deepin-ocr/3rdparty/ncnn/benchmark/mobilenet_int8.param
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

34 lines
3.9 KiB
Plaintext

7767517
31 31
Input data 0 1 data 0=224 1=224 2=3
Convolution conv1 1 1 data conv1_relu1 0=32 1=3 3=2 4=1 5=1 6=864 8=102 9=1
ConvolutionDepthWise conv2_1/dw 1 1 conv1_relu1 conv2_1/dw_relu2_1/dw 0=32 1=3 4=1 5=1 6=288 7=32 8=101 9=1
Convolution conv2_1/sep 1 1 conv2_1/dw_relu2_1/dw conv2_1/sep_relu2_1/sep 0=64 1=1 5=1 6=2048 8=102 9=1
ConvolutionDepthWise conv2_2/dw 1 1 conv2_1/sep_relu2_1/sep conv2_2/dw_relu2_2/dw 0=64 1=3 3=2 4=1 5=1 6=576 7=64 8=101 9=1
Convolution conv2_2/sep 1 1 conv2_2/dw_relu2_2/dw conv2_2/sep_relu2_2/sep 0=128 1=1 5=1 6=8192 8=102 9=1
ConvolutionDepthWise conv3_1/dw 1 1 conv2_2/sep_relu2_2/sep conv3_1/dw_relu3_1/dw 0=128 1=3 4=1 5=1 6=1152 7=128 8=101 9=1
Convolution conv3_1/sep 1 1 conv3_1/dw_relu3_1/dw conv3_1/sep_relu3_1/sep 0=128 1=1 5=1 6=16384 8=102 9=1
ConvolutionDepthWise conv3_2/dw 1 1 conv3_1/sep_relu3_1/sep conv3_2/dw_relu3_2/dw 0=128 1=3 3=2 4=1 5=1 6=1152 7=128 8=101 9=1
Convolution conv3_2/sep 1 1 conv3_2/dw_relu3_2/dw conv3_2/sep_relu3_2/sep 0=256 1=1 5=1 6=32768 8=102 9=1
ConvolutionDepthWise conv4_1/dw 1 1 conv3_2/sep_relu3_2/sep conv4_1/dw_relu4_1/dw 0=256 1=3 4=1 5=1 6=2304 7=256 8=101 9=1
Convolution conv4_1/sep 1 1 conv4_1/dw_relu4_1/dw conv4_1/sep_relu4_1/sep 0=256 1=1 5=1 6=65536 8=102 9=1
ConvolutionDepthWise conv4_2/dw 1 1 conv4_1/sep_relu4_1/sep conv4_2/dw_relu4_2/dw 0=256 1=3 3=2 4=1 5=1 6=2304 7=256 8=101 9=1
Convolution conv4_2/sep 1 1 conv4_2/dw_relu4_2/dw conv4_2/sep_relu4_2/sep 0=512 1=1 5=1 6=131072 8=102 9=1
ConvolutionDepthWise conv5_1/dw 1 1 conv4_2/sep_relu4_2/sep conv5_1/dw_relu5_1/dw 0=512 1=3 4=1 5=1 6=4608 7=512 8=101 9=1
Convolution conv5_1/sep 1 1 conv5_1/dw_relu5_1/dw conv5_1/sep_relu5_1/sep 0=512 1=1 5=1 6=262144 8=102 9=1
ConvolutionDepthWise conv5_2/dw 1 1 conv5_1/sep_relu5_1/sep conv5_2/dw_relu5_2/dw 0=512 1=3 4=1 5=1 6=4608 7=512 8=101 9=1
Convolution conv5_2/sep 1 1 conv5_2/dw_relu5_2/dw conv5_2/sep_relu5_2/sep 0=512 1=1 5=1 6=262144 8=102 9=1
ConvolutionDepthWise conv5_3/dw 1 1 conv5_2/sep_relu5_2/sep conv5_3/dw_relu5_3/dw 0=512 1=3 4=1 5=1 6=4608 7=512 8=101 9=1
Convolution conv5_3/sep 1 1 conv5_3/dw_relu5_3/dw conv5_3/sep_relu5_3/sep 0=512 1=1 5=1 6=262144 8=102 9=1
ConvolutionDepthWise conv5_4/dw 1 1 conv5_3/sep_relu5_3/sep conv5_4/dw_relu5_4/dw 0=512 1=3 4=1 5=1 6=4608 7=512 8=101 9=1
Convolution conv5_4/sep 1 1 conv5_4/dw_relu5_4/dw conv5_4/sep_relu5_4/sep 0=512 1=1 5=1 6=262144 8=102 9=1
ConvolutionDepthWise conv5_5/dw 1 1 conv5_4/sep_relu5_4/sep conv5_5/dw_relu5_5/dw 0=512 1=3 4=1 5=1 6=4608 7=512 8=101 9=1
Convolution conv5_5/sep 1 1 conv5_5/dw_relu5_5/dw conv5_5/sep_relu5_5/sep 0=512 1=1 5=1 6=262144 8=102 9=1
ConvolutionDepthWise conv5_6/dw 1 1 conv5_5/sep_relu5_5/sep conv5_6/dw_relu5_6/dw 0=512 1=3 3=2 4=1 5=1 6=4608 7=512 8=101 9=1
Convolution conv5_6/sep 1 1 conv5_6/dw_relu5_6/dw conv5_6/sep_relu5_6/sep 0=1024 1=1 5=1 6=524288 8=102 9=1
ConvolutionDepthWise conv6/dw 1 1 conv5_6/sep_relu5_6/sep conv6/dw_relu6/dw 0=1024 1=3 4=1 5=1 6=9216 7=1024 8=101 9=1
Convolution conv6/sep 1 1 conv6/dw_relu6/dw conv6/sep_relu6/sep 0=1024 1=1 5=1 6=1048576 8=2 9=1
Pooling pool6 1 1 conv6/sep_relu6/sep pool6 0=1 4=1
InnerProduct fc7 1 1 pool6 fc7 0=1000 1=1 2=1024000 8=2
Softmax prob 1 1 fc7 output