deepin-ocr/3rdparty/opencv-4.5.4/modules/gapi/samples/api_ref_snippets.cpp
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

254 lines
7.5 KiB
C++

#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp>
#include <opencv2/gapi/s11n.hpp>
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/gcommon.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/fluid/core.hpp>
#include <opencv2/gapi/fluid/imgproc.hpp>
static void gscalar_example()
{
//! [gscalar_implicit]
cv::GMat a;
cv::GMat b = a + 1;
//! [gscalar_implicit]
}
static void typed_example()
{
const cv::Size sz(32, 32);
cv::Mat
in_mat1 (sz, CV_8UC1),
in_mat2 (sz, CV_8UC1),
out_mat_untyped(sz, CV_8UC1),
out_mat_typed1 (sz, CV_8UC1),
out_mat_typed2 (sz, CV_8UC1);
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255));
cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(255));
//! [Untyped_Example]
// Untyped G-API ///////////////////////////////////////////////////////////
cv::GComputation cvtU([]()
{
cv::GMat in1, in2;
cv::GMat out = cv::gapi::add(in1, in2);
return cv::GComputation({in1, in2}, {out});
});
std::vector<cv::Mat> u_ins = {in_mat1, in_mat2};
std::vector<cv::Mat> u_outs = {out_mat_untyped};
cvtU.apply(u_ins, u_outs);
//! [Untyped_Example]
//! [Typed_Example]
// Typed G-API /////////////////////////////////////////////////////////////
cv::GComputationT<cv::GMat (cv::GMat, cv::GMat)> cvtT([](cv::GMat m1, cv::GMat m2)
{
return m1+m2;
});
cvtT.apply(in_mat1, in_mat2, out_mat_typed1);
auto cvtTC = cvtT.compile(cv::descr_of(in_mat1), cv::descr_of(in_mat2));
cvtTC(in_mat1, in_mat2, out_mat_typed2);
//! [Typed_Example]
}
static void bind_serialization_example()
{
// ! [bind after deserialization]
cv::GCompiled compd;
std::vector<char> bytes;
auto graph = cv::gapi::deserialize<cv::GComputation>(bytes);
auto meta = cv::gapi::deserialize<cv::GMetaArgs>(bytes);
compd = graph.compile(std::move(meta), cv::compile_args());
auto in_args = cv::gapi::deserialize<cv::GRunArgs>(bytes);
auto out_args = cv::gapi::deserialize<cv::GRunArgs>(bytes);
compd(std::move(in_args), cv::gapi::bind(out_args));
// ! [bind after deserialization]
}
static void bind_deserialization_example()
{
// ! [bind before serialization]
std::vector<cv::GRunArgP> graph_outs;
cv::GRunArgs out_args;
for (auto &&out : graph_outs) {
out_args.emplace_back(cv::gapi::bind(out));
}
const auto sargsout = cv::gapi::serialize(out_args);
// ! [bind before serialization]
}
struct SimpleCustomType {
bool val;
bool operator==(const SimpleCustomType& other) const {
return val == other.val;
}
};
struct SimpleCustomType2 {
int val;
std::string name;
std::vector<float> vec;
std::map<int, uint64_t> mmap;
bool operator==(const SimpleCustomType2& other) const {
return val == other.val && name == other.name &&
vec == other.vec && mmap == other.mmap;
}
};
// ! [S11N usage]
namespace cv {
namespace gapi {
namespace s11n {
namespace detail {
template<> struct S11N<SimpleCustomType> {
static void serialize(IOStream &os, const SimpleCustomType &p) {
os << p.val;
}
static SimpleCustomType deserialize(IIStream &is) {
SimpleCustomType p;
is >> p.val;
return p;
}
};
template<> struct S11N<SimpleCustomType2> {
static void serialize(IOStream &os, const SimpleCustomType2 &p) {
os << p.val << p.name << p.vec << p.mmap;
}
static SimpleCustomType2 deserialize(IIStream &is) {
SimpleCustomType2 p;
is >> p.val >> p.name >> p.vec >> p.mmap;
return p;
}
};
} // namespace detail
} // namespace s11n
} // namespace gapi
} // namespace cv
// ! [S11N usage]
namespace cv {
namespace detail {
template<> struct CompileArgTag<SimpleCustomType> {
static const char* tag() {
return "org.opencv.test.simple_custom_type";
}
};
template<> struct CompileArgTag<SimpleCustomType2> {
static const char* tag() {
return "org.opencv.test.simple_custom_type_2";
}
};
} // namespace detail
} // namespace cv
static void s11n_example()
{
SimpleCustomType customVar1 { false };
SimpleCustomType2 customVar2 { 1248, "World", {1280, 720, 640, 480},
{ {5, 32434142342}, {7, 34242432} } };
std::vector<char> sArgs = cv::gapi::serialize(
cv::compile_args(customVar1, customVar2));
cv::GCompileArgs dArgs = cv::gapi::deserialize<cv::GCompileArgs,
SimpleCustomType,
SimpleCustomType2>(sArgs);
SimpleCustomType dCustomVar1 = cv::gapi::getCompileArg<SimpleCustomType>(dArgs).value();
SimpleCustomType2 dCustomVar2 = cv::gapi::getCompileArg<SimpleCustomType2>(dArgs).value();
(void) dCustomVar1;
(void) dCustomVar2;
}
G_TYPED_KERNEL(IAdd, <cv::GMat(cv::GMat)>, "test.custom.add") {
static cv::GMatDesc outMeta(const cv::GMatDesc &in) { return in; }
};
G_TYPED_KERNEL(IFilter2D, <cv::GMat(cv::GMat)>, "test.custom.filter2d") {
static cv::GMatDesc outMeta(const cv::GMatDesc &in) { return in; }
};
G_TYPED_KERNEL(IRGB2YUV, <cv::GMat(cv::GMat)>, "test.custom.add") {
static cv::GMatDesc outMeta(const cv::GMatDesc &in) { return in; }
};
GAPI_OCV_KERNEL(CustomAdd, IAdd) { static void run(cv::Mat, cv::Mat &) {} };
GAPI_OCV_KERNEL(CustomFilter2D, IFilter2D) { static void run(cv::Mat, cv::Mat &) {} };
GAPI_OCV_KERNEL(CustomRGB2YUV, IRGB2YUV) { static void run(cv::Mat, cv::Mat &) {} };
int main(int argc, char *argv[])
{
if (argc < 3)
return -1;
cv::Mat input = cv::imread(argv[1]);
cv::Mat output;
{
//! [graph_def]
cv::GMat in;
cv::GMat gx = cv::gapi::Sobel(in, CV_32F, 1, 0);
cv::GMat gy = cv::gapi::Sobel(in, CV_32F, 0, 1);
cv::GMat g = cv::gapi::sqrt(cv::gapi::mul(gx, gx) + cv::gapi::mul(gy, gy));
cv::GMat out = cv::gapi::convertTo(g, CV_8U);
//! [graph_def]
//! [graph_decl_apply]
//! [graph_cap_full]
cv::GComputation sobelEdge(cv::GIn(in), cv::GOut(out));
//! [graph_cap_full]
sobelEdge.apply(input, output);
//! [graph_decl_apply]
//! [apply_with_param]
cv::gapi::GKernelPackage kernels = cv::gapi::combine
(cv::gapi::core::fluid::kernels(),
cv::gapi::imgproc::fluid::kernels());
sobelEdge.apply(input, output, cv::compile_args(kernels));
//! [apply_with_param]
//! [graph_cap_sub]
cv::GComputation sobelEdgeSub(cv::GIn(gx, gy), cv::GOut(out));
//! [graph_cap_sub]
}
//! [graph_gen]
cv::GComputation sobelEdgeGen([](){
cv::GMat in;
cv::GMat gx = cv::gapi::Sobel(in, CV_32F, 1, 0);
cv::GMat gy = cv::gapi::Sobel(in, CV_32F, 0, 1);
cv::GMat g = cv::gapi::sqrt(cv::gapi::mul(gx, gx) + cv::gapi::mul(gy, gy));
cv::GMat out = cv::gapi::convertTo(g, CV_8U);
return cv::GComputation(in, out);
});
//! [graph_gen]
cv::imwrite(argv[2], output);
//! [kernels_snippet]
cv::gapi::GKernelPackage pkg = cv::gapi::kernels
< CustomAdd
, CustomFilter2D
, CustomRGB2YUV
>();
//! [kernels_snippet]
// Just call typed example with no input/output - avoid warnings about
// unused functions
typed_example();
gscalar_example();
bind_serialization_example();
bind_deserialization_example();
s11n_example();
return 0;
}