718c41634f
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
176 lines
5.9 KiB
Java
176 lines
5.9 KiB
Java
package org.opencv.test.features2d;
|
|
|
|
import java.util.ArrayList;
|
|
import java.util.Arrays;
|
|
import java.util.Collections;
|
|
import java.util.Comparator;
|
|
import java.util.List;
|
|
|
|
import org.opencv.core.CvType;
|
|
import org.opencv.core.Mat;
|
|
import org.opencv.core.MatOfKeyPoint;
|
|
import org.opencv.core.Point;
|
|
import org.opencv.core.Scalar;
|
|
import org.opencv.core.KeyPoint;
|
|
import org.opencv.test.OpenCVTestCase;
|
|
import org.opencv.test.OpenCVTestRunner;
|
|
import org.opencv.imgproc.Imgproc;
|
|
import org.opencv.features2d.Feature2D;
|
|
|
|
public class SURFFeatureDetectorTest extends OpenCVTestCase {
|
|
|
|
Feature2D detector;
|
|
int matSize;
|
|
KeyPoint[] truth;
|
|
|
|
private Mat getMaskImg() {
|
|
Mat mask = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
|
Mat right = mask.submat(0, matSize, matSize / 2, matSize);
|
|
right.setTo(new Scalar(0));
|
|
return mask;
|
|
}
|
|
|
|
private Mat getTestImg() {
|
|
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
|
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
|
|
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
|
|
|
|
return cross;
|
|
}
|
|
|
|
private void order(List<KeyPoint> points) {
|
|
Collections.sort(points, new Comparator<KeyPoint>() {
|
|
public int compare(KeyPoint p1, KeyPoint p2) {
|
|
if (p1.angle < p2.angle)
|
|
return -1;
|
|
if (p1.angle > p2.angle)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
});
|
|
}
|
|
|
|
@Override
|
|
protected void setUp() throws Exception {
|
|
super.setUp();
|
|
detector = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, null, null);
|
|
matSize = 100;
|
|
truth = new KeyPoint[] {
|
|
new KeyPoint(55.775578f, 55.775578f, 16, 80.245735f, 8617.8633f, 0, -1),
|
|
new KeyPoint(44.224422f, 55.775578f, 16, 170.24574f, 8617.8633f, 0, -1),
|
|
new KeyPoint(44.224422f, 44.224422f, 16, 260.24573f, 8617.8633f, 0, -1),
|
|
new KeyPoint(55.775578f, 44.224422f, 16, 350.24573f, 8617.8633f, 0, -1)
|
|
};
|
|
}
|
|
|
|
public void testCreate() {
|
|
assertNotNull(detector);
|
|
}
|
|
|
|
public void testDetectListOfMatListOfListOfKeyPoint() {
|
|
|
|
setProperty(detector, "hessianThreshold", "double", 8000);
|
|
setProperty(detector, "nOctaves", "int", 3);
|
|
setProperty(detector, "nOctaveLayers", "int", 4);
|
|
setProperty(detector, "upright", "boolean", false);
|
|
|
|
List<MatOfKeyPoint> keypoints = new ArrayList<MatOfKeyPoint>();
|
|
Mat cross = getTestImg();
|
|
List<Mat> crosses = new ArrayList<Mat>(3);
|
|
crosses.add(cross);
|
|
crosses.add(cross);
|
|
crosses.add(cross);
|
|
|
|
detector.detect(crosses, keypoints);
|
|
|
|
assertEquals(3, keypoints.size());
|
|
|
|
for (MatOfKeyPoint mkp : keypoints) {
|
|
List<KeyPoint> lkp = mkp.toList();
|
|
order(lkp);
|
|
assertListKeyPointEquals(Arrays.asList(truth), lkp, EPS);
|
|
}
|
|
}
|
|
|
|
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
|
fail("Not yet implemented");
|
|
}
|
|
|
|
public void testDetectMatListOfKeyPoint() {
|
|
|
|
setProperty(detector, "hessianThreshold", "double", 8000);
|
|
setProperty(detector, "nOctaves", "int", 3);
|
|
setProperty(detector, "nOctaveLayers", "int", 4);
|
|
setProperty(detector, "upright", "boolean", false);
|
|
|
|
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
|
Mat cross = getTestImg();
|
|
|
|
detector.detect(cross, keypoints);
|
|
|
|
List<KeyPoint> lkp = keypoints.toList();
|
|
order(lkp);
|
|
assertListKeyPointEquals(Arrays.asList(truth), lkp, EPS);
|
|
}
|
|
|
|
public void testDetectMatListOfKeyPointMat() {
|
|
|
|
setProperty(detector, "hessianThreshold", "double", 8000);
|
|
setProperty(detector, "nOctaves", "int", 3);
|
|
setProperty(detector, "nOctaveLayers", "int", 4);
|
|
setProperty(detector, "upright", "boolean", false);
|
|
|
|
Mat img = getTestImg();
|
|
Mat mask = getMaskImg();
|
|
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
|
|
|
detector.detect(img, keypoints, mask);
|
|
|
|
List<KeyPoint> lkp = keypoints.toList();
|
|
order(lkp);
|
|
assertListKeyPointEquals(Arrays.asList(truth[1], truth[2]), lkp, EPS);
|
|
}
|
|
|
|
public void testEmpty() {
|
|
// assertFalse(detector.empty());
|
|
fail("Not yet implemented");
|
|
}
|
|
|
|
public void testRead() {
|
|
Mat cross = getTestImg();
|
|
|
|
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
|
|
detector.detect(cross, keypoints1);
|
|
|
|
String filename = OpenCVTestRunner.getTempFileName("yml");
|
|
writeFile(filename, "%YAML:1.0\n---\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n");
|
|
detector.read(filename);
|
|
|
|
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
|
|
detector.detect(cross, keypoints2);
|
|
|
|
assertTrue(keypoints2.total() <= keypoints1.total());
|
|
}
|
|
|
|
public void testWrite() {
|
|
String filename = OpenCVTestRunner.getTempFileName("xml");
|
|
|
|
detector.write(filename);
|
|
|
|
// String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.SURF</name>\n<extended>0</extended>\n<hessianThreshold>100.</hessianThreshold>\n<nOctaveLayers>3</nOctaveLayers>\n<nOctaves>4</nOctaves>\n<upright>0</upright>\n</opencv_storage>\n";
|
|
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n</opencv_storage>\n";
|
|
assertEquals(truth, readFile(filename));
|
|
}
|
|
|
|
public void testWriteYml() {
|
|
String filename = OpenCVTestRunner.getTempFileName("yml");
|
|
|
|
detector.write(filename);
|
|
|
|
// String truth = "%YAML:1.0\n---\nname: \"Feature2D.SURF\"\nextended: 0\nhessianThreshold: 100.\nnOctaveLayers: 3\nnOctaves: 4\nupright: 0\n";
|
|
String truth = "%YAML:1.0\n---\n";
|
|
assertEquals(truth, readFile(filename));
|
|
}
|
|
|
|
}
|