deepin-ocr/3rdparty/ncnn/tools/pnnx/tests/test_nn_MultiheadAttention.py
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

82 lines
3.0 KiB
Python

# Tencent is pleased to support the open source community by making ncnn available.
#
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.attention_0_0 = nn.MultiheadAttention(embed_dim=64, num_heads=4)
self.attention_0_1 = nn.MultiheadAttention(embed_dim=64, num_heads=8, bias=False, add_bias_kv=False, add_zero_attn=False)
self.attention_0_2 = nn.MultiheadAttention(embed_dim=64, num_heads=16, bias=True, add_bias_kv=True, add_zero_attn=True)
if torch.__version__ >= '1.9':
self.attention_1_0 = nn.MultiheadAttention(embed_dim=40, num_heads=4, batch_first=True)
self.attention_1_1 = nn.MultiheadAttention(embed_dim=40, num_heads=8, bias=False, add_bias_kv=False, add_zero_attn=False, batch_first=True)
self.attention_1_2 = nn.MultiheadAttention(embed_dim=40, num_heads=10, bias=True, add_bias_kv=True, add_zero_attn=True, batch_first=True)
def forward(self, xq, xk, xv, yq, yk, yv):
x0, x0w = self.attention_0_0(xq, xk, xv)
x1, x1w = self.attention_0_1(xq, xk, xv)
x2, x2w = self.attention_0_2(xq, xk, xv)
if torch.__version__ < '1.9':
return x0, x0w, x1, x1w, x2, x2w
y0, y0w = self.attention_1_0(yq, yk, yv)
y1, y1w = self.attention_1_1(yq, yk, yv)
y2, y2w = self.attention_1_2(yq, yk, yv)
return x0, x0w, x1, x1w, x2, x2w, y0, y0w, y1, y1w, y2, y2w
def test():
net = Model()
net.eval()
torch.manual_seed(0)
xq = torch.rand(20, 1, 64)
xk = torch.rand(20, 1, 64)
xv = torch.rand(20, 1, 64)
yq = torch.rand(1, 15, 40)
yk = torch.rand(1, 24, 40)
yv = torch.rand(1, 24, 40)
a = net(xq, xk, xv, yq, yk, yv)
# export torchscript
mod = torch.jit.trace(net, (xq, xk, xv, yq, yk, yv))
mod.save("test_nn_MultiheadAttention.pt")
# torchscript to pnnx
import os
os.system("../src/pnnx test_nn_MultiheadAttention.pt inputshape=[20,1,64],[20,1,64],[20,1,64],[1,15,40],[1,24,40],[1,24,40]")
# pnnx inference
import test_nn_MultiheadAttention_pnnx
b = test_nn_MultiheadAttention_pnnx.test_inference()
for a0, b0 in zip(a, b):
if not torch.equal(a0, b0):
return False
return True
if __name__ == "__main__":
if test():
exit(0)
else:
exit(1)