deepin-ocr/3rdparty/ncnn/tools/pnnx/tests/test_F_avg_pool3d.py
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

73 lines
2.9 KiB
Python

# Tencent is pleased to support the open source community by making ncnn available.
#
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
def forward(self, x, y):
x = F.avg_pool3d(x, kernel_size=3)
x = F.avg_pool3d(x, kernel_size=4, stride=2, padding=2)
x = F.avg_pool3d(x, kernel_size=(1,2,3), stride=1, padding=(0,1,1), ceil_mode=False, count_include_pad=True)
x = F.avg_pool3d(x, kernel_size=(3,4,5), stride=(1,2,2), padding=(1,1,2), ceil_mode=True, count_include_pad=False)
x = F.avg_pool3d(x, kernel_size=(5,4,3), stride=(2,1,1), padding=1, ceil_mode=False, count_include_pad=True)
x = F.avg_pool3d(x, kernel_size=2, stride=1, padding=0, ceil_mode=True, count_include_pad=True)
x = F.avg_pool3d(x, kernel_size=(5,4,4), stride=1, padding=2, ceil_mode=False, count_include_pad=False, divisor_override=77)
y = F.avg_pool3d(y, kernel_size=3)
y = F.avg_pool3d(y, kernel_size=4, stride=2, padding=2)
y = F.avg_pool3d(y, kernel_size=(1,2,3), stride=1, padding=(0,1,1), ceil_mode=False, count_include_pad=True)
y = F.avg_pool3d(y, kernel_size=(3,4,5), stride=(1,2,2), padding=(1,1,2), ceil_mode=True, count_include_pad=False)
y = F.avg_pool3d(y, kernel_size=(5,4,3), stride=(2,1,1), padding=1, ceil_mode=False, count_include_pad=True)
y = F.avg_pool3d(y, kernel_size=2, stride=1, padding=0, ceil_mode=True, count_include_pad=True)
y = F.avg_pool3d(y, kernel_size=(5,4,4), stride=1, padding=2, ceil_mode=False, count_include_pad=False, divisor_override=77)
return x, y
def test():
net = Model()
net.eval()
torch.manual_seed(0)
x = torch.rand(1, 12, 96, 128, 128)
y = torch.rand(12, 96, 128, 128)
a = net(x, y)
# export torchscript
mod = torch.jit.trace(net, (x, y))
mod.save("test_F_avg_pool3d.pt")
# torchscript to pnnx
import os
os.system("../src/pnnx test_F_avg_pool3d.pt inputshape=[1,12,96,128,128],[12,96,128,128]")
# pnnx inference
import test_F_avg_pool3d_pnnx
b = test_F_avg_pool3d_pnnx.test_inference()
for a0, b0 in zip(a, b):
if not torch.equal(a0, b0):
return False
return True
if __name__ == "__main__":
if test():
exit(0)
else:
exit(1)