deepin-ocr/3rdparty/ncnn/tools/pnnx/tests/test_nn_GRU.py
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

77 lines
2.6 KiB
Python

# Tencent is pleased to support the open source community by making ncnn available.
#
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.gru_0_0 = nn.GRU(input_size=32, hidden_size=16)
self.gru_0_1 = nn.GRU(input_size=16, hidden_size=16, num_layers=3, bias=False)
self.gru_0_2 = nn.GRU(input_size=16, hidden_size=16, num_layers=4, bias=True, bidirectional=True)
self.gru_0_3 = nn.GRU(input_size=16, hidden_size=16, num_layers=4, bias=True, bidirectional=True)
self.gru_1_0 = nn.GRU(input_size=25, hidden_size=16, batch_first=True)
self.gru_1_1 = nn.GRU(input_size=16, hidden_size=16, num_layers=3, bias=False, batch_first=True)
self.gru_1_2 = nn.GRU(input_size=16, hidden_size=16, num_layers=4, bias=True, batch_first=True, bidirectional=True)
self.gru_1_3 = nn.GRU(input_size=16, hidden_size=16, num_layers=4, bias=True, batch_first=True, bidirectional=True)
def forward(self, x, y):
x0, h0 = self.gru_0_0(x)
x1, h1 = self.gru_0_1(x0)
x2, h2 = self.gru_0_2(x1)
x3, h3 = self.gru_0_3(x1, h2)
y0, h4 = self.gru_1_0(y)
y1, h5 = self.gru_1_1(y0)
y2, h6 = self.gru_1_2(y1)
y3, h7 = self.gru_1_3(y1, h6)
return x2, x3, h0, h1, h2, h3, y2, y3, h4, h5, h6, h7
def test():
net = Model()
net.eval()
torch.manual_seed(0)
x = torch.rand(10, 1, 32)
y = torch.rand(1, 12, 25)
a = net(x, y)
# export torchscript
mod = torch.jit.trace(net, (x, y))
mod.save("test_nn_GRU.pt")
# torchscript to pnnx
import os
os.system("../src/pnnx test_nn_GRU.pt inputshape=[10,1,32],[1,12,25]")
# pnnx inference
import test_nn_GRU_pnnx
b = test_nn_GRU_pnnx.test_inference()
for a0, b0 in zip(a, b):
if not torch.equal(a0, b0):
return False
return True
if __name__ == "__main__":
if test():
exit(0)
else:
exit(1)