718c41634f
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
66 lines
1.9 KiB
Python
66 lines
1.9 KiB
Python
# Tencent is pleased to support the open source community by making ncnn available.
|
|
#
|
|
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
|
|
#
|
|
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
|
# in compliance with the License. You may obtain a copy of the License at
|
|
#
|
|
# https://opensource.org/licenses/BSD-3-Clause
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software distributed
|
|
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
|
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations under the License.
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self):
|
|
super(Model, self).__init__()
|
|
|
|
self.act_0 = nn.LogSoftmax(dim=1)
|
|
self.act_1 = nn.LogSoftmax(dim=1)
|
|
self.act_2 = nn.LogSoftmax(dim=0)
|
|
self.act_3 = nn.LogSoftmax(dim=2)
|
|
|
|
def forward(self, x, y, z, w):
|
|
x = self.act_0(x)
|
|
y = self.act_1(y)
|
|
z = self.act_2(z)
|
|
w = self.act_3(w)
|
|
return x, y, z, w
|
|
|
|
def test():
|
|
net = Model()
|
|
net.eval()
|
|
|
|
torch.manual_seed(0)
|
|
x = torch.rand(1, 12)
|
|
y = torch.rand(1, 12, 64)
|
|
z = torch.rand(1, 12, 24, 64)
|
|
w = torch.rand(1, 12, 24, 32, 64)
|
|
|
|
a0, a1, a2, a3 = net(x, y, z, w)
|
|
|
|
# export torchscript
|
|
mod = torch.jit.trace(net, (x, y, z, w))
|
|
mod.save("test_nn_LogSoftmax.pt")
|
|
|
|
# torchscript to pnnx
|
|
import os
|
|
os.system("../src/pnnx test_nn_LogSoftmax.pt inputshape=[1,12],[1,12,64],[1,12,24,64],[1,12,24,32,64]")
|
|
|
|
# pnnx inference
|
|
import test_nn_LogSoftmax_pnnx
|
|
b0, b1, b2, b3 = test_nn_LogSoftmax_pnnx.test_inference()
|
|
|
|
return torch.equal(a0, b0) and torch.equal(a1, b1) and torch.equal(a2, b2) and torch.equal(a3, b3)
|
|
|
|
if __name__ == "__main__":
|
|
if test():
|
|
exit(0)
|
|
else:
|
|
exit(1)
|