deepin-ocr/3rdparty/ncnn/tools/darknet/darknet2ncnn.cpp
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

965 lines
32 KiB
C++

// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include <algorithm>
#include <assert.h>
#include <cctype>
#include <deque>
#include <fstream>
#include <iostream>
#include <locale>
#include <sstream>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <unordered_map>
#include <vector>
#define OUTPUT_LAYER_MAP 0 //enable this to generate darknet style layer output
void file_error(const char* s)
{
fprintf(stderr, "Couldn't open file: %s\n", s);
exit(EXIT_FAILURE);
}
void fread_or_error(void* buffer, size_t size, size_t count, FILE* fp, const char* s)
{
if (count != fread(buffer, size, count, fp))
{
fprintf(stderr, "Couldn't read from file: %s\n", s);
fclose(fp);
assert(0);
exit(EXIT_FAILURE);
}
}
void error(const char* s)
{
perror(s);
assert(0);
exit(EXIT_FAILURE);
}
typedef struct Section
{
std::string name;
int line_number = -1;
int original_layer_count;
std::unordered_map<std::string, std::string> options;
int w = 416, h = 416, c = 3, inputs = 256, letter_box = 0;
int out_w, out_h, out_c;
int batch_normalize = 0, filters = 1, size = 1, groups = 1, stride = 1, padding = -1, pad = 0, dilation = 1;
std::string activation;
int from, reverse;
std::vector<int> layers, mask, anchors;
int group_id = -1;
int classes = 0, num = 0;
float ignore_thresh = 0.45f, scale_x_y = 1.f;
std::vector<float> weights, bias, scales, rolling_mean, rolling_variance;
std::string layer_type, layer_name;
std::vector<std::string> input_blobs, output_blobs;
std::vector<std::string> real_output_blobs;
std::vector<std::string> param;
} Section;
static inline std::string& trim(std::string& s)
{
s.erase(s.begin(), std::find_if(s.begin(), s.end(), [](int ch) {
return !std::isspace(ch);
}));
s.erase(std::find_if(s.rbegin(), s.rend(), [](int ch) {
return !std::isspace(ch);
}).base(),
s.end());
return s;
}
typedef enum FIELD_TYPE
{
INT,
FLOAT,
IARRAY,
FARRAY,
STRING,
UNSUPPORTED
} FIELD_TYPE;
typedef struct Section_Field
{
const char* name;
FIELD_TYPE type;
size_t offset;
} Section_Field;
#define FIELD_OFFSET(c) ((size_t) & (((Section*)0)->c))
int yolo_layer_count = 0;
bool letter_box_enabled = false;
std::vector<std::string> split(const std::string& s, char delimiter)
{
std::vector<std::string> tokens;
std::string token;
std::istringstream tokenStream(s);
while (std::getline(tokenStream, token, delimiter))
{
tokens.push_back(token);
}
return tokens;
}
template<typename... Args>
std::string format(const char* fmt, Args... args)
{
size_t size = snprintf(nullptr, 0, fmt, args...);
std::string buf;
buf.reserve(size + 1);
buf.resize(size);
snprintf(&buf[0], size + 1, fmt, args...);
return buf;
}
void update_field(Section* section, std::string key, std::string value)
{
static const Section_Field fields[] = {
//net
{"width", INT, FIELD_OFFSET(w)},
{"height", INT, FIELD_OFFSET(h)},
{"channels", INT, FIELD_OFFSET(c)},
{"inputs", INT, FIELD_OFFSET(inputs)},
{"letter_box", INT, FIELD_OFFSET(letter_box)},
//convolutional, upsample, maxpool
{"batch_normalize", INT, FIELD_OFFSET(batch_normalize)},
{"filters", INT, FIELD_OFFSET(filters)},
{"size", INT, FIELD_OFFSET(size)},
{"groups", INT, FIELD_OFFSET(groups)},
{"stride", INT, FIELD_OFFSET(stride)},
{"padding", INT, FIELD_OFFSET(padding)},
{"pad", INT, FIELD_OFFSET(pad)},
{"dilation", INT, FIELD_OFFSET(dilation)},
{"activation", STRING, FIELD_OFFSET(activation)},
//shortcut
{"from", INT, FIELD_OFFSET(from)},
{"reverse", INT, FIELD_OFFSET(reverse)},
//route
{"layers", IARRAY, FIELD_OFFSET(layers)},
{"group_id", INT, FIELD_OFFSET(group_id)},
//yolo
{"mask", IARRAY, FIELD_OFFSET(mask)},
{"anchors", IARRAY, FIELD_OFFSET(anchors)},
{"classes", INT, FIELD_OFFSET(classes)},
{"num", INT, FIELD_OFFSET(num)},
{"ignore_thresh", FLOAT, FIELD_OFFSET(ignore_thresh)},
{"scale_x_y", FLOAT, FIELD_OFFSET(scale_x_y)},
};
for (size_t i = 0; i < sizeof(fields) / sizeof(fields[0]); i++)
{
auto f = fields[i];
if (key != f.name)
continue;
char* addr = ((char*)section) + f.offset;
switch (f.type)
{
case INT:
*(int*)(addr) = std::stoi(value);
return;
case FLOAT:
*(float*)(addr) = std::stof(value);
return;
case IARRAY:
for (auto v : split(value, ','))
reinterpret_cast<std::vector<int>*>(addr)->push_back(std::stoi(v));
return;
case FARRAY:
for (auto v : split(value, ','))
reinterpret_cast<std::vector<float>*>(addr)->push_back(std::stof(v));
return;
case STRING:
*reinterpret_cast<std::string*>(addr) = value;
return;
case UNSUPPORTED:
printf("unsupported option: %s\n", key.c_str());
exit(EXIT_FAILURE);
}
}
}
void load_cfg(const char* filename, std::deque<Section*>& dnet)
{
std::string line;
std::ifstream icfg(filename, std::ifstream::in);
if (!icfg.good())
{
fprintf(stderr, "Couldn't cfg open file: %s\n", filename);
exit(EXIT_FAILURE);
}
Section* section = NULL;
size_t pos;
int section_count = 0, line_count = 0;
while (!icfg.eof())
{
line_count++;
std::getline(icfg, line);
trim(line);
if (line.length() == 0 || line.at(0) == '#')
continue;
if (line.at(0) == '[' && line.at(line.length() - 1) == ']')
{
line = line.substr(1, line.length() - 2);
section = new Section;
section->name = line;
section->line_number = line_count;
section->original_layer_count = section_count++;
dnet.push_back(section);
}
else if ((pos = line.find_first_of('=')) != std::string::npos)
{
std::string key = line.substr(0, pos);
std::string value = line.substr(pos + 1, line.length() - 1);
section->options[trim(key)] = trim(value);
update_field(section, key, value);
}
}
icfg.close();
}
Section* get_original_section(std::deque<Section*>& dnet, int count, int offset)
{
if (offset >= 0)
count = offset + 1;
else
count += offset;
for (auto s : dnet)
if (s->original_layer_count == count)
return s;
return dnet[0];
}
template<typename T>
std::string array_to_float_string(std::vector<T> vec)
{
std::string ret;
for (size_t i = 0; i < vec.size(); i++)
ret.append(format(",%f", (float)vec[i]));
return ret;
}
Section* get_section_by_output_blob(std::deque<Section*>& dnet, std::string blob)
{
for (auto s : dnet)
for (auto b : s->output_blobs)
if (b == blob)
return s;
return NULL;
}
std::vector<Section*> get_sections_by_input_blob(std::deque<Section*>& dnet, std::string blob)
{
std::vector<Section*> ret;
for (auto s : dnet)
for (auto b : s->input_blobs)
if (b == blob)
ret.push_back(s);
return ret;
}
void addActivationLayer(Section* s, std::deque<Section*>::iterator& it, std::deque<Section*>& dnet)
{
Section* act = new Section;
if (s->activation == "relu")
{
act->layer_type = "ReLU";
act->param.push_back("0=0");
}
else if (s->activation == "leaky")
{
act->layer_type = "ReLU";
act->param.push_back("0=0.1");
}
else if (s->activation == "mish")
act->layer_type = "Mish";
else if (s->activation == "logistic")
act->layer_type = "Sigmoid";
else if (s->activation == "swish")
act->layer_type = "Swish";
if (s->batch_normalize)
act->layer_name = s->layer_name + "_bn";
else
act->layer_name = s->layer_name;
act->h = s->out_h;
act->w = s->out_w;
act->c = s->out_c;
act->out_h = s->out_h;
act->out_w = s->out_w;
act->out_c = s->out_c;
act->layer_name += "_" + s->activation;
act->input_blobs = s->real_output_blobs;
act->output_blobs.push_back(act->layer_name);
s->real_output_blobs = act->real_output_blobs = act->output_blobs;
it = dnet.insert(it + 1, act);
}
void parse_cfg(std::deque<Section*>& dnet, int merge_output)
{
int input_w = 416, input_h = 416;
int yolo_count = 0;
std::vector<Section*> yolo_layers;
#if OUTPUT_LAYER_MAP
printf(" layer filters size/strd(dil) input output\n");
#endif
for (auto it = dnet.begin(); it != dnet.end(); it++)
{
auto s = *it;
if (s->line_number < 0)
continue;
auto p = get_original_section(dnet, s->original_layer_count, -1);
#if OUTPUT_LAYER_MAP
if (s->original_layer_count > 0)
printf("%4d ", s->original_layer_count - 1);
#endif
s->layer_name = format("%d_%d", s->original_layer_count - 1, s->line_number);
s->input_blobs = p->real_output_blobs;
s->output_blobs.push_back(s->layer_name);
s->real_output_blobs = s->output_blobs;
if (s->name == "net")
{
if (s->letter_box)
{
fprintf(stderr, "WARNING: letter_box enabled.\n");
letter_box_enabled = true;
}
s->out_h = s->h;
s->out_w = s->w;
s->out_c = s->c;
input_h = s->h;
input_w = s->w;
s->layer_type = "Input";
s->layer_name = "data";
s->input_blobs.clear();
s->output_blobs.clear();
s->output_blobs.push_back("data");
s->real_output_blobs = s->output_blobs;
s->param.push_back(format("0=%d", s->w));
s->param.push_back(format("1=%d", s->h));
s->param.push_back(format("2=%d", s->c));
}
else if (s->name == "convolutional")
{
if (s->pad)
s->padding = s->size / 2;
if (s->padding == -1)
s->padding = 0;
s->h = p->out_h;
s->w = p->out_w;
s->c = p->out_c;
s->out_h = (s->h + 2 * s->padding - s->size) / s->stride + 1;
s->out_w = (s->w + 2 * s->padding - s->size) / s->stride + 1;
s->out_c = s->filters;
#if OUTPUT_LAYER_MAP
if (s->groups == 1)
printf("conv %5d %2d x%2d/%2d ", s->filters, s->size, s->size, s->stride);
else
printf("conv %5d/%4d %2d x%2d/%2d ", s->filters, s->groups, s->size, s->size, s->stride);
printf("%4d x%4d x%4d -> %4d x%4d x%4d\n", s->h, s->w, s->c, s->out_h, s->out_w, s->out_c);
#endif
if (s->groups == 1)
s->layer_type = "Convolution";
else
s->layer_type = "ConvolutionDepthWise";
s->param.push_back(format("0=%d", s->filters)); //num_output
s->param.push_back(format("1=%d", s->size)); //kernel_w
s->param.push_back(format("2=%d", s->dilation)); //dilation_w
s->param.push_back(format("3=%d", s->stride)); //stride_w
s->param.push_back(format("4=%d", s->padding)); //pad_left
if (s->batch_normalize)
{
s->param.push_back("5=0"); //bias_term
Section* bn = new Section;
bn->layer_type = "BatchNorm";
bn->layer_name = s->layer_name + "_bn";
bn->h = s->out_h;
bn->w = s->out_w;
bn->c = s->out_c;
bn->out_h = s->out_h;
bn->out_w = s->out_w;
bn->out_c = s->out_c;
bn->input_blobs = s->real_output_blobs;
bn->output_blobs.push_back(bn->layer_name);
bn->param.push_back(format("0=%d", s->filters)); //channels
bn->param.push_back("1=.00001"); //eps
s->real_output_blobs = bn->real_output_blobs = bn->output_blobs;
it = dnet.insert(it + 1, bn);
}
else
{
s->param.push_back("5=1"); //bias_term
}
s->param.push_back(format("6=%d", s->c * s->size * s->size * s->filters / s->groups)); //weight_data_size
if (s->groups > 1)
s->param.push_back(format("7=%d", s->groups)); //stride_w
if (s->activation.size() > 0)
{
if (s->activation == "relu" || s->activation == "leaky" || s->activation == "mish" || s->activation == "logistic" || s->activation == "swish")
{
addActivationLayer(s, it, dnet);
}
else if (s->activation != "linear")
error(format("Unsupported convolutional activation type: %s", s->activation.c_str()).c_str());
}
}
else if (s->name == "shortcut")
{
auto q = get_original_section(dnet, s->original_layer_count, s->from);
if (p->out_h != q->out_h || p->out_w != q->out_w)
error("shortcut dim not match");
s->h = p->out_h;
s->w = p->out_w;
s->c = p->out_c;
s->out_h = s->h;
s->out_w = s->w;
s->out_c = p->out_c;
#if OUTPUT_LAYER_MAP
printf("Shortcut Layer: %d, ", q->original_layer_count - 1);
printf("outputs: %4d x%4d x%4d\n", s->out_h, s->out_w, s->out_c);
if (p->out_c != q->out_c)
printf("(%4d x%4d x%4d) + (%4d x%4d x%4d)\n", p->out_h, p->out_w, p->out_c,
q->out_h, q->out_w, q->out_c);
#endif
if (s->activation.size() > 0)
{
if (s->activation == "relu" || s->activation == "leaky" || s->activation == "mish" || s->activation == "logistic" || s->activation == "swish")
{
addActivationLayer(s, it, dnet);
}
else if (s->activation != "linear")
error(format("Unsupported convolutional activation type: %s", s->activation.c_str()).c_str());
}
s->layer_type = "Eltwise";
s->input_blobs.clear();
s->input_blobs.push_back(p->real_output_blobs[0]);
s->input_blobs.push_back(q->real_output_blobs[0]);
s->param.push_back("0=1"); //op_type=Operation_SUM
}
else if (s->name == "maxpool")
{
if (s->padding == -1)
s->padding = s->size - 1;
int pad = s->padding / 2;
s->h = p->out_h;
s->w = p->out_w;
s->c = p->out_c;
s->out_h = (s->h + s->padding - s->size) / s->stride + 1;
s->out_w = (s->w + s->padding - s->size) / s->stride + 1;
s->out_c = s->c;
#if OUTPUT_LAYER_MAP
printf("max %2d x%2d/%2d ", s->size, s->size, s->stride);
printf("%4d x%4d x%4d -> %4d x%4d x%4d\n", s->h, s->w, s->c, s->out_h, s->out_w, s->out_c);
#endif
s->layer_type = "Pooling";
s->param.push_back("0=0"); //pooling_type=PoolMethod_MAX
s->param.push_back(format("1=%d", s->size)); //kernel_w
s->param.push_back(format("2=%d", s->stride)); //stride_w
s->param.push_back("5=1"); //pad_mode=SAME_UPPER
s->param.push_back(format("3=%d", pad)); //pad_left
s->param.push_back(format("13=%d", pad)); //pad_top
s->param.push_back(format("14=%d", s->padding - pad)); //pad_right
s->param.push_back(format("15=%d", s->padding - pad)); //pad_bottom
}
else if (s->name == "avgpool")
{
if (s->padding == -1)
s->padding = s->size - 1;
s->h = p->out_h;
s->w = p->out_w;
s->c = p->out_c;
s->out_h = 1;
s->out_w = s->out_h;
s->out_c = s->c;
#if OUTPUT_LAYER_MAP
printf("avg %4d x%4d x%4d -> %4d\n", s->h, s->w, s->c, s->out_c);
#endif
s->layer_type = "Pooling";
s->param.push_back("0=1"); //pooling_type=PoolMethod_AVE
s->param.push_back("4=1"); //global_pooling
Section* r = new Section;
r->layer_type = "Reshape";
r->layer_name = s->layer_name + "_reshape";
r->h = s->out_h;
r->w = s->out_w;
r->c = s->out_c;
r->out_h = 1;
r->out_w = 1;
r->out_c = r->h * r->w * r->c;
r->input_blobs.push_back(s->output_blobs[0]);
r->output_blobs.push_back(r->layer_name);
r->param.push_back("0=1"); //w
r->param.push_back("1=1"); //h
r->param.push_back(format("2=%d", r->out_c)); //c
s->real_output_blobs.clear();
s->real_output_blobs.push_back(r->layer_name);
it = dnet.insert(it + 1, r);
}
else if (s->name == "sam")
{
auto q = get_original_section(dnet, s->original_layer_count, s->from);
if (p->out_w != q->out_w || p->out_h != q->out_h || p->out_c != q->out_c)
error("sam layer dimension not match");
s->h = q->out_h;
s->w = q->out_w;
s->c = q->out_c;
s->out_h = s->h;
s->out_w = s->w;
s->out_c = q->out_c;
#if OUTPUT_LAYER_MAP
printf("scale Layer: %d\n", q->original_layer_count - 1);
#endif
s->layer_type = "BinaryOp";
s->input_blobs.clear();
s->input_blobs.push_back(q->real_output_blobs[0]);
s->input_blobs.push_back(p->real_output_blobs[0]);
s->param.push_back("0=2"); //op_type=Operation_MUL
}
else if (s->name == "scale_channels")
{
auto q = get_original_section(dnet, s->original_layer_count, s->from);
if (p->out_c != q->out_c)
error("scale channels not match");
s->h = q->out_h;
s->w = q->out_w;
s->c = q->out_c;
s->out_h = s->h;
s->out_w = s->w;
s->out_c = q->out_c;
#if OUTPUT_LAYER_MAP
printf("scale Layer: %d\n", q->original_layer_count - 1);
#endif
if (s->activation.size() > 0 && s->activation != "linear")
error(format("Unsupported scale_channels activation type: %s", s->activation.c_str()).c_str());
s->layer_type = "BinaryOp";
s->input_blobs.clear();
s->input_blobs.push_back(q->real_output_blobs[0]);
s->input_blobs.push_back(p->real_output_blobs[0]);
s->param.push_back("0=2"); //op_type=Operation_MUL
}
else if (s->name == "route")
{
#if OUTPUT_LAYER_MAP
printf("route ");
#endif
s->out_c = 0;
s->input_blobs.clear();
for (int l : s->layers)
{
auto q = get_original_section(dnet, s->original_layer_count, l);
#if OUTPUT_LAYER_MAP
printf("%d ", q->original_layer_count - 1);
#endif
s->out_h = q->out_h;
s->out_w = q->out_w;
s->out_c += q->out_c;
for (auto blob : q->real_output_blobs)
s->input_blobs.push_back(blob);
}
if (s->input_blobs.size() == 1)
{
if (s->groups <= 1 || s->group_id == -1)
s->layer_type = "Noop";
else
{
s->out_c /= s->groups;
#if OUTPUT_LAYER_MAP
printf("%31d/%d -> %4d x%4d x%4d", 1, s->groups, s->out_w, s->out_h, s->out_c);
#endif
s->layer_type = "Crop";
s->param.push_back(format("2=%d", s->out_c * s->group_id));
s->param.push_back(format("3=%d", s->out_w));
s->param.push_back(format("4=%d", s->out_h));
s->param.push_back(format("5=%d", s->out_c));
}
}
else
{
#if OUTPUT_LAYER_MAP
printf("%30c-> %4d x%4d x%4d", ' ', s->out_w, s->out_h, s->out_c);
#endif
s->layer_type = "Concat";
}
#if OUTPUT_LAYER_MAP
printf("\n");
#endif
}
else if (s->name == "upsample")
{
s->h = p->out_h;
s->w = p->out_w;
s->c = p->out_c;
s->out_h = s->h * s->stride;
s->out_w = s->w * s->stride;
s->out_c = s->c;
#if OUTPUT_LAYER_MAP
printf("upsample %2dx ", s->stride);
printf("%4d x%4d x%4d -> %4d x%4d x%4d\n", s->h, s->w, s->c, s->out_h, s->out_w, s->out_c);
#endif
s->layer_type = "Interp";
s->param.push_back("0=1"); //resize_type=nearest
s->param.push_back("1=2.f"); //height_scale
s->param.push_back("2=2.f"); //width_scale
}
else if (s->name == "yolo")
{
#if OUTPUT_LAYER_MAP
printf("yolo%d\n", yolo_count);
#endif
if (s->ignore_thresh > 0.25)
{
fprintf(stderr, "WARNING: The ignore_thresh=%f of yolo%d is too high. "
"An alternative value 0.25 is written instead.\n",
s->ignore_thresh, yolo_count);
s->ignore_thresh = 0.25;
}
s->layer_type = "Yolov3DetectionOutput";
s->layer_name = format("yolo%d", yolo_count++);
s->output_blobs[0] = s->layer_name;
s->h = p->out_h;
s->w = p->out_w;
s->c = p->out_c;
s->out_h = s->h;
s->out_w = s->w;
s->out_c = s->c * (int)s->mask.size();
s->param.push_back(format("0=%d", s->classes)); //num_class
s->param.push_back(format("1=%d", s->mask.size())); //num_box
s->param.push_back(format("2=%f", s->ignore_thresh)); //confidence_threshold
s->param.push_back(format("-23304=%d%s", s->anchors.size(), array_to_float_string(s->anchors).c_str())); //biases
s->param.push_back(format("-23305=%d%s", s->mask.size(), array_to_float_string(s->mask).c_str())); //mask
s->param.push_back(format("-23306=2,%f,%f", input_w * s->scale_x_y / s->w, input_h * s->scale_x_y / s->h)); //biases_index
yolo_layer_count++;
yolo_layers.push_back(s);
}
else if (s->name == "dropout")
{
#if OUTPUT_LAYER_MAP
printf("dropout\n");
#endif
s->h = p->out_h;
s->w = p->out_w;
s->c = p->out_c;
s->out_h = s->h;
s->out_w = s->w;
s->out_c = p->out_c;
s->layer_type = "Noop";
}
else
{
#if OUTPUT_LAYER_MAP
printf("%-8s (unsupported)\n", s->name.c_str());
#endif
}
}
for (auto it = dnet.begin(); it != dnet.end(); it++)
{
auto s = *it;
for (size_t i = 0; i < s->input_blobs.size(); i++)
{
auto p = get_section_by_output_blob(dnet, s->input_blobs[i]);
if (p == NULL || p->layer_type != "Noop")
continue;
s->input_blobs[i] = p->input_blobs[0];
}
}
for (auto it = dnet.begin(); it != dnet.end();)
if ((*it)->layer_type == "Noop")
it = dnet.erase(it);
else
it++;
for (auto it = dnet.begin(); it != dnet.end(); it++)
{
auto s = *it;
for (std::string output_name : s->output_blobs)
{
auto q = get_sections_by_input_blob(dnet, output_name);
if (q.size() <= 1 || s->layer_type == "Split")
continue;
Section* p = new Section;
p->layer_type = "Split";
p->layer_name = s->layer_name + "_split";
p->w = s->w;
p->h = s->h;
p->c = s->c;
p->out_w = s->out_w;
p->out_h = s->out_h;
p->out_c = s->out_c;
p->input_blobs.push_back(output_name);
for (size_t i = 0; i < q.size(); i++)
{
std::string new_output_name = p->layer_name + "_" + std::to_string(i);
p->output_blobs.push_back(new_output_name);
for (size_t j = 0; j < q[i]->input_blobs.size(); j++)
if (q[i]->input_blobs[j] == output_name)
q[i]->input_blobs[j] = new_output_name;
}
it = dnet.insert(it + 1, p);
}
}
if (merge_output && yolo_layer_count > 0)
{
std::vector<int> masks;
std::vector<float> scale_x_y;
Section* s = new Section;
s->classes = yolo_layers[0]->classes;
s->anchors = yolo_layers[0]->anchors;
s->mask = yolo_layers[0]->mask;
for (auto p : yolo_layers)
{
if (s->classes != p->classes)
error("yolo object classes number not match, output cannot be merged.");
if (s->anchors.size() != p->anchors.size())
error("yolo layer anchor count not match, output cannot be merged.");
for (size_t i = 0; i < s->anchors.size(); i++)
if (s->anchors[i] != p->anchors[i])
error("yolo anchor size not match, output cannot be merged.");
if (s->ignore_thresh > p->ignore_thresh)
s->ignore_thresh = p->ignore_thresh;
for (int m : p->mask)
masks.push_back(m);
scale_x_y.push_back(input_w * p->scale_x_y / p->w);
s->input_blobs.push_back(p->input_blobs[0]);
}
for (auto it = dnet.begin(); it != dnet.end();)
if ((*it)->name == "yolo")
it = dnet.erase(it);
else
it++;
s->layer_type = "Yolov3DetectionOutput";
s->layer_name = "detection_out";
s->output_blobs.push_back("output");
s->param.push_back(format("0=%d", s->classes)); //num_class
s->param.push_back(format("1=%d", s->mask.size())); //num_box
s->param.push_back(format("2=%f", s->ignore_thresh)); //confidence_threshold
s->param.push_back(format("-23304=%d%s", s->anchors.size(), array_to_float_string(s->anchors).c_str())); //biases
s->param.push_back(format("-23305=%d%s", masks.size(), array_to_float_string(masks).c_str())); //mask
s->param.push_back(format("-23306=%d%s", scale_x_y.size(), array_to_float_string(scale_x_y).c_str())); //biases_index
dnet.push_back(s);
}
}
void read_to(std::vector<float>& vec, size_t size, FILE* fp)
{
vec.resize(size);
size_t read_size = fread(&vec[0], sizeof(float), size, fp);
if (read_size != size)
error("\n Warning: Unexpected end of wights-file!\n");
}
void load_weights(const char* filename, std::deque<Section*>& dnet)
{
FILE* fp = fopen(filename, "rb");
if (fp == NULL)
file_error(filename);
int major, minor, revision;
fread_or_error(&major, sizeof(int), 1, fp, filename);
fread_or_error(&minor, sizeof(int), 1, fp, filename);
fread_or_error(&revision, sizeof(int), 1, fp, filename);
if ((major * 10 + minor) >= 2)
{
uint64_t iseen = 0;
fread_or_error(&iseen, sizeof(uint64_t), 1, fp, filename);
}
else
{
uint32_t iseen = 0;
fread_or_error(&iseen, sizeof(uint32_t), 1, fp, filename);
}
for (auto s : dnet)
{
if (s->name == "convolutional")
{
read_to(s->bias, s->filters, fp);
if (s->batch_normalize)
{
read_to(s->scales, s->filters, fp);
read_to(s->rolling_mean, s->filters, fp);
read_to(s->rolling_variance, s->filters, fp);
}
if (s->layer_type == "Convolution")
read_to(s->weights, (size_t)(s->c) * s->filters * s->size * s->size, fp);
else if (s->layer_type == "ConvolutionDepthWise")
read_to(s->weights, s->c * s->filters * s->size * s->size / s->groups, fp);
}
}
fclose(fp);
}
int count_output_blob(std::deque<Section*>& dnet)
{
int count = 0;
for (auto s : dnet)
count += (int)s->output_blobs.size();
return count;
}
int main(int argc, char** argv)
{
if (!(argc == 3 || argc == 5 || argc == 6))
{
fprintf(stderr, "Usage: %s [darknetcfg] [darknetweights] [ncnnparam] [ncnnbin] [merge_output]\n"
"\t[darknetcfg] .cfg file of input darknet model.\n"
"\t[darknetweights] .weights file of input darknet model.\n"
"\t[cnnparam] .param file of output ncnn model.\n"
"\t[ncnnbin] .bin file of output ncnn model.\n"
"\t[merge_output] merge all output yolo layers into one, enabled by default.\n",
argv[0]);
return -1;
}
const char* darknetcfg = argv[1];
const char* darknetweights = argv[2];
const char* ncnn_param = argc >= 5 ? argv[3] : "ncnn.param";
const char* ncnn_bin = argc >= 5 ? argv[4] : "ncnn.bin";
int merge_output = argc >= 6 ? atoi(argv[5]) : 1;
std::deque<Section*> dnet;
printf("Loading cfg...\n");
load_cfg(darknetcfg, dnet);
parse_cfg(dnet, merge_output);
printf("Loading weights...\n");
load_weights(darknetweights, dnet);
FILE* pp = fopen(ncnn_param, "wb");
if (pp == NULL)
file_error(ncnn_param);
FILE* bp = fopen(ncnn_bin, "wb");
if (bp == NULL)
file_error(ncnn_bin);
printf("Converting model...\n");
fprintf(pp, "7767517\n");
fprintf(pp, "%d %d\n", (int)dnet.size(), count_output_blob(dnet));
for (auto s : dnet)
{
fprintf(pp, "%-22s %-20s %d %d", s->layer_type.c_str(), s->layer_name.c_str(), (int)s->input_blobs.size(), (int)s->output_blobs.size());
for (auto b : s->input_blobs)
fprintf(pp, " %s", b.c_str());
for (auto b : s->output_blobs)
fprintf(pp, " %s", b.c_str());
for (auto p : s->param)
fprintf(pp, " %s", p.c_str());
fprintf(pp, "\n");
if (s->name == "convolutional")
{
fseek(bp, 4, SEEK_CUR);
if (s->weights.size() > 0)
fwrite(&s->weights[0], sizeof(float), s->weights.size(), bp);
if (s->scales.size() > 0)
fwrite(&s->scales[0], sizeof(float), s->scales.size(), bp);
if (s->rolling_mean.size() > 0)
fwrite(&s->rolling_mean[0], sizeof(float), s->rolling_mean.size(), bp);
if (s->rolling_variance.size() > 0)
fwrite(&s->rolling_variance[0], sizeof(float), s->rolling_variance.size(), bp);
if (s->bias.size() > 0)
fwrite(&s->bias[0], sizeof(float), s->bias.size(), bp);
}
}
fclose(pp);
printf("%d layers, %d blobs generated.\n", (int)dnet.size(), count_output_blob(dnet));
printf("NOTE: The input of darknet uses: mean_vals=0 and norm_vals=1/255.f.\n");
if (!merge_output)
printf("NOTE: There are %d unmerged yolo output layer. Make sure all outputs are processed with nms.\n", yolo_layer_count);
if (letter_box_enabled)
printf("NOTE: Make sure your pre-processing and post-processing support letter_box.\n");
printf("NOTE: Remember to use ncnnoptimize for better performance.\n");
return 0;
}