718c41634f
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
677 lines
19 KiB
Markdown
677 lines
19 KiB
Markdown
|
||
|
||
# 如何加入技术交流QQ群?
|
||
|
||
- 打开QQ→点击群聊搜索→搜索群号637093648→输入问题答案:卷卷卷卷卷→进入群聊→准备接受图灵测试(bushi)
|
||
- 前往QQ搜索Pocky群:677104663(超多大佬),问题答案:multi level intermediate representation
|
||
|
||
# 如何看作者b站直播?
|
||
|
||
- nihui的bilibili直播间:[水竹院落](https://live.bilibili.com/1264617)
|
||
|
||
# 编译
|
||
|
||
- ## 怎样下载完整源码?
|
||
|
||
git clone --recursive https://github.com/Tencent/ncnn/
|
||
|
||
或者
|
||
|
||
下载 [ncnn-xxxxx-full-source.zip](https://github.com/Tencent/ncnn/releases)
|
||
|
||
- ## 怎么交叉编译?cmake 工具链怎么设置啊?
|
||
|
||
参见 https://github.com/Tencent/ncnn/wiki/how-to-build
|
||
|
||
- ## The submodules were not downloaded! Please update submodules with "git submodule update --init" and try again
|
||
|
||
如上,下载完整源码。或者按提示执行: git submodule update --init
|
||
|
||
- ## Could NOT find Protobuf (missing: Protobuf_INCLUDE_DIR)
|
||
|
||
sudo apt-get install libprotobuf-dev protobuf-compiler
|
||
|
||
- ## Could NOT find CUDA (missing: CUDA_TOOLKIT_ROOT_DIR CUDA_INCLUDE_DIRS CUDA_CUDART_LIBRARY)
|
||
|
||
https://github.com/Tencent/ncnn/issues/1873
|
||
|
||
- ## Could not find a package configuration file provided by "OpenCV" with any of the following names: OpenCVConfig.cmake opencv-config.cmake
|
||
|
||
sudo apt-get install libopencv-dev
|
||
|
||
或者自行编译安装,set(OpenCV_DIR {OpenCVConfig.cmake所在目录})
|
||
|
||
- ## Could not find a package configuration file provided by "ncnn" with any of the following names: ncnnConfig.cmake ncnn-config.cmake
|
||
|
||
set(ncnn_DIR {ncnnConfig.cmake所在目录})
|
||
|
||
- ## 找不到 Vulkan,
|
||
|
||
cmake版本 3.10,否则没有带 FindVulkan.cmake
|
||
|
||
android-api >= 24
|
||
|
||
macos 要先执行安装脚本
|
||
|
||
- ## 如何安装 vulkan sdk
|
||
|
||
- ## 找不到库(需要根据系统/编译器指定)
|
||
|
||
undefined reference to __kmpc_for_static_init_4 __kmpc_for_static_fini __kmpc_fork_call ...
|
||
|
||
需要链接openmp库
|
||
|
||
undefined reference to vkEnumerateInstanceExtensionProperties vkGetInstanceProcAddr vkQueueSubmit ...
|
||
|
||
需要 vulkan-1.lib
|
||
|
||
undefined reference to glslang::InitializeProcess() glslang::TShader::TShader(EShLanguage) ...
|
||
|
||
需要 glslang.lib OGLCompiler.lib SPIRV.lib OSDependent.lib
|
||
|
||
undefined reference to AAssetManager_fromJava AAssetManager_open AAsset_seek ...
|
||
|
||
find_library和target_like_libraries中增加 android
|
||
|
||
find_package(ncnn)
|
||
|
||
- ## undefined reference to typeinfo for ncnn::Layer
|
||
|
||
opencv rtti -> opencv-mobile
|
||
|
||
- ## undefined reference to __cpu_model
|
||
|
||
升级编译器 / libgcc_s libgcc
|
||
|
||
- ## unrecognized command line option "-mavx2"
|
||
|
||
升级 gcc
|
||
|
||
- ## 为啥自己编译的ncnn android库特别大?
|
||
|
||
https://github.com/Tencent/ncnn/wiki/build-for-android.zh 以及见 如何裁剪更小的 ncnn 库
|
||
|
||
- ## ncnnoptimize和自定义层
|
||
|
||
先ncnnoptimize再增加自定义层,避免ncnnoptimize不能处理自定义层保存。
|
||
|
||
|
||
- ## rtti/exceptions冲突
|
||
|
||
产生原因是项目工程中使用的库配置不一样导致冲突,根据自己的实际情况分析是需要开启还是关闭。ncnn默认是ON,在重新编译ncnn时增加以下2个参数即可:
|
||
- 开启:-DNCNN_DISABLE_RTTI=OFF -DNCNN_DISABLE_EXCEPTION=OFF
|
||
- 关闭:-DNCNN_DISABLE_RTTI=ON -DNCNN_DISABLE_EXCEPTION=ON
|
||
|
||
|
||
- ## error: undefined symbol: ncnn::Extractor::extract(char const*, ncnn::Mat&)
|
||
|
||
可能的情况:
|
||
- 尝试升级 Android Studio 的 NDK 版本
|
||
|
||
|
||
# 怎样添加ncnn库到项目中?cmake方式怎么用?
|
||
|
||
编译ncnn,make install。linux/windows set/export ncnn_DIR 指向 isntall目录下下包含ncnnConfig.cmake 的目录
|
||
|
||
- ## android
|
||
|
||
- ## ios
|
||
|
||
- ## linux
|
||
|
||
- ## windows
|
||
|
||
- ## macos
|
||
|
||
- ## arm linux
|
||
|
||
|
||
# 转模型问题
|
||
|
||
- ## caffe
|
||
|
||
`./caffe2ncnn caffe.prototxt caffe.caffemodel ncnn.param ncnn.bin`
|
||
|
||
- ## mxnet
|
||
|
||
` ./mxnet2ncnn mxnet-symbol.json mxnet.params ncnn.param ncnn.bin`
|
||
|
||
- ## darknet
|
||
|
||
[https://github.com/xiangweizeng/darknet2ncnn](https://github.com/xiangweizeng/darknet2ncnn)
|
||
|
||
- ## pytorch - onnx
|
||
|
||
[use ncnn with pytorch or onnx](https://github.com/Tencent/ncnn/wiki/use-ncnn-with-pytorch-or-onnx)
|
||
|
||
- ## tensorflow 1.x/2.x - keras
|
||
|
||
[https://github.com/MarsTechHAN/keras2ncnn](https://github.com/MarsTechHAN/keras2ncnn) **[@MarsTechHAN](https://github.com/MarsTechHAN)**
|
||
|
||
- ## tensorflow 2.x - mlir
|
||
|
||
[通过MLIR将tensorflow2模型转换到ncnn](https://zhuanlan.zhihu.com/p/152535430) **@[nihui](https://www.zhihu.com/people/nihui-2)**
|
||
|
||
- ## Shape not supported yet! Gather not supported yet! Cast not supported yet!
|
||
|
||
onnx-simplifier 静态shape
|
||
|
||
- ## convertmodel
|
||
|
||
[https://convertmodel.com/](https://convertmodel.com/) **[@大老师](https://github.com/daquexian)**
|
||
|
||
- ## netron
|
||
|
||
[https://github.com/lutzroeder/netron](https://github.com/lutzroeder/netron)
|
||
|
||
- ## 怎么生成有固定 shape 信息的模型?
|
||
|
||
Input 0=w 1=h 2=c
|
||
|
||
- ## why gpu能更快
|
||
|
||
- ## ncnnoptimize 怎么转成 fp16 模型
|
||
|
||
`ncnnoptimize model.param model.bin yolov5s-opt.param yolov5s-opt.bin 65536`
|
||
|
||
- ## ncnnoptimize 怎样查看模型的 FLOPS / 内存占用情况
|
||
|
||
- ## 怎么修改模型支持动态 shape?
|
||
|
||
Interp Reshape
|
||
|
||
- ## 如何将模型转换为代码内嵌到程序里?
|
||
|
||
ncnn2mem
|
||
|
||
- ## 如何加密模型?
|
||
|
||
https://zhuanlan.zhihu.com/p/268327784
|
||
|
||
- ## Linux下转的ncnn模型,Windows/MacOS/Android/.. 也能直接用吗?
|
||
|
||
Yes,全平台通用
|
||
|
||
- ## 如何去掉后处理,再导出 onnx?
|
||
|
||
检测:
|
||
|
||
参考up的一篇文章<https://zhuanlan.zhihu.com/p/128974102>,步骤三就是去掉后处理,再导出onnx,其中去掉后处理可以是项目内测试时去掉后续步骤的结果。
|
||
|
||
- ## pytorch 有的层导不出 onnx 怎么办?
|
||
|
||
方式一:
|
||
|
||
ONNX_ATEN_FALLBACK
|
||
完全自定义的op,先改成能导出的(如 concat slice),转到 ncnn 后再修改 param
|
||
|
||
方式二:
|
||
|
||
可以使用PNNX来试试,参考以下文章大概说明:
|
||
|
||
1. [Windows/Linux/macOS 编译 PNNX 步骤](https://zhuanlan.zhihu.com/p/431833958)
|
||
|
||
2. [5分钟学会!用 PNNX 转换 TorchScript 模型到 ncnn 模型](https://zhuanlan.zhihu.com/p/427512763)
|
||
|
||
# 使用
|
||
|
||
- ## vkEnumeratePhysicalDevices failed -3
|
||
|
||
- ## vkCreateInstance failed -9
|
||
|
||
出现此类问题请先更新GPU驱动。Please upgrade your GPU driver if you encounter this crash or error.
|
||
这里提供了一些品牌的GPU驱动下载网址.We have provided some drivers' download pages here.
|
||
[Intel](https://downloadcenter.intel.com/product/80939/Graphics-Drivers),[AMD](https://www.amd.com/en/support),[Nvidia](https://www.nvidia.com/Download/index.aspx)
|
||
|
||
- ## ModuleNotFoundError: No module named 'ncnn.ncnn'
|
||
|
||
python setup.py develop
|
||
|
||
- ## fopen nanodet-m.param failed
|
||
|
||
文件路径 working dir
|
||
|
||
File not found or not readable. Make sure that XYZ.param/XYZ.bin is accessible.
|
||
|
||
- ## find_blob_index_by_name data / output / ... failed
|
||
|
||
layer name vs blob name
|
||
|
||
param.bin 应该用 xxx.id.h 的枚举
|
||
|
||
- ## parse magic failed
|
||
|
||
- ## param is too old, please regenerate
|
||
|
||
模型本身有问题
|
||
|
||
Your model file is being the old format converted by an old caffe2ncnn tool.
|
||
|
||
Checkout the latest ncnn code, build it and regenerate param and model binary files, and that should work.
|
||
|
||
Make sure that your param file starts with the magic number 7767517.
|
||
|
||
you may find more info on use-ncnn-with-alexnet
|
||
|
||
When adding the softmax layer yourself, you need to add 1=1
|
||
|
||
- ## set_vulkan_compute failed, network use_vulkan_compute disabled
|
||
|
||
你应该在 load_param / load_model 之前设置 net.opt.use_vulkan_compute = true;
|
||
|
||
- ## 多个blob输入,多个blob输出,怎么做?
|
||
多次执行`ex.input()` 和 `ex.extract()`
|
||
```
|
||
ex.input("data1", in_1);
|
||
ex.input("data2", in_2);
|
||
ex.extract("output1", out_1);
|
||
ex.extract("output2", out_2);
|
||
```
|
||
- ## Extractor extract 多次会重复计算吗?
|
||
|
||
不会
|
||
|
||
- ## 如何看每一层的耗时?
|
||
|
||
cmake -DNCNN_BENCHMARK=ON ..
|
||
|
||
- ## 如何转换 cv::Mat CV_8UC3 BGR 图片
|
||
|
||
from_pixels to_pixels
|
||
|
||
- ## 如何转换 float 数据为 ncnn::Mat
|
||
|
||
首先,自己申请的内存需要自己管理,此时ncnn::Mat不会自动给你释放你传过来的float数据
|
||
``` c++
|
||
std::vector<float> testData(60, 1.0); // 利用std::vector<float>自己管理内存的申请和释放
|
||
ncnn::Mat in1(60, (void*)testData.data()).reshape(4, 5, 3); // 把float数据的指针转成void*传过去即可,甚至还可以指定维度(up说最好使用reshape用来解决channel gap)
|
||
float* a = new float[60]; // 自己new一块内存,后续需要自己释放
|
||
ncnn::Mat in2 = ncnn::Mat(60, (void*)a).reshape(4, 5, 3).clone(); // 使用方法和上面相同,clone() to transfer data owner
|
||
```
|
||
|
||
- ## 如何初始化 ncnn::Mat 为全 0
|
||
|
||
`mat.fill(0.f);`
|
||
|
||
- ## 如何查看/获取版本号
|
||
|
||
cmake时会打印
|
||
|
||
c_api.h ncnn_version()
|
||
|
||
自己拼 1.0+yyyymmdd
|
||
|
||
- ## 如何转换 yuv 数据
|
||
|
||
yuv420sp2rgb yuv420sp2rgb_nv12
|
||
|
||
**[@metarutaiga](https://github.com/metarutaiga/xxYUV)**
|
||
|
||
- ## 如何 resize crop rotate 图片
|
||
|
||
[efficient roi resize rotate](https://github.com/Tencent/ncnn/wiki/efficient-roi-resize-rotate)
|
||
|
||
- ## 如何人脸5点对齐
|
||
|
||
get_affine_transform
|
||
|
||
warpaffine_bilinear_c3
|
||
|
||
```c
|
||
// 计算变换矩阵 并且求逆变换
|
||
int type = 0; // 0->区域外填充为v[0],v[1],v[2], -233->区域外不处理
|
||
unsigned int v = 0;
|
||
float tm[6];
|
||
float tm_inv[6];
|
||
// 人脸区域在原图上的坐标和宽高
|
||
float src_x = target->det.rect.x / target->det.w * pIveImageU8C3->u32Width;
|
||
float src_y = target->det.rect.y / target->det.h * pIveImageU8C3->u32Height;
|
||
float src_w = target->det.rect.w / target->det.w * pIveImageU8C3->u32Width;
|
||
float src_h = target->det.rect.h / target->det.h * pIveImageU8C3->u32Height;
|
||
float point_src[10] = {
|
||
src_x + src_w * target->attr.land[0][0], src_x + src_w * target->attr.land[0][1],
|
||
src_x + src_w * target->attr.land[1][0], src_x + src_w * target->attr.land[1][1],
|
||
src_x + src_w * target->attr.land[2][0], src_x + src_w * target->attr.land[2][1],
|
||
src_x + src_w * target->attr.land[3][0], src_x + src_w * target->attr.land[3][1],
|
||
src_x + src_w * target->attr.land[4][0], src_x + src_w * target->attr.land[4][1],
|
||
};
|
||
float point_dst[10] = { // +8 是因为我们处理112*112的图
|
||
30.2946f + 8.0f, 51.6963f,
|
||
65.5318f + 8.0f, 51.5014f,
|
||
48.0252f + 8.0f, 71.7366f,
|
||
33.5493f + 8.0f, 92.3655f,
|
||
62.7299f + 8.0f, 92.2041f,
|
||
};
|
||
// 第一种方式:先计算变换在求逆
|
||
AffineTrans::get_affine_transform(point_src, point_dst, 5, tm);
|
||
AffineTrans::invert_affine_transform(tm, tm_inv);
|
||
// 第二种方式:直接拿到求逆的结果
|
||
// AffineTrans::get_affine_transform(point_dst, point_src, 5, tm_inv);
|
||
// rgb 分离的,所以要单独处理
|
||
for(int c = 0; c < 3; c++)
|
||
{
|
||
unsigned char* pSrc = malloc(xxx);
|
||
unsigned char* pDst = malloc(xxx);
|
||
ncnn::warpaffine_bilinear_c1(pSrc, SrcWidth, SrcHeight, SrcStride[c], pDst, DstWidth, DstHeight, DstStride[c], tm_inv, type, v);
|
||
}
|
||
// rgb packed则可以一次处理
|
||
ncnn::warpaffine_bilinear_c3(pSrc, SrcWidth, SrcHeight, SrcStride, pDst, DstWidth, DstHeight, DstStride, tm_inv, type, v);
|
||
```
|
||
|
||
- ## 如何获得中间层的blob输出
|
||
|
||
ncnn::Mat output;
|
||
|
||
ex.extract("your_blob_name", output);
|
||
|
||
- ## 为什么我使用GPU,但是GPU占用为0
|
||
|
||
windows 10 任务管理器 - 性能选项卡 - GPU - 选择其中一个视图左上角的下拉箭头切换到 Compute_0 / Compute_1 / Cuda
|
||
|
||
你还可以安装软件:GPU-Z
|
||
|
||
- ## layer XYZ not exists or registered
|
||
|
||
Your network contains some operations that are not implemented in ncnn.
|
||
|
||
You may implement them as custom layer followed in how-to-implement-custom-layer-step-by-step.
|
||
|
||
Or you could simply register them as no-op if you are sure those operations make no sense.
|
||
|
||
```
|
||
class Noop : public ncnn::Layer {};
|
||
DEFINE_LAYER_CREATOR(Noop)
|
||
|
||
net.register_custom_layer("LinearRegressionOutput", Noop_layer_creator);
|
||
net.register_custom_layer("MAERegressionOutput", Noop_layer_creator);
|
||
```
|
||
|
||
- ## network graph not ready
|
||
|
||
You shall call Net::load_param() first, then Net::load_model().
|
||
|
||
This error may also happens when Net::load_param() failed, but not properly handled.
|
||
|
||
For more information about the ncnn model load api, see ncnn-load-model
|
||
|
||
- ## memory not 32-bit aligned at XYZ
|
||
|
||
The pointer passed to Net::load_param() or Net::load_model() is not 32bit aligned.
|
||
|
||
In practice, the head pointer of std::vector is not guaranteed to be 32bit aligned.
|
||
|
||
you can store your binary buffer in ncnn::Mat structure, its internal memory is aligned.
|
||
|
||
- ## crash on android with '__kmp_abort_process'
|
||
|
||
This usually happens if you bundle multiple shared library with openmp linked
|
||
|
||
It is actually an issue of the android ndk https://github.com/android/ndk/issues/1028
|
||
|
||
On old android ndk, modify the link flags as
|
||
|
||
-Wl,-Bstatic -lomp -Wl,-Bdynamic
|
||
|
||
For recent ndk >= 21
|
||
|
||
-fstatic-openmp
|
||
|
||
- ## dlopen failed: library "libomp.so" not found
|
||
Newer android ndk defaults to dynamic openmp runtime
|
||
|
||
modify the link flags as
|
||
|
||
-fstatic-openmp -fopenmp
|
||
|
||
- ## crash when freeing a ncnn dynamic library(.dll/.so) built with openMP
|
||
|
||
for optimal performance, the openmp threadpool spin waits for about a second prior to shutting down in case more work becomes available.
|
||
|
||
If you unload a dynamic library that's in the process of spin-waiting, it will crash in the manner you see (most of the time).
|
||
|
||
Just set OMP_WAIT_POLICY=passive in your environment, before calling loadlibrary. or Just wait a few seconds before calling freelibrary.
|
||
|
||
You can also use the following method to set environment variables in your code:
|
||
|
||
for msvc++:
|
||
|
||
SetEnvironmentVariable(_T("OMP_WAIT_POLICY"), _T("passive"));
|
||
|
||
for g++:
|
||
|
||
setenv("OMP_WAIT_POLICY", "passive", 1)
|
||
|
||
reference: https://stackoverflow.com/questions/34439956/vc-crash-when-freeing-a-dll-built-with-openmp
|
||
|
||
# 跑出来的结果对不上
|
||
|
||
[ncnn-produce-wrong-result](https://github.com/Tencent/ncnn/wiki/FAQ-ncnn-produce-wrong-result)
|
||
|
||
- ## 如何打印 ncnn::Mat 的值?
|
||
|
||
```C++
|
||
void pretty_print(const ncnn::Mat& m)
|
||
{
|
||
for (int q=0; q<m.c; q++)
|
||
{
|
||
const float* ptr = m.channel(q);
|
||
for (int y=0; y<m.h; y++)
|
||
{
|
||
for (int x=0; x<m.w; x++)
|
||
{
|
||
printf("%f ", ptr[x]);
|
||
}
|
||
ptr += m.w;
|
||
printf("\n");
|
||
}
|
||
printf("------------------------\n");
|
||
}
|
||
}
|
||
```
|
||
In Android Studio, `printf` will not work, you can use `__android_log_print` instead. Example :
|
||
```C++
|
||
#include <android/log.h> // Don't forget this
|
||
|
||
void pretty_print(const ncnn::Mat& m)
|
||
{
|
||
for (int q=0; q<m.c; q++)
|
||
{
|
||
for (int y=0; y<m.h; y++)
|
||
{
|
||
for (int x=0; x<m.w; x++)
|
||
{
|
||
__android_log_print(ANDROID_LOG_DEBUG,"LOG_TAG","ncnn Mat is : %f", m.channel(q).row(y)[x]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
- ## 如何可视化 ncnn::Mat 的值?
|
||
|
||
```
|
||
void visualize(const char* title, const ncnn::Mat& m)
|
||
{
|
||
std::vector<cv::Mat> normed_feats(m.c);
|
||
|
||
for (int i=0; i<m.c; i++)
|
||
{
|
||
cv::Mat tmp(m.h, m.w, CV_32FC1, (void*)(const float*)m.channel(i));
|
||
|
||
cv::normalize(tmp, normed_feats[i], 0, 255, cv::NORM_MINMAX, CV_8U);
|
||
|
||
cv::cvtColor(normed_feats[i], normed_feats[i], cv::COLOR_GRAY2BGR);
|
||
|
||
// check NaN
|
||
for (int y=0; y<m.h; y++)
|
||
{
|
||
const float* tp = tmp.ptr<float>(y);
|
||
uchar* sp = normed_feats[i].ptr<uchar>(y);
|
||
for (int x=0; x<m.w; x++)
|
||
{
|
||
float v = tp[x];
|
||
if (v != v)
|
||
{
|
||
sp[0] = 0;
|
||
sp[1] = 0;
|
||
sp[2] = 255;
|
||
}
|
||
|
||
sp += 3;
|
||
}
|
||
}
|
||
}
|
||
|
||
int tw = m.w < 10 ? 32 : m.w < 20 ? 16 : m.w < 40 ? 8 : m.w < 80 ? 4 : m.w < 160 ? 2 : 1;
|
||
int th = (m.c - 1) / tw + 1;
|
||
|
||
cv::Mat show_map(m.h * th, m.w * tw, CV_8UC3);
|
||
show_map = cv::Scalar(127);
|
||
|
||
// tile
|
||
for (int i=0; i<m.c; i++)
|
||
{
|
||
int ty = i / tw;
|
||
int tx = i % tw;
|
||
|
||
normed_feats[i].copyTo(show_map(cv::Rect(tx * m.w, ty * m.h, m.w, m.h)));
|
||
}
|
||
|
||
cv::resize(show_map, show_map, cv::Size(0,0), 2, 2, cv::INTER_NEAREST);
|
||
cv::imshow(title, show_map);
|
||
}
|
||
```
|
||
|
||
- ## 总是输出第一张图的结果
|
||
|
||
复用 Extractor?!
|
||
|
||
- ## 启用fp16时的精度有差异
|
||
|
||
net.opt.use_fp16_packed = false;
|
||
|
||
net.opt.use_fp16_storage = false;
|
||
|
||
net.opt.use_fp16_arithmetic = false;
|
||
|
||
[ncnn-produce-wrong-result](https://github.com/Tencent/ncnn/wiki/FAQ-ncnn-produce-wrong-result)
|
||
|
||
|
||
# 如何跑得更快?内存占用更少?库体积更小?
|
||
|
||
- ## fp32 fp16
|
||
|
||
- ## 大小核绑定
|
||
ncnn::set_cpu_powersave(int)绑定大核或小核
|
||
注意windows系统不支持绑核。
|
||
ncnn支持不同的模型运行在不同的核心。假设硬件平台有2个大核,4个小核,你想把netA运行在大核,netB运行在小核。
|
||
可以通过std::thread or pthread创建两个线程,运行如下代码:
|
||
0:全部
|
||
1:小核
|
||
2:大核
|
||
```
|
||
void thread_1()
|
||
{
|
||
ncnn::set_cpu_powersave(2); // bind to big cores
|
||
netA.opt.num_threads = 2;
|
||
}
|
||
|
||
void thread_2()
|
||
{
|
||
ncnn::set_cpu_powersave(1); // bind to little cores
|
||
netB.opt.num_threads = 4;
|
||
}
|
||
```
|
||
|
||
[openmp-best-practice.zh.md](https://github.com/Tencent/ncnn/blob/master/docs/how-to-use-and-FAQ/openmp-best-practice.zh.md)
|
||
|
||
- ## 查看 CPU 或 GPU 数量
|
||
get_cpu_count
|
||
|
||
get_gpu_count
|
||
|
||
- ## ncnnoptimize
|
||
|
||
使用方式一:
|
||
- ./ncnnoptimize ncnn.param ncnn.bin new.param new.bin flag
|
||
<br/>注意这里的flag指的是fp32和fp16,其中0指的是fp32,1指的是fp16
|
||
|
||
使用方式二:
|
||
- ./ncnnoptimize ncnn.param ncnn.bin new.param new.bin flag cutstartname cutendname
|
||
<br/>cutstartname:模型截取的起点
|
||
<br/>cutendname:模型截取的终点
|
||
|
||
|
||
- ## 如何使用量化工具?
|
||
|
||
[Post Training Quantization Tools](https://github.com/Tencent/ncnn/tree/master/tools/quantize)
|
||
|
||
- ## 如何设置线程数?
|
||
|
||
opt.num_threads
|
||
|
||
- ## 如何降低CPU占用率?
|
||
|
||
net.opt.openmp_blocktime = 0;
|
||
|
||
OMP_WAIT_POLICY=passive
|
||
|
||
- ## 如何 batch inference?
|
||
|
||
```
|
||
int max_batch_size = vkdev->info.compute_queue_count;
|
||
|
||
ncnn::Mat inputs[1000];
|
||
ncnn::Mat outputs[1000];
|
||
|
||
#pragma omp parallel for num_threads(max_batch_size)
|
||
for (int i=0; i<1000; i++)
|
||
{
|
||
ncnn::Extractor ex = net1.create_extractor();
|
||
ex.input("data", inputs[i]);
|
||
ex.extract("prob", outputs[i]);
|
||
}
|
||
```
|
||
|
||
|
||
|
||
- ## partial graph inference
|
||
|
||
先 extract 分类,判断后,再 extract bbox
|
||
|
||
- ## 如何启用 bf16s 加速?
|
||
|
||
```
|
||
net.opt.use_packing_layout = true;
|
||
net.opt.use_bf16_storage = true;
|
||
```
|
||
|
||
[用bf16加速ncnn](https://zhuanlan.zhihu.com/p/112564372) **@[nihui](https://www.zhihu.com/people/nihui-2)**
|
||
|
||
A53
|
||
|
||
- ## 如何裁剪更小的 ncnn 库?
|
||
|
||
[build-minimal-library](https://github.com/Tencent/ncnn/wiki/build-minimal-library)
|
||
|
||
- ## net.opt sgemm winograd fp16_storage 各是有什么作用?
|
||
|
||
对内存消耗的影响
|
||
|
||
# 白嫖项目
|
||
|
||
- ## nanodet
|
||
|
||
# 其他
|
||
|
||
- ## up主用的什么系统/编辑器/开发环境?
|
||
|
||
| 软件类型 | 软件名称 |
|
||
| ------------| ----------- |
|
||
| 系统 | Fedora |
|
||
| 桌面环境 | KDE |
|
||
| 编辑器 | Kate |
|
||
| 画草图 | kolourpaint |
|
||
| 画函数图像 | kmplot |
|
||
| bilibili直播 | OBS |
|