deepin-ocr/3rdparty/ncnn/docs/benchmark/the-benchmark-of-caffe-android-lib,-mini-caffe,-and-ncnn.md
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

3.2 KiB

caffe-android-lib https://github.com/sh1r0/caffe-android-lib

mini-caffe https://github.com/luoyetx/mini-caffe

openblas-0.2.20 https://github.com/xianyi/OpenBLAS

ncnn https://github.com/Tencent/ncnn


squeezenet_v1.1 https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1

mobilenet_v1 https://github.com/shicai/MobileNet-Caffe

vgg16 https://gist.github.com/ksimonyan/211839e770f7b538e2d8


Host platform and compiler configuration:

fedora 27, android-ndk-r15c, target arch = arm64-v8a

we manually update openblas package to version 0.2.20 in caffe-android-lib for better performance


Device: Nexus 6p

OS: LineageOS 15.1(Android 8.1.0), ROM newly flashed without any third-party APP installed

CPU: Snapdragon 810 (Cortex-A57 2.0GHz x 4 + Cortex-A53 1.55GHz x 4)

RAM: 3G


Benchmark method:

Run squeezenet, mobilenet inference 23 times in a loop, discard the first three warmup records, and then calculate the average inference time

Run vgg169 times in a loop, discard the first warmup record, and then calculate the average inference time

Since the system may force SOC lowering its frequency when temperature goes high, sleep over 1 minute before each benchmark to prevent this issue.

fps performance: fps = 1000 / avgtime(ms)

cpu usage: take the CPU value in top utility output

memory usage: take the RES value in top utility output

the overall power consumption and performance per watt:

Disable usb charging: adb shell echo 0 > /sys/class/power_supply/battery/charging_enabled

current(μA) = adb shell cat /sys/class/power_supply/battery/current_now (multiply -1 for 810 chip)

voltage(μV) = adb shell cat /sys/class/power_supply/battery/voltage_now

power consumption(mW) = current / 1000 * voltage / 1000 / 1000

performance per watt(1000fps/W) = fps / power consumption * 1000


The binary size after debug stripping


squeezenet


mobilnet


vgg16