deepin-ocr/3rdparty/ncnn/tools/mlir/ncnn_rewriter.cpp
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

55 lines
1.6 KiB
C++

// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include <mlir/IR/MLIRContext.h>
#include <mlir/IR/PatternMatch.h>
#include <mlir/Pass/Pass.h>
#include <mlir/Transforms/GreedyPatternRewriteDriver.h>
#include "tf_dialect.h"
#include "ncnn_dialect.h"
using namespace mlir;
namespace mlir {
namespace ncnn {
#include "ncnn_rewriter.inc"
class NCNNOptimizePass : public PassWrapper<NCNNOptimizePass, FunctionPass>
{
public:
void runOnFunction();
};
void NCNNOptimizePass::runOnFunction()
{
mlir::OwningRewritePatternList patterns;
mlir::ncnn::populateWithGenerated(&getContext(), patterns);
(void)mlir::applyPatternsAndFoldGreedily(getFunction(), std::move(patterns));
}
std::unique_ptr<OperationPass<FuncOp> > createNCNNOptimizePass()
{
return std::make_unique<NCNNOptimizePass>();
}
static PassRegistration<NCNNOptimizePass> pass("ncnn-optimize", "ncnn optimization");
} // namespace ncnn
} // namespace mlir