718c41634f
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
172 lines
5.5 KiB
C++
172 lines
5.5 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
TEST(Features2D_ORB, _1996)
|
|
{
|
|
Ptr<FeatureDetector> fd = ORB::create(10000, 1.2f, 8, 31, 0, 2, ORB::HARRIS_SCORE, 31, 20);
|
|
Ptr<DescriptorExtractor> de = fd;
|
|
|
|
Mat image = imread(string(cvtest::TS::ptr()->get_data_path()) + "shared/lena.png");
|
|
ASSERT_FALSE(image.empty());
|
|
|
|
Mat roi(image.size(), CV_8UC1, Scalar(0));
|
|
|
|
Point poly[] = {Point(100, 20), Point(300, 50), Point(400, 200), Point(10, 500)};
|
|
fillConvexPoly(roi, poly, int(sizeof(poly) / sizeof(poly[0])), Scalar(255));
|
|
|
|
std::vector<KeyPoint> keypoints;
|
|
fd->detect(image, keypoints, roi);
|
|
Mat descriptors;
|
|
de->compute(image, keypoints, descriptors);
|
|
|
|
//image.setTo(Scalar(255,255,255), roi);
|
|
|
|
int roiViolations = 0;
|
|
for(std::vector<KeyPoint>::const_iterator kp = keypoints.begin(); kp != keypoints.end(); ++kp)
|
|
{
|
|
int x = cvRound(kp->pt.x);
|
|
int y = cvRound(kp->pt.y);
|
|
|
|
ASSERT_LE(0, x);
|
|
ASSERT_LE(0, y);
|
|
ASSERT_GT(image.cols, x);
|
|
ASSERT_GT(image.rows, y);
|
|
|
|
// if (!roi.at<uchar>(y,x))
|
|
// {
|
|
// roiViolations++;
|
|
// circle(image, kp->pt, 3, Scalar(0,0,255));
|
|
// }
|
|
}
|
|
|
|
// if(roiViolations)
|
|
// {
|
|
// imshow("img", image);
|
|
// waitKey();
|
|
// }
|
|
|
|
ASSERT_EQ(0, roiViolations);
|
|
}
|
|
|
|
TEST(Features2D_ORB, crash_5031)
|
|
{
|
|
cv::Mat image = cv::Mat::zeros(cv::Size(1920, 1080), CV_8UC3);
|
|
|
|
int nfeatures = 8000;
|
|
float orbScaleFactor = 1.2f;
|
|
int nlevels = 18;
|
|
int edgeThreshold = 4;
|
|
int firstLevel = 0;
|
|
int WTA_K = 2;
|
|
ORB::ScoreType scoreType = cv::ORB::HARRIS_SCORE;
|
|
int patchSize = 47;
|
|
int fastThreshold = 20;
|
|
|
|
Ptr<ORB> orb = cv::ORB::create(nfeatures, orbScaleFactor, nlevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize, fastThreshold);
|
|
|
|
std::vector<cv::KeyPoint> keypoints;
|
|
cv::Mat descriptors;
|
|
|
|
cv::KeyPoint kp;
|
|
kp.pt.x = 443;
|
|
kp.pt.y = 5;
|
|
kp.size = 47;
|
|
kp.angle = 53.4580612f;
|
|
kp.response = 0.0000470733867f;
|
|
kp.octave = 0;
|
|
kp.class_id = -1;
|
|
|
|
keypoints.push_back(kp);
|
|
|
|
ASSERT_NO_THROW(orb->compute(image, keypoints, descriptors));
|
|
}
|
|
|
|
|
|
TEST(Features2D_ORB, regression_16197)
|
|
{
|
|
Mat img(Size(72, 72), CV_8UC1, Scalar::all(0));
|
|
Ptr<ORB> orbPtr = ORB::create();
|
|
orbPtr->setNLevels(5);
|
|
orbPtr->setFirstLevel(3);
|
|
orbPtr->setScaleFactor(1.8);
|
|
orbPtr->setPatchSize(8);
|
|
orbPtr->setEdgeThreshold(8);
|
|
|
|
std::vector<KeyPoint> kps;
|
|
Mat fv;
|
|
|
|
// exception in debug mode, crash in release
|
|
ASSERT_NO_THROW(orbPtr->detectAndCompute(img, noArray(), kps, fv));
|
|
}
|
|
|
|
// https://github.com/opencv/opencv-python/issues/537
|
|
BIGDATA_TEST(Features2D_ORB, regression_opencv_python_537) // memory usage: ~3 Gb
|
|
{
|
|
applyTestTag(
|
|
CV_TEST_TAG_LONG,
|
|
CV_TEST_TAG_DEBUG_VERYLONG,
|
|
CV_TEST_TAG_MEMORY_6GB
|
|
);
|
|
|
|
const int width = 25000;
|
|
const int height = 25000;
|
|
Mat img(Size(width, height), CV_8UC1, Scalar::all(0));
|
|
|
|
const int border = 23, num_lines = 23;
|
|
for (int i = 0; i < num_lines; i++)
|
|
{
|
|
cv::Point2i point1(border + i * 100, border + i * 100);
|
|
cv::Point2i point2(width - border - i * 100, height - border * i * 100);
|
|
cv::line(img, point1, point2, 255, 1, LINE_AA);
|
|
}
|
|
|
|
Ptr<ORB> orbPtr = ORB::create(31);
|
|
std::vector<KeyPoint> kps;
|
|
Mat fv;
|
|
ASSERT_NO_THROW(orbPtr->detectAndCompute(img, noArray(), kps, fv));
|
|
}
|
|
|
|
}} // namespace
|