
#include "layer.h"
|
|
#include "layer_type.h"
|
|
#include "net.h"
|
|
|
|
// ncnn private header
|
|
#include "modelwriter.h"
|
|
|
|
class DataReaderFromEmpty : public ncnn::DataReader
|
|
{
|
|
public:
|
|
virtual int scan(const char* format, void* p) const
|
|
{
|
|
return 0;
|
|
}
|
|
virtual size_t read(void* buf, size_t size) const
|
|
{
|
|
memset(buf, 0, size);
|
|
return size;
|
|
}
|
|
};
|
|
|
|
class NetOptimize : public ModelWriter
|
|
{
|
|
public:
|
|
NetOptimize();
|
|
|
|
public:
|
|
int fuse_batchnorm_scale();
|
|
int fuse_convolution_batchnorm();
|
|
int fuse_convolution_mul();
|
|
int fuse_convolution_add();
|
|
int fuse_convolutiondepthwise_batchnorm();
|
|
int fuse_convolutiondepthwise_mul();
|
|
int fuse_convolutiondepthwise_add();
|
|
int fuse_deconvolution_batchnorm();
|
|
int fuse_deconvolution_mul();
|
|
int fuse_deconvolution_add();
|
|
int fuse_deconvolutiondepthwise_batchnorm();
|
|
int fuse_innerproduct_batchnorm();
|
|
int fuse_innerproduct_add();
|
|
int fuse_innerproduct_dropout();
|
|
int fuse_convolution_activation();
|
|
int fuse_convolutiondepthwise_activation();
|
|
int fuse_deconvolution_activation();
|
|
int fuse_deconvolutiondepthwise_activation();
|
|
int fuse_innerproduct_activation();
|
|
int fuse_memorydata_binaryop();
|
|
int fuse_binaryop_eltwise();
|
|
|
|
int eliminate_dropout();
|
|
int eliminate_pooling1x1();
|
|
int eliminate_noop();
|
|
int eliminate_split();
|
|
int eliminate_orphaned_memorydata();
|
|
int eliminate_flatten_after_global_pooling();
|
|
int eliminate_reshape_after_global_pooling();
|
|
int eliminate_flatten_after_innerproduct();
|
|
int eliminate_reshape_before_binaryop();
|
|
|
|
int replace_reduction_with_global_pooling();
|
|
int replace_prelu_with_leaky_relu();
|
|
int replace_convolution_with_innerproduct_after_global_pooling();
|
|
int replace_convolution_with_innerproduct_after_innerproduct();
|
|
};
|
|
|
|
NetOptimize::NetOptimize()
|
|
: ModelWriter()
|
|
{
|
|
}
|
|
|
|
int NetOptimize::fuse_batchnorm_scale()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "BatchNorm")
|
|
continue;
|
|
|
|
// BatchNorm - Scale
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "Scale")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse BatchNorm - Scale to BatchNorm
|
|
ncnn::BatchNorm* batchnorm = (ncnn::BatchNorm*)layers[i];
|
|
ncnn::Scale* scale = (ncnn::Scale*)layers[j];
|
|
|
|
fprintf(stderr, "fuse_batchnorm_scale %s %s\n", batchnorm->name.c_str(), scale->name.c_str());
|
|
|
|
{
|
|
// v = ((v - mean) / sqrt(var + eps) * slope + bias) * s + b
|
|
// = (v - mean) / sqrt(var + eps) * (slope * s) + (bias * s + b)
|
|
|
|
int channels = batchnorm->channels;
|
|
|
|
float* slope = batchnorm->slope_data;
|
|
float* bias = batchnorm->bias_data;
|
|
|
|
for (int q = 0; q < channels; q++)
|
|
{
|
|
slope[q] = slope[q] * scale->scale_data[q];
|
|
if (scale->bias_term)
|
|
bias[q] = bias[q] * scale->scale_data[q] + scale->bias_data[q];
|
|
else
|
|
bias[q] = bias[q] * scale->scale_data[q];
|
|
}
|
|
}
|
|
|
|
int top_blob_index_final = scale->tops[0];
|
|
batchnorm->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
scale->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_convolution_batchnorm()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Convolution")
|
|
continue;
|
|
|
|
// Convolution - BatchNorm
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "BatchNorm")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse Convolution - BatchNorm to Convolution
|
|
ncnn::Convolution* convolution = (ncnn::Convolution*)layers[i];
|
|
ncnn::BatchNorm* batchnorm = (ncnn::BatchNorm*)layers[j];
|
|
|
|
fprintf(stderr, "fuse_convolution_batchnorm %s %s\n", convolution->name.c_str(), batchnorm->name.c_str());
|
|
|
|
{
|
|
int channels = batchnorm->channels;
|
|
float eps = batchnorm->eps;
|
|
|
|
// a = bias - slope * mean / sqrt(var + eps)
|
|
// b = slope / sqrt(var + eps)
|
|
// value = value * b + a
|
|
|
|
std::vector<float> a(channels);
|
|
std::vector<float> b(channels);
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
float sqrt_var = static_cast<float>(sqrt(batchnorm->var_data[i] + eps));
|
|
a[i] = batchnorm->bias_data[i] - batchnorm->slope_data[i] * batchnorm->mean_data[i] / sqrt_var;
|
|
b[i] = batchnorm->slope_data[i] / sqrt_var;
|
|
}
|
|
|
|
if (convolution->bias_term == 0)
|
|
{
|
|
// init bias as zero
|
|
convolution->bias_term = 1;
|
|
convolution->bias_data = ncnn::Mat(channels);
|
|
convolution->bias_data.fill(0.f);
|
|
}
|
|
|
|
const int weight_per_outch = convolution->weight_data_size / channels;
|
|
|
|
float* weight = convolution->weight_data;
|
|
float* bias = convolution->bias_data;
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
float* conv_weight_outch = weight + weight_per_outch * i;
|
|
for (int j = 0; j < weight_per_outch; j++)
|
|
{
|
|
conv_weight_outch[j] *= b[i];
|
|
}
|
|
|
|
bias[i] = bias[i] * b[i] + a[i];
|
|
}
|
|
}
|
|
|
|
int top_blob_index_final = batchnorm->tops[0];
|
|
convolution->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
batchnorm->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_convolution_mul()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Convolution")
|
|
continue;
|
|
|
|
// Convolution - BinaryOp
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "BinaryOp")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 2)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse Convolution - BinaryOp to Convolution
|
|
ncnn::Convolution* convolution = (ncnn::Convolution*)layers[i];
|
|
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
|
|
|
|
if (binaryop->op_type != 2 || binaryop->with_scalar)
|
|
continue;
|
|
|
|
// MemoryData - ..... - BinaryOp
|
|
size_t k = 0;
|
|
for (; k < j; k++)
|
|
{
|
|
if (layers[k]->type != "MemoryData")
|
|
continue;
|
|
|
|
if (layers[k]->tops[0] == binaryop->bottoms[1])
|
|
break;
|
|
}
|
|
|
|
if (k == j)
|
|
continue;
|
|
|
|
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[k];
|
|
|
|
int channels = convolution->num_output;
|
|
|
|
if (memorydata->w != channels || memorydata->h != 0 || memorydata->c != 0)
|
|
{
|
|
// not bias-like broadcasting type
|
|
continue;
|
|
}
|
|
|
|
fprintf(stderr, "fuse_convolution_mul %s %s\n", convolution->name.c_str(), binaryop->name.c_str());
|
|
|
|
{
|
|
const int weight_per_outch = convolution->weight_data_size / channels;
|
|
|
|
float* weight = convolution->weight_data;
|
|
float* bias = convolution->bias_data;
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
float* conv_weight_outch = weight + weight_per_outch * i;
|
|
for (int j = 0; j < weight_per_outch; j++)
|
|
{
|
|
conv_weight_outch[j] *= memorydata->data[i];
|
|
}
|
|
|
|
if (bias)
|
|
{
|
|
bias[i] = bias[i] * memorydata->data[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
int top_blob_index_final = binaryop->tops[0];
|
|
convolution->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
binaryop->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_convolution_add()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Convolution")
|
|
continue;
|
|
|
|
// Convolution - BinaryOp
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "BinaryOp")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 2)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse Convolution - BinaryOp to Convolution
|
|
ncnn::Convolution* convolution = (ncnn::Convolution*)layers[i];
|
|
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
|
|
|
|
if (binaryop->op_type != 0 || binaryop->with_scalar)
|
|
continue;
|
|
|
|
// MemoryData - ..... - BinaryOp
|
|
size_t k = 0;
|
|
for (; k < j; k++)
|
|
{
|
|
if (layers[k]->type != "MemoryData")
|
|
continue;
|
|
|
|
if (layers[k]->tops[0] == binaryop->bottoms[1])
|
|
break;
|
|
}
|
|
|
|
if (k == j)
|
|
continue;
|
|
|
|
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[k];
|
|
|
|
int channels = convolution->num_output;
|
|
|
|
bool broadcasting_type_ok = false;
|
|
if (memorydata->w == channels && memorydata->h == 0 && memorydata->c == 0)
|
|
broadcasting_type_ok = true;
|
|
if (memorydata->w == 1 && memorydata->h == 1 && memorydata->c == channels)
|
|
broadcasting_type_ok = true;
|
|
|
|
if (!broadcasting_type_ok)
|
|
{
|
|
// not bias-like broadcasting type
|
|
continue;
|
|
}
|
|
|
|
fprintf(stderr, "fuse_convolution_add %s %s\n", convolution->name.c_str(), binaryop->name.c_str());
|
|
|
|
ncnn::Mat bias_data = memorydata->data.reshape(channels);
|
|
{
|
|
if (convolution->bias_term == 0)
|
|
{
|
|
// init bias
|
|
convolution->bias_term = 1;
|
|
convolution->bias_data = bias_data;
|
|
}
|
|
else
|
|
{
|
|
float* bias = convolution->bias_data;
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
bias[i] = bias[i] + bias_data[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
int top_blob_index_final = binaryop->tops[0];
|
|
convolution->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
binaryop->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_convolutiondepthwise_batchnorm()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "ConvolutionDepthWise")
|
|
continue;
|
|
|
|
// ConvolutionDepthWise - BatchNorm
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "BatchNorm")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse ConvolutionDepthWise - BatchNorm to ConvolutionDepthWise
|
|
ncnn::ConvolutionDepthWise* convolutiondepthwise = (ncnn::ConvolutionDepthWise*)layers[i];
|
|
ncnn::BatchNorm* batchnorm = (ncnn::BatchNorm*)layers[j];
|
|
|
|
fprintf(stderr, "fuse_convolutiondepthwise_batchnorm %s %s\n", convolutiondepthwise->name.c_str(), batchnorm->name.c_str());
|
|
|
|
{
|
|
int channels = batchnorm->channels;
|
|
float eps = batchnorm->eps;
|
|
|
|
// a = bias - slope * mean / sqrt(var + eps)
|
|
// b = slope / sqrt(var + eps)
|
|
// value = value * b + a
|
|
|
|
std::vector<float> a(channels);
|
|
std::vector<float> b(channels);
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
float sqrt_var = static_cast<float>(sqrt(batchnorm->var_data[i] + eps));
|
|
a[i] = batchnorm->bias_data[i] - batchnorm->slope_data[i] * batchnorm->mean_data[i] / sqrt_var;
|
|
b[i] = batchnorm->slope_data[i] / sqrt_var;
|
|
}
|
|
|
|
if (convolutiondepthwise->bias_term == 0)
|
|
{
|
|
// init bias as zero
|
|
convolutiondepthwise->bias_term = 1;
|
|
convolutiondepthwise->bias_data = ncnn::Mat(channels);
|
|
convolutiondepthwise->bias_data.fill(0.f);
|
|
}
|
|
|
|
const int weight_per_outch = convolutiondepthwise->weight_data_size / channels;
|
|
|
|
float* weight = convolutiondepthwise->weight_data;
|
|
float* bias = convolutiondepthwise->bias_data;
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
float* conv_weight_outch = weight + weight_per_outch * i;
|
|
for (int j = 0; j < weight_per_outch; j++)
|
|
{
|
|
conv_weight_outch[j] *= b[i];
|
|
}
|
|
|
|
bias[i] = bias[i] * b[i] + a[i];
|
|
}
|
|
}
|
|
|
|
int top_blob_index_final = batchnorm->tops[0];
|
|
convolutiondepthwise->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
batchnorm->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_convolutiondepthwise_mul()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "ConvolutionDepthWise")
|
|
continue;
|
|
|
|
// ConvolutionDepthWise - BinaryOp
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "BinaryOp")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 2)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse ConvolutionDepthWise - BinaryOp to ConvolutionDepthWise
|
|
ncnn::ConvolutionDepthWise* convolutiondepthwise = (ncnn::ConvolutionDepthWise*)layers[i];
|
|
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
|
|
|
|
if (binaryop->op_type != 2 || binaryop->with_scalar)
|
|
continue;
|
|
|
|
// MemoryData - ..... - BinaryOp
|
|
size_t k = 0;
|
|
for (; k < j; k++)
|
|
{
|
|
if (layers[k]->type != "MemoryData")
|
|
continue;
|
|
|
|
if (layers[k]->tops[0] == binaryop->bottoms[1])
|
|
break;
|
|
}
|
|
|
|
if (k == j)
|
|
continue;
|
|
|
|
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[k];
|
|
|
|
int channels = convolutiondepthwise->num_output;
|
|
|
|
if (memorydata->w != channels || memorydata->h != 0 || memorydata->c != 0)
|
|
{
|
|
// not bias-like broadcasting type
|
|
continue;
|
|
}
|
|
|
|
fprintf(stderr, "fuse_convolutiondepthwise_mul %s %s\n", convolutiondepthwise->name.c_str(), binaryop->name.c_str());
|
|
|
|
{
|
|
const int weight_per_outch = convolutiondepthwise->weight_data_size / channels;
|
|
|
|
float* weight = convolutiondepthwise->weight_data;
|
|
float* bias = convolutiondepthwise->bias_data;
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
float* conv_weight_outch = weight + weight_per_outch * i;
|
|
for (int j = 0; j < weight_per_outch; j++)
|
|
{
|
|
conv_weight_outch[j] *= memorydata->data[i];
|
|
}
|
|
|
|
if (bias)
|
|
{
|
|
bias[i] = bias[i] * memorydata->data[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
int top_blob_index_final = binaryop->tops[0];
|
|
convolutiondepthwise->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
binaryop->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_convolutiondepthwise_add()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "ConvolutionDepthWise")
|
|
continue;
|
|
|
|
// ConvolutionDepthWise - BinaryOp
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "BinaryOp")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 2)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse ConvolutionDepthWise - BinaryOp to ConvolutionDepthWise
|
|
ncnn::ConvolutionDepthWise* convolutiondepthwise = (ncnn::ConvolutionDepthWise*)layers[i];
|
|
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
|
|
|
|
if (binaryop->op_type != 0 || binaryop->with_scalar)
|
|
continue;
|
|
|
|
// MemoryData - ..... - BinaryOp
|
|
size_t k = 0;
|
|
for (; k < j; k++)
|
|
{
|
|
if (layers[k]->type != "MemoryData")
|
|
continue;
|
|
|
|
if (layers[k]->tops[0] == binaryop->bottoms[1])
|
|
break;
|
|
}
|
|
|
|
if (k == j)
|
|
continue;
|
|
|
|
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[k];
|
|
|
|
int channels = convolutiondepthwise->num_output;
|
|
|
|
bool broadcasting_type_ok = false;
|
|
if (memorydata->w == channels && memorydata->h == 0 && memorydata->c == 0)
|
|
broadcasting_type_ok = true;
|
|
if (memorydata->w == 1 && memorydata->h == 1 && memorydata->c == channels)
|
|
broadcasting_type_ok = true;
|
|
|
|
if (!broadcasting_type_ok)
|
|
{
|
|
// not bias-like broadcasting type
|
|
continue;
|
|
}
|
|
|
|
fprintf(stderr, "fuse_convolutiondepthwise_add %s %s\n", convolutiondepthwise->name.c_str(), binaryop->name.c_str());
|
|
|
|
ncnn::Mat bias_data = memorydata->data.reshape(channels);
|
|
{
|
|
if (convolutiondepthwise->bias_term == 0)
|
|
{
|
|
// init bias
|
|
convolutiondepthwise->bias_term = 1;
|
|
convolutiondepthwise->bias_data = bias_data;
|
|
}
|
|
else
|
|
{
|
|
float* bias = convolutiondepthwise->bias_data;
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
bias[i] = bias[i] + bias_data[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
int top_blob_index_final = binaryop->tops[0];
|
|
convolutiondepthwise->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
binaryop->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_deconvolution_batchnorm()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Deconvolution")
|
|
continue;
|
|
|
|
// Deconvolution - BatchNorm
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "BatchNorm")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse Deconvolution - BatchNorm to Deconvolution
|
|
ncnn::Deconvolution* deconvolution = (ncnn::Deconvolution*)layers[i];
|
|
ncnn::BatchNorm* batchnorm = (ncnn::BatchNorm*)layers[j];
|
|
|
|
fprintf(stderr, "fuse_deconvolution_batchnorm %s %s\n", deconvolution->name.c_str(), batchnorm->name.c_str());
|
|
|
|
{
|
|
int channels = batchnorm->channels;
|
|
float eps = batchnorm->eps;
|
|
|
|
// a = bias - slope * mean / sqrt(var + eps)
|
|
// b = slope / sqrt(var + eps)
|
|
// value = value * b + a
|
|
|
|
std::vector<float> a(channels);
|
|
std::vector<float> b(channels);
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
float sqrt_var = static_cast<float>(sqrt(batchnorm->var_data[i] + eps));
|
|
a[i] = batchnorm->bias_data[i] - batchnorm->slope_data[i] * batchnorm->mean_data[i] / sqrt_var;
|
|
b[i] = batchnorm->slope_data[i] / sqrt_var;
|
|
}
|
|
|
|
if (deconvolution->bias_term == 0)
|
|
{
|
|
// init bias as zero
|
|
deconvolution->bias_term = 1;
|
|
deconvolution->bias_data = ncnn::Mat(channels);
|
|
deconvolution->bias_data.fill(0.f);
|
|
}
|
|
|
|
const int weight_per_outch = deconvolution->weight_data_size / channels;
|
|
|
|
float* weight = deconvolution->weight_data;
|
|
float* bias = deconvolution->bias_data;
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
float* conv_weight_outch = weight + weight_per_outch * i;
|
|
for (int j = 0; j < weight_per_outch; j++)
|
|
{
|
|
conv_weight_outch[j] *= b[i];
|
|
}
|
|
|
|
bias[i] = bias[i] * b[i] + a[i];
|
|
}
|
|
}
|
|
|
|
int top_blob_index_final = batchnorm->tops[0];
|
|
deconvolution->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
batchnorm->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_deconvolution_mul()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Deconvolution")
|
|
continue;
|
|
|
|
// Deconvolution - BinaryOp
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "BinaryOp")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 2)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse Deconvolution - BinaryOp to Deconvolution
|
|
ncnn::Deconvolution* deconvolution = (ncnn::Deconvolution*)layers[i];
|
|
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
|
|
|
|
if (binaryop->op_type != 2 || binaryop->with_scalar)
|
|
continue;
|
|
|
|
// MemoryData - ..... - BinaryOp
|
|
size_t k = 0;
|
|
for (; k < j; k++)
|
|
{
|
|
if (layers[k]->type != "MemoryData")
|
|
continue;
|
|
|
|
if (layers[k]->tops[0] == binaryop->bottoms[1])
|
|
break;
|
|
}
|
|
|
|
if (k == j)
|
|
continue;
|
|
|
|
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[k];
|
|
|
|
int channels = deconvolution->num_output;
|
|
|
|
if (memorydata->w != channels || memorydata->h != 0 || memorydata->c != 0)
|
|
{
|
|
// not bias-like broadcasting type
|
|
continue;
|
|
}
|
|
|
|
fprintf(stderr, "fuse_deconvolution_mul %s %s\n", deconvolution->name.c_str(), binaryop->name.c_str());
|
|
|
|
{
|
|
const int weight_per_outch = deconvolution->weight_data_size / channels;
|
|
|
|
float* weight = deconvolution->weight_data;
|
|
float* bias = deconvolution->bias_data;
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
float* conv_weight_outch = weight + weight_per_outch * i;
|
|
for (int j = 0; j < weight_per_outch; j++)
|
|
{
|
|
conv_weight_outch[j] *= memorydata->data[i];
|
|
}
|
|
|
|
if (bias)
|
|
{
|
|
bias[i] = bias[i] * memorydata->data[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
int top_blob_index_final = binaryop->tops[0];
|
|
deconvolution->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
binaryop->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_deconvolution_add()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Deconvolution")
|
|
continue;
|
|
|
|
// Deconvolution - BinaryOp
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "BinaryOp")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 2)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse Deconvolution - BinaryOp to Deconvolution
|
|
ncnn::Deconvolution* deconvolution = (ncnn::Deconvolution*)layers[i];
|
|
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
|
|
|
|
if (binaryop->op_type != 0 || binaryop->with_scalar)
|
|
continue;
|
|
|
|
// MemoryData - ..... - BinaryOp
|
|
size_t k = 0;
|
|
for (; k < j; k++)
|
|
{
|
|
if (layers[k]->type != "MemoryData")
|
|
continue;
|
|
|
|
if (layers[k]->tops[0] == binaryop->bottoms[1])
|
|
break;
|
|
}
|
|
|
|
if (k == j)
|
|
continue;
|
|
|
|
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[k];
|
|
|
|
int channels = deconvolution->num_output;
|
|
|
|
bool broadcasting_type_ok = false;
|
|
if (memorydata->w == channels && memorydata->h == 0 && memorydata->c == 0)
|
|
broadcasting_type_ok = true;
|
|
if (memorydata->w == 1 && memorydata->h == 1 && memorydata->c == channels)
|
|
broadcasting_type_ok = true;
|
|
|
|
if (!broadcasting_type_ok)
|
|
{
|
|
// not bias-like broadcasting type
|
|
continue;
|
|
}
|
|
|
|
fprintf(stderr, "fuse_deconvolution_add %s %s\n", deconvolution->name.c_str(), binaryop->name.c_str());
|
|
|
|
ncnn::Mat bias_data = memorydata->data.reshape(channels);
|
|
{
|
|
if (deconvolution->bias_term == 0)
|
|
{
|
|
// init bias
|
|
deconvolution->bias_term = 1;
|
|
deconvolution->bias_data = bias_data;
|
|
}
|
|
else
|
|
{
|
|
float* bias = deconvolution->bias_data;
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
bias[i] = bias[i] + bias_data[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
int top_blob_index_final = binaryop->tops[0];
|
|
deconvolution->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
binaryop->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_deconvolutiondepthwise_batchnorm()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "DeconvolutionDepthWise")
|
|
continue;
|
|
|
|
// DeconvolutionDepthWise - BatchNorm
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "BatchNorm")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse DeconvolutionDepthWise - BatchNorm to DeconvolutionDepthWise
|
|
ncnn::DeconvolutionDepthWise* deconvolutiondepthwise = (ncnn::DeconvolutionDepthWise*)layers[i];
|
|
ncnn::BatchNorm* batchnorm = (ncnn::BatchNorm*)layers[j];
|
|
|
|
fprintf(stderr, "fuse_deconvolutiondepthwise_batchnorm %s %s\n", deconvolutiondepthwise->name.c_str(), batchnorm->name.c_str());
|
|
|
|
{
|
|
int channels = batchnorm->channels;
|
|
float eps = batchnorm->eps;
|
|
|
|
// a = bias - slope * mean / sqrt(var + eps)
|
|
// b = slope / sqrt(var + eps)
|
|
// value = value * b + a
|
|
|
|
std::vector<float> a(channels);
|
|
std::vector<float> b(channels);
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
float sqrt_var = static_cast<float>(sqrt(batchnorm->var_data[i] + eps));
|
|
a[i] = batchnorm->bias_data[i] - batchnorm->slope_data[i] * batchnorm->mean_data[i] / sqrt_var;
|
|
b[i] = batchnorm->slope_data[i] / sqrt_var;
|
|
}
|
|
|
|
if (deconvolutiondepthwise->bias_term == 0)
|
|
{
|
|
// init bias as zero
|
|
deconvolutiondepthwise->bias_term = 1;
|
|
deconvolutiondepthwise->bias_data = ncnn::Mat(channels);
|
|
deconvolutiondepthwise->bias_data.fill(0.f);
|
|
}
|
|
|
|
const int weight_per_outch = deconvolutiondepthwise->weight_data_size / channels;
|
|
|
|
float* weight = deconvolutiondepthwise->weight_data;
|
|
float* bias = deconvolutiondepthwise->bias_data;
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
float* conv_weight_outch = weight + weight_per_outch * i;
|
|
for (int j = 0; j < weight_per_outch; j++)
|
|
{
|
|
conv_weight_outch[j] *= b[i];
|
|
}
|
|
|
|
bias[i] = bias[i] * b[i] + a[i];
|
|
}
|
|
}
|
|
|
|
int top_blob_index_final = batchnorm->tops[0];
|
|
deconvolutiondepthwise->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
batchnorm->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_innerproduct_batchnorm()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "InnerProduct")
|
|
continue;
|
|
|
|
// InnerProduct - BatchNorm
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "BatchNorm")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse InnerProduct - BatchNorm to InnerProduct
|
|
ncnn::InnerProduct* innerproduct = (ncnn::InnerProduct*)layers[i];
|
|
ncnn::BatchNorm* batchnorm = (ncnn::BatchNorm*)layers[j];
|
|
|
|
fprintf(stderr, "fuse_innerproduct_batchnorm %s %s\n", innerproduct->name.c_str(), batchnorm->name.c_str());
|
|
|
|
{
|
|
int channels = batchnorm->channels;
|
|
float eps = batchnorm->eps;
|
|
|
|
// a = bias - slope * mean / sqrt(var + eps)
|
|
// b = slope / sqrt(var + eps)
|
|
// value = value * b + a
|
|
|
|
std::vector<float> a(channels);
|
|
std::vector<float> b(channels);
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
float sqrt_var = static_cast<float>(sqrt(batchnorm->var_data[i] + eps));
|
|
a[i] = batchnorm->bias_data[i] - batchnorm->slope_data[i] * batchnorm->mean_data[i] / sqrt_var;
|
|
b[i] = batchnorm->slope_data[i] / sqrt_var;
|
|
}
|
|
|
|
if (innerproduct->bias_term == 0)
|
|
{
|
|
// init bias as zero
|
|
innerproduct->bias_term = 1;
|
|
innerproduct->bias_data = ncnn::Mat(channels);
|
|
innerproduct->bias_data.fill(0.f);
|
|
}
|
|
|
|
const int weight_per_outch = innerproduct->weight_data_size / channels;
|
|
|
|
float* weight = innerproduct->weight_data;
|
|
float* bias = innerproduct->bias_data;
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
float* conv_weight_outch = weight + weight_per_outch * i;
|
|
for (int j = 0; j < weight_per_outch; j++)
|
|
{
|
|
conv_weight_outch[j] *= b[i];
|
|
}
|
|
|
|
bias[i] = bias[i] * b[i] + a[i];
|
|
}
|
|
}
|
|
|
|
int top_blob_index_final = batchnorm->tops[0];
|
|
innerproduct->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
batchnorm->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_innerproduct_add()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "InnerProduct")
|
|
continue;
|
|
|
|
// InnerProduct - BinaryOp
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "BinaryOp")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 2)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse InnerProduct - BinaryOp to InnerProduct
|
|
ncnn::InnerProduct* innerproduct = (ncnn::InnerProduct*)layers[i];
|
|
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
|
|
|
|
if (binaryop->op_type != 0 || binaryop->with_scalar)
|
|
continue;
|
|
|
|
// MemoryData - ..... - BinaryOp
|
|
size_t k = 0;
|
|
for (; k < j; k++)
|
|
{
|
|
if (layers[k]->type != "MemoryData")
|
|
continue;
|
|
|
|
if (layers[k]->tops[0] == binaryop->bottoms[1])
|
|
break;
|
|
}
|
|
|
|
if (k == j)
|
|
continue;
|
|
|
|
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[k];
|
|
|
|
int channels = innerproduct->num_output;
|
|
|
|
bool broadcasting_type_ok = false;
|
|
if (memorydata->w == channels && memorydata->h == 0 && memorydata->c == 0)
|
|
broadcasting_type_ok = true;
|
|
if (memorydata->w == 1 && memorydata->h == 1 && memorydata->c == channels)
|
|
broadcasting_type_ok = true;
|
|
|
|
if (!broadcasting_type_ok)
|
|
{
|
|
// not bias-like broadcasting type
|
|
continue;
|
|
}
|
|
|
|
fprintf(stderr, "fuse_innerproduct_add %s %s\n", innerproduct->name.c_str(), binaryop->name.c_str());
|
|
|
|
ncnn::Mat bias_data = memorydata->data.reshape(channels);
|
|
{
|
|
if (innerproduct->bias_term == 0)
|
|
{
|
|
// init bias
|
|
innerproduct->bias_term = 1;
|
|
innerproduct->bias_data = bias_data;
|
|
}
|
|
else
|
|
{
|
|
float* bias = innerproduct->bias_data;
|
|
for (int i = 0; i < channels; i++)
|
|
{
|
|
bias[i] = bias[i] + bias_data[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
int top_blob_index_final = binaryop->tops[0];
|
|
innerproduct->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
binaryop->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_innerproduct_dropout()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "InnerProduct")
|
|
continue;
|
|
|
|
// InnerProduct - Dropout
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "Dropout")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse InnerProduct - Dropout to InnerProduct
|
|
ncnn::InnerProduct* innerproduct = (ncnn::InnerProduct*)layers[i];
|
|
ncnn::Dropout* dropout = (ncnn::Dropout*)layers[j];
|
|
|
|
fprintf(stderr, "fuse_innerproduct_dropout %s %s\n", innerproduct->name.c_str(), dropout->name.c_str());
|
|
|
|
float scale = dropout->scale;
|
|
if (scale != 1.f)
|
|
{
|
|
const int num_output = innerproduct->num_output;
|
|
const int weight_per_outch = innerproduct->weight_data_size / num_output;
|
|
|
|
float* weight = innerproduct->weight_data;
|
|
for (int i = 0; i < num_output; i++)
|
|
{
|
|
float* conv_weight_outch = weight + weight_per_outch * i;
|
|
for (int j = 0; j < weight_per_outch; j++)
|
|
{
|
|
conv_weight_outch[j] *= scale;
|
|
}
|
|
}
|
|
|
|
if (innerproduct->bias_term)
|
|
{
|
|
float* bias = innerproduct->bias_data;
|
|
for (int i = 0; i < num_output; i++)
|
|
{
|
|
bias[i] *= scale;
|
|
}
|
|
}
|
|
}
|
|
|
|
int top_blob_index_final = dropout->tops[0];
|
|
innerproduct->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
dropout->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_convolution_activation()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Convolution")
|
|
continue;
|
|
|
|
// Convolution - Activation
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "ReLU" && layers[j]->type != "Clip" && layers[j]->type != "Sigmoid" && layers[j]->type != "Mish" && layers[j]->type != "HardSwish")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse Convolution - Activation to Convolution
|
|
ncnn::Convolution* convolution = (ncnn::Convolution*)layers[i];
|
|
ncnn::Layer* activation = layers[j];
|
|
|
|
fprintf(stderr, "fuse_convolution_activation %s %s\n", convolution->name.c_str(), activation->name.c_str());
|
|
|
|
if (activation->type == "ReLU")
|
|
{
|
|
ncnn::ReLU* relu = (ncnn::ReLU*)activation;
|
|
|
|
if (relu->slope == 0.f)
|
|
{
|
|
convolution->activation_type = 1;
|
|
}
|
|
else
|
|
{
|
|
convolution->activation_type = 2;
|
|
convolution->activation_params = ncnn::Mat(1);
|
|
convolution->activation_params[0] = relu->slope;
|
|
}
|
|
}
|
|
else if (activation->type == "Clip")
|
|
{
|
|
ncnn::Clip* clip = (ncnn::Clip*)activation;
|
|
|
|
convolution->activation_type = 3;
|
|
convolution->activation_params = ncnn::Mat(2);
|
|
convolution->activation_params[0] = clip->min;
|
|
convolution->activation_params[1] = clip->max;
|
|
}
|
|
else if (activation->type == "Sigmoid")
|
|
{
|
|
convolution->activation_type = 4;
|
|
}
|
|
else if (activation->type == "Mish")
|
|
{
|
|
convolution->activation_type = 5;
|
|
}
|
|
else if (activation->type == "HardSwish")
|
|
{
|
|
ncnn::HardSwish* hardswish = (ncnn::HardSwish*)activation;
|
|
|
|
convolution->activation_type = 6;
|
|
convolution->activation_params = ncnn::Mat(2);
|
|
convolution->activation_params[0] = hardswish->alpha;
|
|
convolution->activation_params[1] = hardswish->beta;
|
|
}
|
|
|
|
int top_blob_index_final = activation->tops[0];
|
|
convolution->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
activation->type = "ncnnfused";
|
|
}
|
|
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Convolution1D")
|
|
continue;
|
|
|
|
// Convolution1D - Activation
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "ReLU" && layers[j]->type != "Clip" && layers[j]->type != "Sigmoid" && layers[j]->type != "Mish")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse Convolution1D - Activation to Convolution1D
|
|
ncnn::Convolution1D* convolution = (ncnn::Convolution1D*)layers[i];
|
|
ncnn::Layer* activation = layers[j];
|
|
|
|
fprintf(stderr, "fuse_convolution1d_activation %s %s\n", convolution->name.c_str(), activation->name.c_str());
|
|
|
|
if (activation->type == "ReLU")
|
|
{
|
|
ncnn::ReLU* relu = (ncnn::ReLU*)activation;
|
|
|
|
if (relu->slope == 0.f)
|
|
{
|
|
convolution->activation_type = 1;
|
|
}
|
|
else
|
|
{
|
|
convolution->activation_type = 2;
|
|
convolution->activation_params = ncnn::Mat(1);
|
|
convolution->activation_params[0] = relu->slope;
|
|
}
|
|
}
|
|
else if (activation->type == "Clip")
|
|
{
|
|
ncnn::Clip* clip = (ncnn::Clip*)activation;
|
|
|
|
convolution->activation_type = 3;
|
|
convolution->activation_params = ncnn::Mat(2);
|
|
convolution->activation_params[0] = clip->min;
|
|
convolution->activation_params[1] = clip->max;
|
|
}
|
|
else if (activation->type == "Sigmoid")
|
|
{
|
|
convolution->activation_type = 4;
|
|
}
|
|
else if (activation->type == "Mish")
|
|
{
|
|
convolution->activation_type = 5;
|
|
}
|
|
|
|
int top_blob_index_final = activation->tops[0];
|
|
convolution->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
activation->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_convolutiondepthwise_activation()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "ConvolutionDepthWise")
|
|
continue;
|
|
|
|
// ConvolutionDepthWise - Activation
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "ReLU" && layers[j]->type != "Clip" && layers[j]->type != "Sigmoid" && layers[j]->type != "Mish" && layers[j]->type != "HardSwish")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse ConvolutionDepthWise - Activation to ConvolutionDepthWise
|
|
ncnn::ConvolutionDepthWise* convolutiondepthwise = (ncnn::ConvolutionDepthWise*)layers[i];
|
|
ncnn::Layer* activation = layers[j];
|
|
|
|
fprintf(stderr, "fuse_convolutiondepthwise_activation %s %s\n", convolutiondepthwise->name.c_str(), activation->name.c_str());
|
|
|
|
if (activation->type == "ReLU")
|
|
{
|
|
ncnn::ReLU* relu = (ncnn::ReLU*)activation;
|
|
|
|
if (relu->slope == 0.f)
|
|
{
|
|
convolutiondepthwise->activation_type = 1;
|
|
}
|
|
else
|
|
{
|
|
convolutiondepthwise->activation_type = 2;
|
|
convolutiondepthwise->activation_params = ncnn::Mat(1);
|
|
convolutiondepthwise->activation_params[0] = relu->slope;
|
|
}
|
|
}
|
|
else if (activation->type == "Clip")
|
|
{
|
|
ncnn::Clip* clip = (ncnn::Clip*)activation;
|
|
|
|
convolutiondepthwise->activation_type = 3;
|
|
convolutiondepthwise->activation_params = ncnn::Mat(2);
|
|
convolutiondepthwise->activation_params[0] = clip->min;
|
|
convolutiondepthwise->activation_params[1] = clip->max;
|
|
}
|
|
else if (activation->type == "Sigmoid")
|
|
{
|
|
convolutiondepthwise->activation_type = 4;
|
|
}
|
|
else if (activation->type == "Mish")
|
|
{
|
|
convolutiondepthwise->activation_type = 5;
|
|
}
|
|
else if (activation->type == "HardSwish")
|
|
{
|
|
ncnn::HardSwish* hardswish = (ncnn::HardSwish*)activation;
|
|
|
|
convolutiondepthwise->activation_type = 6;
|
|
convolutiondepthwise->activation_params = ncnn::Mat(2);
|
|
convolutiondepthwise->activation_params[0] = hardswish->alpha;
|
|
convolutiondepthwise->activation_params[1] = hardswish->beta;
|
|
}
|
|
|
|
int top_blob_index_final = activation->tops[0];
|
|
convolutiondepthwise->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
activation->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_deconvolution_activation()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Deconvolution")
|
|
continue;
|
|
|
|
// Deconvolution - Activation
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "ReLU" && layers[j]->type != "Clip" && layers[j]->type != "Sigmoid")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse Deconvolution - Activation to Deconvolution
|
|
ncnn::Deconvolution* deconvolution = (ncnn::Deconvolution*)layers[i];
|
|
ncnn::Layer* activation = layers[j];
|
|
|
|
fprintf(stderr, "fuse_deconvolution_activation %s %s\n", deconvolution->name.c_str(), activation->name.c_str());
|
|
|
|
if (activation->type == "ReLU")
|
|
{
|
|
ncnn::ReLU* relu = (ncnn::ReLU*)activation;
|
|
|
|
if (relu->slope == 0.f)
|
|
{
|
|
deconvolution->activation_type = 1;
|
|
}
|
|
else
|
|
{
|
|
deconvolution->activation_type = 2;
|
|
deconvolution->activation_params = ncnn::Mat(1);
|
|
deconvolution->activation_params[0] = relu->slope;
|
|
}
|
|
}
|
|
else if (activation->type == "Clip")
|
|
{
|
|
ncnn::Clip* clip = (ncnn::Clip*)activation;
|
|
|
|
deconvolution->activation_type = 3;
|
|
deconvolution->activation_params = ncnn::Mat(2);
|
|
deconvolution->activation_params[0] = clip->min;
|
|
deconvolution->activation_params[1] = clip->max;
|
|
}
|
|
else if (activation->type == "Sigmoid")
|
|
{
|
|
deconvolution->activation_type = 4;
|
|
}
|
|
|
|
int top_blob_index_final = activation->tops[0];
|
|
deconvolution->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
activation->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_deconvolutiondepthwise_activation()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "DeconvolutionDepthWise")
|
|
continue;
|
|
|
|
// DeconvolutionDepthWise - Activation
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "ReLU" && layers[j]->type != "Clip" && layers[j]->type != "Sigmoid")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse DeconvolutionDepthWise - Activation to DeconvolutionDepthWise
|
|
ncnn::DeconvolutionDepthWise* deconvolutiondepthwise = (ncnn::DeconvolutionDepthWise*)layers[i];
|
|
ncnn::Layer* activation = layers[j];
|
|
|
|
fprintf(stderr, "fuse_deconvolutiondepthwise_activation %s %s\n", deconvolutiondepthwise->name.c_str(), activation->name.c_str());
|
|
|
|
if (activation->type == "ReLU")
|
|
{
|
|
ncnn::ReLU* relu = (ncnn::ReLU*)activation;
|
|
|
|
if (relu->slope == 0.f)
|
|
{
|
|
deconvolutiondepthwise->activation_type = 1;
|
|
}
|
|
else
|
|
{
|
|
deconvolutiondepthwise->activation_type = 2;
|
|
deconvolutiondepthwise->activation_params = ncnn::Mat(1);
|
|
deconvolutiondepthwise->activation_params[0] = relu->slope;
|
|
}
|
|
}
|
|
else if (activation->type == "Clip")
|
|
{
|
|
ncnn::Clip* clip = (ncnn::Clip*)activation;
|
|
|
|
deconvolutiondepthwise->activation_type = 3;
|
|
deconvolutiondepthwise->activation_params = ncnn::Mat(2);
|
|
deconvolutiondepthwise->activation_params[0] = clip->min;
|
|
deconvolutiondepthwise->activation_params[1] = clip->max;
|
|
}
|
|
else if (activation->type == "Sigmoid")
|
|
{
|
|
deconvolutiondepthwise->activation_type = 4;
|
|
}
|
|
|
|
int top_blob_index_final = activation->tops[0];
|
|
deconvolutiondepthwise->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
activation->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_innerproduct_activation()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "InnerProduct")
|
|
continue;
|
|
|
|
// InnerProduct - Activation
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "ReLU" && layers[j]->type != "Clip" && layers[j]->type != "Sigmoid" && layers[j]->type != "Mish" && layers[j]->type != "HardSwish")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse InnerProduct - Activation to InnerProduct
|
|
ncnn::InnerProduct* innerproduct = (ncnn::InnerProduct*)layers[i];
|
|
ncnn::Layer* activation = layers[j];
|
|
|
|
fprintf(stderr, "fuse_innerproduct_activation %s %s\n", innerproduct->name.c_str(), activation->name.c_str());
|
|
|
|
if (activation->type == "ReLU")
|
|
{
|
|
ncnn::ReLU* relu = (ncnn::ReLU*)activation;
|
|
|
|
if (relu->slope == 0.f)
|
|
{
|
|
innerproduct->activation_type = 1;
|
|
}
|
|
else
|
|
{
|
|
innerproduct->activation_type = 2;
|
|
innerproduct->activation_params = ncnn::Mat(1);
|
|
innerproduct->activation_params[0] = relu->slope;
|
|
}
|
|
}
|
|
else if (activation->type == "Clip")
|
|
{
|
|
ncnn::Clip* clip = (ncnn::Clip*)activation;
|
|
|
|
innerproduct->activation_type = 3;
|
|
innerproduct->activation_params = ncnn::Mat(2);
|
|
innerproduct->activation_params[0] = clip->min;
|
|
innerproduct->activation_params[1] = clip->max;
|
|
}
|
|
else if (activation->type == "Sigmoid")
|
|
{
|
|
innerproduct->activation_type = 4;
|
|
}
|
|
else if (activation->type == "Mish")
|
|
{
|
|
innerproduct->activation_type = 5;
|
|
}
|
|
else if (activation->type == "HardSwish")
|
|
{
|
|
ncnn::HardSwish* hardswish = (ncnn::HardSwish*)activation;
|
|
|
|
innerproduct->activation_type = 6;
|
|
innerproduct->activation_params = ncnn::Mat(2);
|
|
innerproduct->activation_params[0] = hardswish->alpha;
|
|
innerproduct->activation_params[1] = hardswish->beta;
|
|
}
|
|
|
|
int top_blob_index_final = activation->tops[0];
|
|
innerproduct->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
activation->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_memorydata_binaryop()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "MemoryData")
|
|
continue;
|
|
|
|
// MemoryData - BinaryOp
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "BinaryOp")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 2)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index || layers[j]->bottoms[1] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
// fuse MemoryData - BinaryOp to BinaryOp
|
|
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[i];
|
|
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
|
|
|
|
if (memorydata->w != 1 || memorydata->h != 0 || memorydata->c != 0)
|
|
{
|
|
// not a scalar
|
|
continue;
|
|
}
|
|
|
|
int memorydata_index = 1;
|
|
|
|
if (binaryop->bottoms[0] == top_blob_index)
|
|
{
|
|
int op_type = binaryop->op_type;
|
|
|
|
if (op_type == ncnn::BinaryOp::Operation_ADD
|
|
|| op_type == ncnn::BinaryOp::Operation_MUL
|
|
|| op_type == ncnn::BinaryOp::Operation_MAX
|
|
|| op_type == ncnn::BinaryOp::Operation_MIN)
|
|
{
|
|
memorydata_index = 0;
|
|
}
|
|
else if (op_type == ncnn::BinaryOp::Operation_SUB)
|
|
{
|
|
binaryop->op_type = ncnn::BinaryOp::Operation_RSUB;
|
|
memorydata_index = 0;
|
|
}
|
|
else if (op_type == ncnn::BinaryOp::Operation_DIV)
|
|
{
|
|
binaryop->op_type = ncnn::BinaryOp::Operation_RDIV;
|
|
memorydata_index = 0;
|
|
}
|
|
else
|
|
{
|
|
// non interchangeable binaryop
|
|
continue;
|
|
}
|
|
}
|
|
|
|
float scalar = memorydata->data[0];
|
|
|
|
binaryop->with_scalar = 1;
|
|
binaryop->b = scalar;
|
|
|
|
fprintf(stderr, "fuse_memorydata_binaryop %s %s\n", memorydata->name.c_str(), binaryop->name.c_str());
|
|
|
|
binaryop->bottoms.erase(binaryop->bottoms.begin() + memorydata_index);
|
|
memorydata->type = "ncnnfused";
|
|
}
|
|
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "MemoryData")
|
|
continue;
|
|
|
|
// MemoryData - Split - BinaryOp
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j0 = i + 1;
|
|
for (; j0 < layer_count; j0++)
|
|
{
|
|
if (layers[j0]->type != "Split")
|
|
continue;
|
|
|
|
if (layers[j0]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j0]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j0 == layer_count)
|
|
continue;
|
|
|
|
int split_top_blob_index = -1;
|
|
|
|
size_t j1 = j0 + 1;
|
|
for (; j1 < layer_count; j1++)
|
|
{
|
|
if (layers[j1]->type != "BinaryOp")
|
|
continue;
|
|
|
|
if (layers[j1]->bottoms.size() != 2)
|
|
continue;
|
|
|
|
for (int k = 0; k < (int)layers[j0]->tops.size(); k++)
|
|
{
|
|
if (layers[j1]->bottoms[0] == layers[j0]->tops[k] || layers[j1]->bottoms[1] == layers[j0]->tops[k])
|
|
{
|
|
split_top_blob_index = k;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (split_top_blob_index != -1)
|
|
break;
|
|
}
|
|
|
|
if (j1 == layer_count)
|
|
continue;
|
|
|
|
// fuse MemoryData - Split - BinaryOp to BinaryOp
|
|
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[i];
|
|
ncnn::Split* split = (ncnn::Split*)layers[j0];
|
|
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j1];
|
|
|
|
if (memorydata->w != 1 || memorydata->h != 0 || memorydata->c != 0)
|
|
{
|
|
// not a scalar
|
|
continue;
|
|
}
|
|
|
|
int memorydata_index = 1;
|
|
|
|
if (binaryop->bottoms[0] == split->tops[split_top_blob_index])
|
|
{
|
|
int op_type = binaryop->op_type;
|
|
|
|
if (op_type == ncnn::BinaryOp::Operation_ADD
|
|
|| op_type == ncnn::BinaryOp::Operation_MUL
|
|
|| op_type == ncnn::BinaryOp::Operation_MAX
|
|
|| op_type == ncnn::BinaryOp::Operation_MIN)
|
|
{
|
|
memorydata_index = 0;
|
|
}
|
|
else if (op_type == ncnn::BinaryOp::Operation_SUB)
|
|
{
|
|
binaryop->op_type = ncnn::BinaryOp::Operation_RSUB;
|
|
memorydata_index = 0;
|
|
}
|
|
else if (op_type == ncnn::BinaryOp::Operation_DIV)
|
|
{
|
|
binaryop->op_type = ncnn::BinaryOp::Operation_RDIV;
|
|
memorydata_index = 0;
|
|
}
|
|
else
|
|
{
|
|
// non interchangeable binaryop
|
|
continue;
|
|
}
|
|
}
|
|
|
|
float scalar = memorydata->data[0];
|
|
|
|
binaryop->with_scalar = 1;
|
|
binaryop->b = scalar;
|
|
|
|
fprintf(stderr, "fuse_memorydata_binaryop %s %s\n", memorydata->name.c_str(), binaryop->name.c_str());
|
|
|
|
binaryop->bottoms.erase(binaryop->bottoms.begin() + memorydata_index);
|
|
split->tops.erase(split->tops.begin() + split_top_blob_index);
|
|
if (split->tops.empty())
|
|
{
|
|
split->type = "ncnnfused";
|
|
memorydata->type = "ncnnfused";
|
|
}
|
|
|
|
i--;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::fuse_binaryop_eltwise()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "BinaryOp")
|
|
continue;
|
|
|
|
if (layers[i]->bottoms.size() != 2)
|
|
continue;
|
|
|
|
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[i];
|
|
|
|
if (binaryop->op_type != ncnn::BinaryOp::Operation_ADD)
|
|
continue;
|
|
|
|
if (binaryop->with_scalar)
|
|
continue;
|
|
|
|
// BinaryOp - BinaryOp - BinaryOp
|
|
int bottom_blob_index_0 = binaryop->bottoms[0];
|
|
int bottom_blob_index_1 = binaryop->bottoms[1];
|
|
|
|
size_t j0 = 0;
|
|
for (; j0 < i; j0++)
|
|
{
|
|
if (layers[j0]->type != "BinaryOp")
|
|
continue;
|
|
|
|
if (layers[j0]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (((ncnn::BinaryOp*)layers[j0])->op_type != ncnn::BinaryOp::Operation_MUL)
|
|
continue;
|
|
|
|
if (layers[j0]->tops[0] == bottom_blob_index_0)
|
|
break;
|
|
}
|
|
|
|
size_t j1 = 0;
|
|
for (; j1 < i; j1++)
|
|
{
|
|
if (layers[j1]->type != "BinaryOp")
|
|
continue;
|
|
|
|
if (layers[j1]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (((ncnn::BinaryOp*)layers[j1])->op_type != ncnn::BinaryOp::Operation_MUL)
|
|
continue;
|
|
|
|
if (layers[j1]->tops[0] == bottom_blob_index_1)
|
|
break;
|
|
}
|
|
|
|
if (j0 == i && j1 == i)
|
|
continue;
|
|
|
|
ncnn::BinaryOp* binaryop0 = (ncnn::BinaryOp*)layers[j0];
|
|
ncnn::BinaryOp* binaryop1 = (ncnn::BinaryOp*)layers[j1];
|
|
|
|
fprintf(stderr, "fuse_binaryop_eltwise %s %s %s\n", binaryop0->name.c_str(), binaryop1->name.c_str(), binaryop->name.c_str());
|
|
|
|
ncnn::Eltwise* eltwise = (ncnn::Eltwise*)ncnn::create_layer("Eltwise");
|
|
|
|
eltwise->type = "Eltwise";
|
|
eltwise->name = binaryop->name;
|
|
eltwise->bottoms = binaryop->bottoms;
|
|
eltwise->tops = binaryop->tops;
|
|
|
|
ncnn::ParamDict pd;
|
|
eltwise->load_param(pd);
|
|
|
|
eltwise->op_type = ncnn::Eltwise::Operation_SUM;
|
|
|
|
eltwise->coeffs = ncnn::Mat(2);
|
|
|
|
if (j0 != i && j1 != i)
|
|
{
|
|
// fuse BinaryOp - BinaryOp - BinaryOp to Eltwise
|
|
eltwise->coeffs[0] = binaryop0->b;
|
|
eltwise->coeffs[1] = binaryop1->b;
|
|
|
|
eltwise->bottoms[0] = binaryop0->bottoms[0];
|
|
eltwise->bottoms[1] = binaryop1->bottoms[0];
|
|
|
|
binaryop0->type = "ncnnfused";
|
|
binaryop1->type = "ncnnfused";
|
|
}
|
|
if (j0 != i && j1 == i)
|
|
{
|
|
// fuse BinaryOp - X - BinaryOp to Eltwise
|
|
eltwise->coeffs[0] = binaryop0->b;
|
|
eltwise->coeffs[1] = 1.f;
|
|
|
|
eltwise->bottoms[0] = binaryop0->bottoms[0];
|
|
|
|
binaryop0->type = "ncnnfused";
|
|
}
|
|
if (j0 == i && j1 != i)
|
|
{
|
|
// fuse X - BinaryOp - BinaryOp to Eltwise
|
|
eltwise->coeffs[0] = 1.f;
|
|
eltwise->coeffs[1] = binaryop1->b;
|
|
|
|
eltwise->bottoms[1] = binaryop1->bottoms[0];
|
|
|
|
binaryop1->type = "ncnnfused";
|
|
}
|
|
|
|
layers[i] = eltwise;
|
|
delete binaryop;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::eliminate_dropout()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Dropout")
|
|
continue;
|
|
|
|
ncnn::Dropout* dropout = (ncnn::Dropout*)layers[i];
|
|
if (dropout->scale != 1.f)
|
|
continue;
|
|
|
|
// Any - Dropout
|
|
int bottom_blob_index = layers[i]->bottoms[0];
|
|
|
|
int j = i - 1;
|
|
for (; j >= 0; j--)
|
|
{
|
|
if (layers[j]->type == "ncnnfused")
|
|
continue;
|
|
|
|
if (layers[j]->tops.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->tops[0] == bottom_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == -1)
|
|
continue;
|
|
|
|
ncnn::Layer* any = layers[j];
|
|
|
|
fprintf(stderr, "eliminate_dropout %s %s\n", any->name.c_str(), dropout->name.c_str());
|
|
|
|
int top_blob_index_final = dropout->tops[0];
|
|
any->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = j;
|
|
dropout->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::eliminate_pooling1x1()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Pooling")
|
|
continue;
|
|
|
|
ncnn::Pooling* pooling = (ncnn::Pooling*)layers[i];
|
|
if (pooling->pad_left != 0 || pooling->pad_right != 0 || pooling->pad_top != 0 || pooling->pad_bottom != 0)
|
|
continue;
|
|
|
|
if (pooling->kernel_w != 1 || pooling->kernel_h != 1 || pooling->stride_w != 1 || pooling->stride_h != 1)
|
|
continue;
|
|
|
|
if (pooling->global_pooling != 0)
|
|
continue;
|
|
|
|
// Any - Pooling
|
|
int bottom_blob_index = layers[i]->bottoms[0];
|
|
|
|
int top_i = -1;
|
|
int j = i - 1;
|
|
for (; j >= 0; j--)
|
|
{
|
|
if (layers[j]->type == "ncnnfused")
|
|
continue;
|
|
|
|
for (size_t k = 0; k < layers[j]->tops.size(); k++)
|
|
{
|
|
if (layers[j]->tops[k] == bottom_blob_index)
|
|
{
|
|
top_i = k;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (top_i != -1)
|
|
break;
|
|
}
|
|
|
|
if (j == -1)
|
|
continue;
|
|
|
|
ncnn::Layer* any = layers[j];
|
|
|
|
fprintf(stderr, "eliminate_pooling1x1 %s %s\n", any->name.c_str(), pooling->name.c_str());
|
|
|
|
int top_blob_index_final = pooling->tops[0];
|
|
any->tops[top_i] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = j;
|
|
pooling->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::eliminate_noop()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Noop")
|
|
continue;
|
|
|
|
ncnn::Layer* noop = layers[i];
|
|
|
|
if (noop->bottoms.empty())
|
|
{
|
|
// Noop
|
|
fprintf(stderr, "eliminate_noop %s\n", noop->name.c_str());
|
|
|
|
size_t top_blob_count = noop->tops.size();
|
|
for (size_t j = 0; j < top_blob_count; j++)
|
|
{
|
|
int top_blob_index_final = noop->tops[j];
|
|
blobs[top_blob_index_final].producer = -1;
|
|
}
|
|
noop->type = "ncnnfused";
|
|
|
|
continue;
|
|
}
|
|
|
|
// Any - Noop
|
|
int bottom_blob_index = noop->bottoms[0];
|
|
|
|
int j = i - 1;
|
|
int any_k = -1;
|
|
for (; j >= 0; j--)
|
|
{
|
|
if (layers[j]->type == "ncnnfused")
|
|
continue;
|
|
|
|
bool link_noop = false;
|
|
size_t top_blob_count = layers[j]->tops.size();
|
|
for (size_t k = 0; k < top_blob_count; k++)
|
|
{
|
|
if (layers[j]->tops[k] == bottom_blob_index)
|
|
{
|
|
link_noop = true;
|
|
any_k = k;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (link_noop)
|
|
break;
|
|
}
|
|
|
|
if (j == -1 || any_k == -1)
|
|
continue;
|
|
|
|
ncnn::Layer* any = layers[j];
|
|
|
|
fprintf(stderr, "eliminate_noop %s %s\n", any->name.c_str(), noop->name.c_str());
|
|
|
|
int top_blob_index_final = noop->tops[0];
|
|
any->tops[any_k] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = j;
|
|
|
|
noop->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::eliminate_split()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Split")
|
|
continue;
|
|
|
|
ncnn::Layer* split = layers[i];
|
|
|
|
int real_split_output_count = 0;
|
|
int real_split_top_blob_index = -1;
|
|
size_t top_blob_count = split->tops.size();
|
|
for (size_t j = 0; j < top_blob_count; j++)
|
|
{
|
|
int top_blob_index_final = split->tops[j];
|
|
if (blobs[top_blob_index_final].consumer != -1)
|
|
{
|
|
real_split_output_count += 1;
|
|
real_split_top_blob_index = j;
|
|
}
|
|
}
|
|
|
|
if (real_split_output_count > 1)
|
|
continue;
|
|
|
|
// Any - Pooling
|
|
int bottom_blob_index = split->bottoms[0];
|
|
|
|
int top_i = -1;
|
|
int j = i - 1;
|
|
for (; j >= 0; j--)
|
|
{
|
|
if (layers[j]->type == "ncnnfused")
|
|
continue;
|
|
|
|
for (size_t k = 0; k < layers[j]->tops.size(); k++)
|
|
{
|
|
if (layers[j]->tops[k] == bottom_blob_index)
|
|
{
|
|
top_i = k;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (top_i != -1)
|
|
break;
|
|
}
|
|
|
|
if (j == -1)
|
|
continue;
|
|
|
|
ncnn::Layer* any = layers[j];
|
|
|
|
fprintf(stderr, "eliminate_split %s %s\n", any->name.c_str(), split->name.c_str());
|
|
|
|
int top_blob_index_final = split->tops[real_split_top_blob_index];
|
|
any->tops[top_i] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = j;
|
|
split->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::eliminate_orphaned_memorydata()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "MemoryData")
|
|
continue;
|
|
|
|
// MemoryData - X
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type == "ncnnfused")
|
|
continue;
|
|
|
|
bool orphaned = true;
|
|
for (size_t k = 0; k < layers[j]->bottoms.size(); k++)
|
|
{
|
|
if (layers[j]->bottoms[k] == top_blob_index)
|
|
{
|
|
orphaned = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!orphaned)
|
|
break;
|
|
}
|
|
|
|
if (j < layer_count)
|
|
continue;
|
|
|
|
// assert orphaned == true
|
|
fprintf(stderr, "eliminate_orphaned_memorydata %s\n", layers[i]->name.c_str());
|
|
|
|
layers[i]->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::eliminate_reshape_after_global_pooling()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Pooling")
|
|
continue;
|
|
|
|
ncnn::Pooling* pooling = (ncnn::Pooling*)layers[i];
|
|
if (pooling->global_pooling == 0)
|
|
continue;
|
|
|
|
// Pooling - Reshape
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "Reshape")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
ncnn::Reshape* reshape = (ncnn::Reshape*)layers[j];
|
|
if (reshape->h != -233 || reshape->c != -233 || reshape->permute != 0)
|
|
continue;
|
|
|
|
fprintf(stderr, "eliminate_reshape_after_global_pooling %s %s\n", pooling->name.c_str(), reshape->name.c_str());
|
|
|
|
int top_blob_index_final = reshape->tops[0];
|
|
pooling->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
reshape->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::eliminate_flatten_after_global_pooling()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Pooling")
|
|
continue;
|
|
|
|
ncnn::Pooling* pooling = (ncnn::Pooling*)layers[i];
|
|
if (pooling->global_pooling == 0)
|
|
continue;
|
|
|
|
// Pooling - Flatten
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "Flatten")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
ncnn::Flatten* flatten = (ncnn::Flatten*)layers[j];
|
|
|
|
fprintf(stderr, "eliminate_flatten_after_global_pooling %s %s\n", pooling->name.c_str(), flatten->name.c_str());
|
|
|
|
int top_blob_index_final = flatten->tops[0];
|
|
pooling->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
flatten->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::eliminate_flatten_after_innerproduct()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "InnerProduct")
|
|
continue;
|
|
|
|
// InnerProduct - Flatten
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "Flatten")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
ncnn::InnerProduct* innerproduct = (ncnn::InnerProduct*)layers[i];
|
|
ncnn::Flatten* flatten = (ncnn::Flatten*)layers[j];
|
|
|
|
fprintf(stderr, "eliminate_flatten_after_innerproduct %s %s\n", innerproduct->name.c_str(), flatten->name.c_str());
|
|
|
|
int top_blob_index_final = flatten->tops[0];
|
|
innerproduct->tops[0] = top_blob_index_final;
|
|
blobs[top_blob_index_final].producer = i;
|
|
flatten->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::eliminate_reshape_before_binaryop()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Reshape")
|
|
continue;
|
|
|
|
ncnn::Reshape* reshape = (ncnn::Reshape*)layers[i];
|
|
if (reshape->w != 1 || reshape->h != 1 || reshape->permute != 0)
|
|
continue;
|
|
|
|
// Reshape - BinaryOp
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "BinaryOp")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 2)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index || layers[j]->bottoms[1] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
|
|
|
|
fprintf(stderr, "eliminate_reshape_before_binaryop %s %s\n", reshape->name.c_str(), binaryop->name.c_str());
|
|
|
|
int bottom_blob_index_final = reshape->bottoms[0];
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
binaryop->bottoms[0] = bottom_blob_index_final;
|
|
if (layers[j]->bottoms[1] == top_blob_index)
|
|
binaryop->bottoms[1] = bottom_blob_index_final;
|
|
blobs[bottom_blob_index_final].consumer = j;
|
|
reshape->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::replace_reduction_with_global_pooling()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Reduction")
|
|
continue;
|
|
|
|
ncnn::Reduction* reduction1 = (ncnn::Reduction*)layers[i];
|
|
if (reduction1->operation != 3 || reduction1->reduce_all != 0 || reduction1->coeff != 1.f)
|
|
continue;
|
|
|
|
if (reduction1->axes.w != 1)
|
|
continue;
|
|
|
|
const int* axes_ptr = reduction1->axes;
|
|
if (axes_ptr[0] != 2 && axes_ptr[0] != 3)
|
|
continue;
|
|
|
|
// Reduction(2/3) - Reduction(2)
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "Reduction")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
ncnn::Reduction* reduction2 = (ncnn::Reduction*)layers[j];
|
|
if (reduction2->operation != 3 || reduction2->reduce_all != 0 || reduction2->coeff != 1.f)
|
|
continue;
|
|
|
|
if (reduction2->axes.w != 1)
|
|
continue;
|
|
|
|
const int* axes2_ptr = reduction2->axes;
|
|
if (axes2_ptr[0] != 2)
|
|
continue;
|
|
|
|
fprintf(stderr, "replace_reduction_with_global_pooling %s %s\n", reduction1->name.c_str(), reduction2->name.c_str());
|
|
|
|
ncnn::Pooling* pooling = (ncnn::Pooling*)ncnn::create_layer("Pooling");
|
|
|
|
pooling->type = "Pooling";
|
|
pooling->name = reduction2->name;
|
|
pooling->bottoms = reduction2->bottoms;
|
|
pooling->tops = reduction2->tops;
|
|
|
|
ncnn::ParamDict pd;
|
|
pooling->load_param(pd);
|
|
|
|
pooling->pooling_type = 1;
|
|
pooling->global_pooling = 1;
|
|
|
|
layers[j] = pooling;
|
|
delete reduction2;
|
|
|
|
int bottom_blob_index_final = reduction1->bottoms[0];
|
|
pooling->bottoms[0] = bottom_blob_index_final;
|
|
blobs[bottom_blob_index_final].consumer = j;
|
|
reduction1->type = "ncnnfused";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::replace_prelu_with_leaky_relu()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "PReLU")
|
|
continue;
|
|
|
|
ncnn::PReLU* prelu = (ncnn::PReLU*)layers[i];
|
|
if (prelu->num_slope != 1)
|
|
continue;
|
|
|
|
fprintf(stderr, "replace_prelu_with_leaky_relu %s\n", prelu->name.c_str());
|
|
|
|
ncnn::ReLU* relu = (ncnn::ReLU*)ncnn::create_layer("ReLU");
|
|
|
|
relu->type = "ReLU";
|
|
relu->name = prelu->name;
|
|
relu->bottoms = prelu->bottoms;
|
|
relu->tops = prelu->tops;
|
|
|
|
ncnn::ParamDict pd;
|
|
relu->load_param(pd);
|
|
|
|
relu->slope = prelu->slope_data[0];
|
|
|
|
layers[i] = relu;
|
|
delete prelu;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::replace_convolution_with_innerproduct_after_global_pooling()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "Pooling")
|
|
continue;
|
|
|
|
ncnn::Pooling* pooling = (ncnn::Pooling*)layers[i];
|
|
if (pooling->global_pooling == 0)
|
|
continue;
|
|
|
|
// Pooling - Convolution
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "Convolution")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
ncnn::Convolution* convolution = (ncnn::Convolution*)layers[j];
|
|
|
|
fprintf(stderr, "replace_convolution_with_innerproduct_after_global_pooling %s %s\n", pooling->name.c_str(), convolution->name.c_str());
|
|
|
|
ncnn::InnerProduct* innerproduct = (ncnn::InnerProduct*)ncnn::create_layer("InnerProduct");
|
|
|
|
innerproduct->type = "InnerProduct";
|
|
innerproduct->name = convolution->name;
|
|
innerproduct->bottoms = convolution->bottoms;
|
|
innerproduct->tops = convolution->tops;
|
|
|
|
ncnn::ParamDict pd;
|
|
innerproduct->load_param(pd);
|
|
|
|
innerproduct->num_output = convolution->num_output;
|
|
innerproduct->bias_term = convolution->bias_term;
|
|
innerproduct->weight_data_size = convolution->weight_data_size;
|
|
innerproduct->int8_scale_term = convolution->int8_scale_term;
|
|
|
|
innerproduct->weight_data = convolution->weight_data;
|
|
innerproduct->bias_data = convolution->bias_data;
|
|
#if NCNN_INT8
|
|
innerproduct->weight_data_int8_scales = convolution->weight_data_int8_scales;
|
|
innerproduct->bottom_blob_int8_scales = convolution->bottom_blob_int8_scales;
|
|
#endif
|
|
|
|
innerproduct->activation_type = convolution->activation_type;
|
|
innerproduct->activation_params = convolution->activation_params;
|
|
|
|
layers[j] = innerproduct;
|
|
delete convolution;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int NetOptimize::replace_convolution_with_innerproduct_after_innerproduct()
|
|
{
|
|
const size_t layer_count = layers.size();
|
|
for (;;)
|
|
{
|
|
bool replaced = false;
|
|
|
|
for (size_t i = 0; i < layer_count; i++)
|
|
{
|
|
if (layers[i]->type != "InnerProduct")
|
|
continue;
|
|
|
|
// InnerProduct - Convolution
|
|
int top_blob_index = layers[i]->tops[0];
|
|
|
|
size_t j = i + 1;
|
|
for (; j < layer_count; j++)
|
|
{
|
|
if (layers[j]->type != "Convolution")
|
|
continue;
|
|
|
|
if (layers[j]->bottoms.size() != 1)
|
|
continue;
|
|
|
|
if (layers[j]->bottoms[0] == top_blob_index)
|
|
break;
|
|
}
|
|
|
|
if (j == layer_count)
|
|
continue;
|
|
|
|
ncnn::InnerProduct* innerproduct = (ncnn::InnerProduct*)layers[i];
|
|
ncnn::Convolution* convolution = (ncnn::Convolution*)layers[j];
|
|
|
|
fprintf(stderr, "replace_convolution_with_innerproduct_after_innerproduct %s %s\n", innerproduct->name.c_str(), convolution->name.c_str());
|
|
|
|
ncnn::InnerProduct* innerproduct2 = (ncnn::InnerProduct*)ncnn::create_layer("InnerProduct");
|
|
|
|
innerproduct2->type = "InnerProduct";
|
|
innerproduct2->name = convolution->name;
|
|
innerproduct2->bottoms = convolution->bottoms;
|
|
innerproduct2->tops = convolution->tops;
|
|
|
|
ncnn::ParamDict pd;
|
|
innerproduct2->load_param(pd);
|
|
|
|
innerproduct2->num_output = convolution->num_output;
|
|
innerproduct2->bias_term = convolution->bias_term;
|
|
innerproduct2->weight_data_size = convolution->weight_data_size;
|
|
innerproduct->int8_scale_term = convolution->int8_scale_term;
|
|
|
|
innerproduct2->weight_data = convolution->weight_data;
|
|
innerproduct2->bias_data = convolution->bias_data;
|
|
#if NCNN_INT8
|
|
innerproduct->weight_data_int8_scales = convolution->weight_data_int8_scales;
|
|
innerproduct->bottom_blob_int8_scales = convolution->bottom_blob_int8_scales;
|
|
#endif
|
|
|
|
innerproduct2->activation_type = convolution->activation_type;
|
|
innerproduct2->activation_params = convolution->activation_params;
|
|
|
|
layers[j] = innerproduct2;
|
|
delete convolution;
|
|
|
|
replaced = true;
|
|
}
|
|
|
|
if (!replaced)
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
if (argc < 6)
|
|
{
|
|
fprintf(stderr, "usage: %s [inparam] [inbin] [outparam] [outbin] [flag] [cutstart] [cutend]\n", argv[0]);
|
|
return -1;
|
|
}
|
|
|
|
const char* inparam = argv[1];
|
|
const char* inbin = argv[2];
|
|
const char* outparam = argv[3];
|
|
const char* outbin = argv[4];
|
|
int flag = atoi(argv[5]);
|
|
const char* cutstartname = nullptr;
|
|
const char* cutendname = nullptr;
|
|
|
|
if (argc > 6)
|
|
{
|
|
cutstartname = argv[6];
|
|
}
|
|
|
|
if (argc > 7)
|
|
{
|
|
cutendname = argv[7];
|
|
}
|
|
|
|
NetOptimize optimizer;
|
|
|
|
if (flag == 65536 || flag == 1)
|
|
{
|
|
optimizer.storage_type = 1;
|
|
}
|
|
else
|
|
{
|
|
optimizer.storage_type = 0;
|
|
}
|
|
|
|
optimizer.load_param(inparam);
|
|
|
|
if (strcmp(inbin, "null") == 0)
|
|
{
|
|
DataReaderFromEmpty dr;
|
|
optimizer.load_model(dr);
|
|
optimizer.gen_random_weight = true;
|
|
}
|
|
else
|
|
optimizer.load_model(inbin);
|
|
|
|
if (optimizer.set_cutparam(cutstartname, cutendname) < 0)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
optimizer.fuse_batchnorm_scale();
|
|
optimizer.fuse_convolution_batchnorm();
|
|
optimizer.fuse_convolution_mul();
|
|
optimizer.fuse_convolution_add();
|
|
optimizer.fuse_convolutiondepthwise_batchnorm();
|
|
optimizer.fuse_convolutiondepthwise_mul();
|
|
optimizer.fuse_convolutiondepthwise_add();
|
|
optimizer.fuse_deconvolution_batchnorm();
|
|
optimizer.fuse_deconvolution_mul();
|
|
optimizer.fuse_deconvolution_add();
|
|
optimizer.fuse_deconvolutiondepthwise_batchnorm();
|
|
optimizer.fuse_innerproduct_batchnorm();
|
|
optimizer.fuse_innerproduct_add();
|
|
optimizer.fuse_innerproduct_dropout();
|
|
|
|
optimizer.replace_reduction_with_global_pooling();
|
|
optimizer.replace_prelu_with_leaky_relu();
|
|
|
|
optimizer.fuse_convolution_activation();
|
|
optimizer.fuse_convolutiondepthwise_activation();
|
|
optimizer.fuse_deconvolution_activation();
|
|
optimizer.fuse_deconvolutiondepthwise_activation();
|
|
optimizer.fuse_innerproduct_activation();
|
|
optimizer.fuse_memorydata_binaryop();
|
|
optimizer.fuse_binaryop_eltwise();
|
|
|
|
optimizer.eliminate_dropout();
|
|
optimizer.eliminate_pooling1x1();
|
|
optimizer.eliminate_noop();
|
|
optimizer.eliminate_split();
|
|
optimizer.eliminate_flatten_after_global_pooling();
|
|
optimizer.eliminate_reshape_after_global_pooling();
|
|
optimizer.eliminate_reshape_before_binaryop();
|
|
|
|
optimizer.replace_convolution_with_innerproduct_after_global_pooling();
|
|
optimizer.replace_convolution_with_innerproduct_after_innerproduct();
|
|
|
|
optimizer.eliminate_flatten_after_innerproduct();
|
|
optimizer.eliminate_orphaned_memorydata();
|
|
|
|
optimizer.shape_inference();
|
|
|
|
optimizer.estimate_memory_footprint();
|
|
|
|
optimizer.save(outparam, outbin);
|
|
|
|
return 0;
|
|
}
|