AbsVal
y = abs(x)
- one_blob_only
- support_inplace
ArgMax
y = argmax(x, out_max_val, topk)
param id |
name |
type |
default |
description |
0 |
out_max_val |
int |
0 |
|
1 |
topk |
int |
1 |
|
BatchNorm
y = (x - mean) / sqrt(var + eps) * slope + bias
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
channels |
int |
0 |
|
1 |
eps |
float |
0.f |
|
weight |
type |
shape |
slope_data |
float |
[channels] |
mean_data |
float |
[channels] |
var_data |
float |
[channels] |
bias_data |
float |
[channels] |
Bias
y = x + bias
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
bias_data_size |
int |
0 |
|
weight |
type |
shape |
bias_data |
float |
[channels] |
BinaryOp
This operation is used for binary computation, and the calculation rule depends on the broadcasting rule.
C = binaryop(A, B)
if with_scalar = 1:
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
op_type |
int |
0 |
Operation type as follows |
1 |
with_scalar |
int |
0 |
with_scalar=0 B is a matrix, with_scalar=1 B is a scalar |
2 |
b |
float |
0.f |
When B is a scalar, B = b |
Operation type:
- 0 = ADD
- 1 = SUB
- 2 = MUL
- 3 = DIV
- 4 = MAX
- 5 = MIN
- 6 = POW
- 7 = RSUB
- 8 = RDIV
BNLL
y = log(1 + e^(-x)) , x > 0
y = log(1 + e^x), x < 0
- one_blob_only
- support_inplace
Cast
y = cast(x)
- one_blob_only
- support_packing
param id |
name |
type |
default |
description |
0 |
type_from |
int |
0 |
|
1 |
type_to |
int |
0 |
|
Element type:
- 0 = auto
- 1 = float32
- 2 = float16
- 3 = int8
- 4 = bfloat16
Clip
y = clamp(x, min, max)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
min |
float |
-FLT_MAX |
|
1 |
max |
float |
FLT_MAX |
|
Concat
y = concat(x0, x1, x2, ...) by axis
param id |
name |
type |
default |
description |
0 |
axis |
int |
0 |
|
Convolution
x2 = pad(x, pads, pad_value)
x3 = conv(x2, weight, kernel, stride, dilation) + bias
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
8 |
int8_scale_term |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
18 |
pad_value |
float |
0.f |
|
19 |
dynamic_weight |
int |
0 |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[kernel_w, kernel_h, num_input, num_output] |
bias_data |
float |
[num_output] |
weight_data_int8_scales |
float |
[num_output] |
bottom_blob_int8_scales |
float |
[1] |
top_blob_int8_scales |
float |
[1] |
Convolution1D
x2 = pad(x, pads, pad_value)
x3 = conv1d(x2, weight, kernel, stride, dilation) + bias
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
15 |
pad_right |
int |
pad_left |
|
18 |
pad_value |
float |
0.f |
|
19 |
dynamic_weight |
int |
0 |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[kernel_w, num_input, num_output] |
bias_data |
float |
[num_output] |
Convolution3D
x2 = pad(x, pads, pad_value)
x3 = conv3d(x2, weight, kernel, stride, dilation) + bias
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
17 |
pad_behind |
int |
pad_front |
|
18 |
pad_value |
float |
0.f |
|
21 |
kernel_d |
int |
kernel_w |
|
22 |
dilation_d |
int |
dilation_w |
|
23 |
stride_d |
int |
stride_w |
|
24 |
pad_front |
int |
pad_left |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[kernel_w, kernel_h, kernel_d, num_input, num_output] |
bias_data |
float |
[num_output] |
ConvolutionDepthWise
x2 = pad(x, pads, pad_value)
x3 = conv(x2, weight, kernel, stride, dilation, group) + bias
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
7 |
group |
int |
1 |
|
8 |
int8_scale_term |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
18 |
pad_value |
float |
0.f |
|
19 |
dynamic_weight |
int |
0 |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[kernel_w, kernel_h, num_input / group, num_output / group, group] |
bias_data |
float |
[num_output] |
weight_data_int8_scales |
float |
[group] |
bottom_blob_int8_scales |
float |
[1] |
top_blob_int8_scales |
float |
[1] |
ConvolutionDepthWise1D
x2 = pad(x, pads, pad_value)
x3 = conv1d(x2, weight, kernel, stride, dilation, group) + bias
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
7 |
group |
int |
1 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
15 |
pad_right |
int |
pad_left |
|
18 |
pad_value |
float |
0.f |
|
19 |
dynamic_weight |
int |
0 |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[kernel_w, num_input / group, num_output / group, group] |
bias_data |
float |
[num_output] |
ConvolutionDepthWise3D
x2 = pad(x, pads, pad_value)
x3 = conv3d(x2, weight, kernel, stride, dilation, group) + bias
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
7 |
group |
int |
1 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
17 |
pad_behind |
int |
pad_front |
|
18 |
pad_value |
float |
0.f |
|
21 |
kernel_d |
int |
kernel_w |
|
22 |
dilation_d |
int |
dilation_w |
|
23 |
stride_d |
int |
stride_w |
|
24 |
pad_front |
int |
pad_left |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] |
bias_data |
float |
[num_output] |
Crop
y = crop(x)
param id |
name |
type |
default |
description |
0 |
woffset |
int |
0 |
|
1 |
hoffset |
int |
0 |
|
2 |
coffset |
int |
1 |
|
3 |
outw |
int |
1 |
|
4 |
outh |
int |
0 |
|
5 |
outc |
int |
0 |
|
6 |
woffset2 |
int |
0 |
|
7 |
hoffset2 |
int |
1 |
|
8 |
coffset2 |
int |
0 |
|
9 |
starts |
array |
[ ] |
|
10 |
ends |
array |
[ ] |
|
11 |
axes |
array |
[ ] |
|
Deconvolution
x2 = deconv(x, weight, kernel, stride, dilation) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
18 |
output_pad_right |
int |
0 |
|
19 |
output_pad_bottom |
int |
output_pad_right |
|
20 |
output_w |
int |
0 |
|
21 |
output_h |
int |
output_w |
|
weight |
type |
shape |
weight_data |
float/fp16 |
[kernel_w, kernel_h, num_input, num_output] |
bias_data |
float |
[num_output] |
Deconvolution1D
x2 = deconv1d(x, weight, kernel, stride, dilation) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
15 |
pad_right |
int |
pad_left |
|
18 |
output_pad_right |
int |
0 |
|
20 |
output_w |
int |
0 |
|
weight |
type |
shape |
weight_data |
float/fp16 |
[kernel_w, num_input, num_output] |
bias_data |
float |
[num_output] |
Deconvolution3D
x2 = deconv3d(x, weight, kernel, stride, dilation) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
17 |
pad_behind |
int |
pad_front |
|
18 |
output_pad_right |
int |
0 |
|
19 |
output_pad_bottom |
int |
output_pad_right |
|
20 |
output_pad_behind |
int |
output_pad_right |
|
21 |
kernel_d |
int |
kernel_w |
|
22 |
dilation_d |
int |
dilation_w |
|
23 |
stride_d |
int |
stride_w |
|
24 |
pad_front |
int |
pad_left |
|
25 |
output_w |
int |
0 |
|
26 |
output_h |
int |
output_w |
|
27 |
output_d |
int |
output_w |
|
weight |
type |
shape |
weight_data |
float/fp16 |
[kernel_w, kernel_h, kernel_d, num_input, num_output] |
bias_data |
float |
[num_output] |
DeconvolutionDepthWise
x2 = deconv(x, weight, kernel, stride, dilation, group) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
7 |
group |
int |
1 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
18 |
output_pad_right |
int |
0 |
|
19 |
output_pad_bottom |
int |
output_pad_right |
|
20 |
output_w |
int |
0 |
|
21 |
output_h |
int |
output_w |
|
weight |
type |
shape |
weight_data |
float/fp16 |
[kernel_w, kernel_h, num_input / group, num_output / group, group] |
bias_data |
float |
[num_output] |
DeconvolutionDepthWise1D
x2 = deconv1d(x, weight, kernel, stride, dilation, group) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
7 |
group |
int |
1 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
15 |
pad_right |
int |
pad_left |
|
18 |
output_pad_right |
int |
0 |
|
20 |
output_w |
int |
0 |
|
weight |
type |
shape |
weight_data |
float/fp16 |
[kernel_w, num_input / group, num_output / group, group] |
bias_data |
float |
[num_output] |
DeconvolutionDepthWise3D
x2 = deconv3d(x, weight, kernel, stride, dilation, group) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
7 |
group |
int |
1 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
17 |
pad_behind |
int |
pad_front |
|
18 |
output_pad_right |
int |
0 |
|
19 |
output_pad_bottom |
int |
output_pad_right |
|
20 |
output_pad_behind |
int |
output_pad_right |
|
21 |
kernel_d |
int |
kernel_w |
|
22 |
dilation_d |
int |
dilation_w |
|
23 |
stride_d |
int |
stride_w |
|
24 |
pad_front |
int |
pad_left |
|
25 |
output_w |
int |
0 |
|
26 |
output_h |
int |
output_w |
|
27 |
output_d |
int |
output_w |
|
weight |
type |
shape |
weight_data |
float/fp16 |
[kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] |
bias_data |
float |
[num_output] |
Dequantize
y = x * scale + bias
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
scale_data_size |
int |
1 |
|
1 |
bias_data_size |
int |
0 |
|
weight |
type |
shape |
scale_data |
float |
[scale_data_size] |
bias_data |
float |
[bias_data_size] |
Dropout
y = x * scale
param id |
name |
type |
default |
description |
0 |
scale |
float |
1.f |
|
Eltwise
y = elementwise_op(x0, x1, ...)
param id |
name |
type |
default |
description |
0 |
op_type |
int |
0 |
|
1 |
coeffs |
array |
[ ] |
|
Operation type:
ELU
if x < 0 y = (exp(x) - 1) * alpha
else y = x
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
alpha |
float |
0.1f |
|
Exp
if base == -1 y = exp(shift + x * scale)
else y = pow(base, (shift + x * scale))
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
base |
float |
-1.f |
|
1 |
scale |
float |
1.f |
|
2 |
shift |
float |
0.f |
|
Flatten
Reshape blob to 1 dimension
GELU
if fast_gelu == 1 y = 0.5 * x * (1 + tanh(0.79788452 * (x + 0.044715 * x * x * x)));
else y = 0.5 * x * erfc(-0.70710678 * x)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
fast_gelu |
int |
0 |
use approximation |
Gemm
a = transA ? transpose(x0) : x0
b = transb ? transpose(x1) : x1
c = x2
y = gemm(a, b) * alpha + c * beta
param id |
name |
type |
default |
description |
0 |
alpha |
float |
1.f |
|
1 |
beta |
float |
1.f |
|
2 |
transA |
int |
0 |
|
3 |
transb |
int |
0 |
|
GroupNorm
split x along channel axis into group x0, x1 ...
l2 normalize for each group x0, x1 ...
y = x * gamma + beta
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
group |
int |
1 |
|
1 |
channels |
int |
0 |
|
2 |
eps |
float |
0.001f |
x = x / sqrt(var + eps) |
3 |
affine |
int |
1 |
|
weight |
type |
shape |
gamma_data |
float |
[channels] |
beta_data |
float |
[channels] |
GRU
Apply a single-layer GRU to a feature sequence of T
timesteps. The input blob shape is [w=input_size, h=T]
and the output blob shape is [w=num_output, h=T]
.
y = gru(x)
y0, hidden y1 = gru(x0, hidden x1)
- one_blob_only if bidirectional
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
hidden size of output |
1 |
weight_data_size |
int |
0 |
total size of weight matrix |
2 |
direction |
int |
0 |
0=forward, 1=reverse, 2=bidirectional |
weight |
type |
shape |
weight_xc_data |
float/fp16/int8 |
[input_size, num_output * 3, num_directions] |
bias_c_data |
float/fp16/int8 |
[num_output, 4, num_directions] |
weight_hc_data |
float/fp16/int8 |
[num_output, num_output * 3, num_directions] |
Direction flag:
- 0 = forward only
- 1 = reverse only
- 2 = bidirectional
HardSigmoid
y = clamp(x * alpha + beta, 0, 1)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
alpha |
float |
0.2f |
|
1 |
beta |
float |
0.5f |
|
HardSwish
y = x * clamp(x * alpha + beta, 0, 1)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
alpha |
float |
0.2f |
|
1 |
beta |
float |
0.5f |
|
InnerProduct
x2 = innerproduct(x, weight) + bias
y = activation(x2, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
bias_term |
int |
0 |
|
2 |
weight_data_size |
int |
0 |
|
8 |
int8_scale_term |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[num_input, num_output] |
bias_data |
float |
[num_output] |
weight_data_int8_scales |
float |
[num_output] |
bottom_blob_int8_scales |
float |
[1] |
Input
y = input
param id |
name |
type |
default |
description |
0 |
w |
int |
0 |
|
1 |
h |
int |
0 |
|
11 |
d |
int |
0 |
|
2 |
c |
int |
0 |
|
InstanceNorm
split x along channel axis into instance x0, x1 ...
l2 normalize for each channel instance x0, x1 ...
y = x * gamma + beta
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
channels |
int |
0 |
|
1 |
eps |
float |
0.001f |
x = x / sqrt(var + eps) |
2 |
affine |
int |
1 |
|
weight |
type |
shape |
gamma_data |
float |
[channels] |
beta_data |
float |
[channels] |
Interp
if dynamic_target_size == 0 y = resize(x) by fixed size or scale
else y = resize(x0, size(x1))
- one_blob_only if dynamic_target_size == 0
param id |
name |
type |
default |
description |
0 |
resize_type |
int |
0 |
|
1 |
height_scale |
float |
1.f |
|
2 |
width_scale |
float |
1.f |
|
3 |
output_height |
int |
0 |
|
4 |
output_width |
int |
0 |
|
5 |
dynamic_target_size |
int |
0 |
|
6 |
align_corner |
int |
0 |
|
Resize type:
- 1 = Nearest
- 2 = Bilinear
- 3 = Bicubic
LayerNorm
split x along outmost axis into part x0, x1 ...
l2 normalize for each part x0, x1 ...
y = x * gamma + beta by elementwise
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
affine_size |
int |
0 |
|
1 |
eps |
float |
0.001f |
x = x / sqrt(var + eps) |
2 |
affine |
int |
1 |
|
weight |
type |
shape |
gamma_data |
float |
[affine_size] |
beta_data |
float |
[affine_size] |
Log
if base == -1 y = log(shift + x * scale)
else y = log(shift + x * scale) / log(base)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
base |
float |
-1.f |
|
1 |
scale |
float |
1.f |
|
2 |
shift |
float |
0.f |
|
LRN
if region_type == ACROSS_CHANNELS square_sum = sum of channel window of local_size
if region_type == WITHIN_CHANNEL square_sum = sum of spatial window of local_size
y = x * pow(bias + alpha * square_sum / (local_size * local_size), -beta)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
region_type |
int |
0 |
|
1 |
local_size |
int |
5 |
|
2 |
alpha |
float |
1.f |
|
3 |
beta |
float |
0.75f |
|
4 |
bias |
float |
1.f |
|
Region type:
- 0 = ACROSS_CHANNELS
- 1 = WITHIN_CHANNEL
LSTM
Apply a single-layer LSTM to a feature sequence of T
timesteps. The input blob shape is [w=input_size, h=T]
and the output blob shape is [w=num_output, h=T]
.
y = lstm(x)
y0, hidden y1, cell y2 = lstm(x0, hidden x1, cell x2)
- one_blob_only if bidirectional
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
hidden size of output |
1 |
weight_data_size |
int |
0 |
total size of IFOG weight matrix |
2 |
direction |
int |
0 |
0=forward, 1=reverse, 2=bidirectional |
weight |
type |
shape |
weight_xc_data |
float/fp16/int8 |
[input_size, num_output * 4, num_directions] |
bias_c_data |
float/fp16/int8 |
[num_output, 4, num_directions] |
weight_hc_data |
float/fp16/int8 |
[num_output, num_output * 4, num_directions] |
Direction flag:
- 0 = forward only
- 1 = reverse only
- 2 = bidirectional
MemoryData
y = data
param id |
name |
type |
default |
description |
0 |
w |
int |
0 |
|
1 |
h |
int |
0 |
|
11 |
d |
int |
0 |
|
2 |
c |
int |
0 |
|
weight |
type |
shape |
data |
float |
[w, h, d, c] |
Mish
y = x * tanh(log(exp(x) + 1))
- one_blob_only
- support_inplace
MultiHeadAttention
split q k v into num_head part q0, k0, v0, q1, k1, v1 ...
for each num_head part
xq = affine(q) / (embed_dim / num_head)
xk = affine(k)
xv = affine(v)
xqk = xq * xk
softmax_inplace(xqk)
xqkv = xqk * xv
merge xqkv to out
y = affine(out)
param id |
name |
type |
default |
description |
0 |
embed_dim |
int |
0 |
|
1 |
num_head |
int |
1 |
|
2 |
weight_data_size |
int |
0 |
|
weight |
type |
shape |
q_weight_data |
float/fp16/int8 |
[weight_data_size] |
q_bias_data |
float |
[embed_dim] |
k_weight_data |
float/fp16/int8 |
[weight_data_size] |
k_bias_data |
float |
[embed_dim] |
v_weight_data |
float/fp16/int8 |
[weight_data_size] |
v_bias_data |
float |
[embed_dim] |
out_weight_data |
float/fp16/int8 |
[weight_data_size] |
out_bias_data |
float |
[embed_dim] |
MVN
if normalize_variance == 1 && across_channels == 1 y = (x - mean) / (sqrt(var) + eps) of whole blob
if normalize_variance == 1 && across_channels == 0 y = (x - mean) / (sqrt(var) + eps) of each channel
if normalize_variance == 0 && across_channels == 1 y = x - mean of whole blob
if normalize_variance == 0 && across_channels == 0 y = x - mean of each channel
param id |
name |
type |
default |
description |
0 |
normalize_variance |
int |
0 |
|
1 |
across_channels |
int |
0 |
|
2 |
eps |
float |
0.0001f |
x = x / (sqrt(var) + eps) |
Noop
y = x
Normalize
if across_spatial == 1 && across_channel == 1 x2 = normalize(x) of whole blob
if across_spatial == 1 && across_channel == 0 x2 = normalize(x) of each channel
if across_spatial == 0 && across_channel == 1 x2 = normalize(x) of each position
y = x2 * scale
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
across_spatial |
int |
0 |
|
1 |
channel_shared |
int |
0 |
|
2 |
eps |
float |
0.0001f |
see eps mode |
3 |
scale_data_size |
int |
0 |
|
4 |
across_channel |
int |
0 |
|
9 |
eps_mode |
int |
0 |
|
weight |
type |
shape |
scale_data |
float |
[scale_data_size] |
Eps Mode:
- 0 = caffe/mxnet x = x / sqrt(var + eps)
- 1 = pytorch x = x / max(sqrt(var), eps)
- 2 = tensorflow x = x / sqrt(max(var, eps))
Packing
y = wrap_packing(x)
param id |
name |
type |
default |
description |
0 |
out_elempack |
int |
1 |
|
1 |
use_padding |
int |
0 |
|
2 |
cast_type_from |
int |
0 |
|
3 |
cast_type_to |
int |
0 |
|
4 |
storage_type_from |
int |
0 |
|
5 |
storage_type_to |
int |
0 |
|
Padding
y = pad(x, pads)
param id |
name |
type |
default |
description |
0 |
top |
int |
0 |
|
1 |
bottom |
int |
0 |
|
2 |
left |
int |
0 |
|
3 |
right |
int |
0 |
|
4 |
type |
int |
0 |
|
5 |
value |
float |
0 |
|
6 |
per_channel_pad_data_size |
int |
0 |
|
7 |
front |
int |
stride_w |
|
8 |
behind |
int |
pad_left |
|
weight |
type |
shape |
per_channel_pad_data |
float |
[per_channel_pad_data_size] |
Padding type:
- 0 = CONSTANT
- 1 = REPLICATE
- 2 = REFLECT
Permute
y = reorder(x)
param id |
name |
type |
default |
description |
0 |
order_type |
int |
0 |
|
Order Type:
- 0 = WH WHC WHDC
- 1 = HW HWC HWDC
- 2 = WCH WDHC
- 3 = CWH DWHC
- 4 = HCW HDWC
- 5 = CHW DHWC
- 6 = WHCD
- 7 = HWCD
- 8 = WCHD
- 9 = CWHD
- 10 = HCWD
- 11 = CHWD
- 12 = WDCH
- 13 = DWCH
- 14 = WCDH
- 15 = CWDH
- 16 = DCWH
- 17 = CDWH
- 18 = HDCW
- 19 = DHCW
- 20 = HCDW
- 21 = CHDW
- 22 = DCHW
- 23 = CDHW
PixelShuffle
if mode == 0 y = depth_to_space(x) where x channel order is sw-sh-outc
if mode == 1 y = depth_to_space(x) where x channel order is outc-sw-sh
param id |
name |
type |
default |
description |
0 |
upscale_factor |
int |
1 |
|
1 |
mode |
int |
0 |
|
Pooling
x2 = pad(x, pads)
x3 = pooling(x2, kernel, stride)
param id |
name |
type |
default |
description |
0 |
pooling_type |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
stride_w |
int |
1 |
|
3 |
pad_left |
int |
0 |
|
4 |
global_pooling |
int |
0 |
|
5 |
pad_mode |
int |
0 |
|
6 |
avgpool_count_include_pad |
int |
0 |
|
7 |
adaptive_pooling |
int |
0 |
|
8 |
out_w |
int |
0 |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
stride_h |
int |
stride_w |
|
13 |
pad_top |
int |
pad_left |
|
14 |
pad_right |
int |
pad_left |
|
15 |
pad_bottom |
int |
pad_top |
|
18 |
out_h |
int |
out_w |
|
Pooling type:
Pad mode:
- 0 = full padding
- 1 = valid padding
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
- 3 = onnx padding=SAME_LOWER
Pooling1D
x2 = pad(x, pads)
x3 = pooling1d(x2, kernel, stride)
param id |
name |
type |
default |
description |
0 |
pooling_type |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
stride_w |
int |
1 |
|
3 |
pad_left |
int |
0 |
|
4 |
global_pooling |
int |
0 |
|
5 |
pad_mode |
int |
0 |
|
6 |
avgpool_count_include_pad |
int |
0 |
|
7 |
adaptive_pooling |
int |
0 |
|
8 |
out_w |
int |
0 |
|
14 |
pad_right |
int |
pad_left |
|
Pooling type:
Pad mode:
- 0 = full padding
- 1 = valid padding
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
- 3 = onnx padding=SAME_LOWER
Pooling3D
x2 = pad(x, pads)
x3 = pooling3d(x2, kernel, stride)
param id |
name |
type |
default |
description |
0 |
pooling_type |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
stride_w |
int |
1 |
|
3 |
pad_left |
int |
0 |
|
4 |
global_pooling |
int |
0 |
|
5 |
pad_mode |
int |
0 |
|
6 |
avgpool_count_include_pad |
int |
0 |
|
7 |
adaptive_pooling |
int |
0 |
|
8 |
out_w |
int |
0 |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
stride_h |
int |
stride_w |
|
13 |
pad_top |
int |
pad_left |
|
14 |
pad_right |
int |
pad_left |
|
15 |
pad_bottom |
int |
pad_top |
|
16 |
pad_behind |
int |
pad_front |
|
18 |
out_h |
int |
out_w |
|
21 |
kernel_d |
int |
kernel_w |
|
22 |
stride_d |
int |
stride_w |
|
23 |
pad_front |
int |
pad_left |
|
28 |
out_d |
int |
out_w |
|
Pooling type:
Pad mode:
- 0 = full padding
- 1 = valid padding
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
- 3 = onnx padding=SAME_LOWER
Power
y = pow((shift + x * scale), power)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
power |
float |
1.f |
|
1 |
scale |
float |
1.f |
|
2 |
shift |
float |
0.f |
|
PReLU
if x < 0 y = x * slope
else y = x
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
num_slope |
int |
0 |
|
weight |
type |
shape |
slope_data |
float |
[num_slope] |
Quantize
y = float2int8(x * scale)
param id |
name |
type |
default |
description |
0 |
scale_data_size |
int |
1 |
|
weight |
type |
shape |
scale_data |
float |
[scale_data_size] |
Reduction
y = reduce_op(x * coeff)
param id |
name |
type |
default |
description |
0 |
operation |
int |
0 |
|
1 |
reduce_all |
int |
1 |
|
2 |
coeff |
float |
1.f |
|
3 |
axes |
array |
[ ] |
|
4 |
keepdims |
int |
0 |
|
Operation type:
- 0 = SUM
- 1 = ASUM
- 2 = SUMSQ
- 3 = MEAN
- 4 = MAX
- 5 = MIN
- 6 = PROD
- 7 = L1
- 8 = L2
- 9 = LogSum
- 10 = LogSumExp
ReLU
if x < 0 y = x * slope
else y = x
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
slope |
float |
0.f |
|
Reorg
if mode == 0 y = space_to_depth(x) where x channel order is sw-sh-outc
if mode == 1 y = space_to_depth(x) where x channel order is outc-sw-sh
param id |
name |
type |
default |
description |
0 |
stride |
int |
1 |
|
1 |
mode |
int |
0 |
|
Requantize
x2 = x * scale_in + bias
x3 = activation(x2)
y = float2int8(x3 * scale_out)
param id |
name |
type |
default |
description |
0 |
scale_in_data_size |
int |
1 |
|
1 |
scale_out_data_size |
int |
1 |
|
2 |
bias_data_size |
int |
0 |
|
3 |
activation_type |
int |
0 |
|
4 |
activation_params |
int |
[ ] |
|
weight |
type |
shape |
scale_in_data |
float |
[scale_in_data_size] |
scale_out_data |
float |
[scale_out_data_size] |
bias_data |
float |
[bias_data_size] |
Reshape
if permute == 1 y = hwc2chw(reshape(chw2hwc(x)))
else y = reshape(x)
param id |
name |
type |
default |
description |
0 |
w |
int |
-233 |
|
1 |
h |
int |
-233 |
|
11 |
d |
int |
-233 |
|
2 |
c |
int |
-233 |
|
3 |
permute |
int |
0 |
|
Reshape flag:
- 0 = copy from bottom
- -1 = remaining
- -233 = drop this dim(default)
RNN
Apply a single-layer RNN to a feature sequence of T
timesteps. The input blob shape is [w=input_size, h=T]
and the output blob shape is [w=num_output, h=T]
.
y = rnn(x)
y0, hidden y1 = rnn(x0, hidden x1)
- one_blob_only if bidirectional
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
hidden size of output |
1 |
weight_data_size |
int |
0 |
total size of weight matrix |
2 |
direction |
int |
0 |
0=forward, 1=reverse, 2=bidirectional |
weight |
type |
shape |
weight_xc_data |
float/fp16/int8 |
[input_size, num_output, num_directions] |
bias_c_data |
float/fp16/int8 |
[num_output, 1, num_directions] |
weight_hc_data |
float/fp16/int8 |
[num_output, num_output, num_directions] |
Direction flag:
- 0 = forward only
- 1 = reverse only
- 2 = bidirectional
Scale
if scale_data_size == -233 y = x0 * x1
else y = x * scale + bias
- one_blob_only if scale_data_size != -233
- support_inplace
param id |
name |
type |
default |
description |
0 |
scale_data_size |
int |
0 |
|
1 |
bias_term |
int |
0 |
|
weight |
type |
shape |
scale_data |
float |
[scale_data_size] |
bias_data |
float |
[scale_data_size] |
SELU
if x < 0 y = (exp(x) - 1.f) * alpha * lambda
else y = x * lambda
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
alpha |
float |
1.67326324f |
|
1 |
lambda |
float |
1.050700987f |
|
ShuffleChannel
if reverse == 0 y = shufflechannel(x) by group
if reverse == 1 y = shufflechannel(x) by channel / group
param id |
name |
type |
default |
description |
0 |
group |
int |
1 |
|
1 |
reverse |
int |
0 |
|
Sigmoid
y = 1 / (1 + exp(-x))
- one_blob_only
- support_inplace
Slice
split x along axis into slices, each part slice size is based on slices array
param id |
name |
type |
default |
description |
0 |
slices |
array |
[ ] |
|
1 |
axis |
int |
0 |
|
Softmax
softmax(x, axis)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
axis |
int |
0 |
|
1 |
fixbug0 |
int |
0 |
hack for bug fix, should be 1 |
Softplus
y = log(exp(x) + 1)
- one_blob_only
- support_inplace
Split
y0, y1 ... = x
Swish
y = x / (1 + exp(-x))
- one_blob_only
- support_inplace
TanH
y = tanh(x)
- one_blob_only
- support_inplace
Threshold
if x > threshold y = 1
else y = 0
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
threshold |
float |
0.f |
|
Tile
y = repeat tiles along axis for x
param id |
name |
type |
default |
description |
0 |
axis |
int |
0 |
|
1 |
tiles |
int |
1 |
|
2 |
repeats |
array |
[ ] |
|
UnaryOp
y = unaryop(x)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
op_type |
int |
0 |
Operation type as follows |
Operation type:
- 0 = ABS
- 1 = NEG
- 2 = FLOOR
- 3 = CEIL
- 4 = SQUARE
- 5 = SQRT
- 6 = RSQ
- 7 = EXP
- 8 = LOG
- 9 = SIN
- 10 = COS
- 11 = TAN
- 12 = ASIN
- 13 = ACOS
- 14 = ATAN
- 15 = RECIPROCAL
- 16 = TANH