deepin-ocr/3rdparty/ncnn/tools/onnx/onnx2ncnn.cpp
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

5997 lines
202 KiB
C++

// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "onnx.pb.h"
#include <algorithm>
#include <float.h>
#include <fstream>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/message.h>
#include <google/protobuf/text_format.h>
#include <iostream>
#include <limits.h>
#include <limits>
#include <set>
#include <stdio.h>
static bool read_proto_from_binary(const char* filepath, onnx::ModelProto* message)
{
std::ifstream fs(filepath, std::ifstream::in | std::ifstream::binary);
if (!fs.is_open())
{
fprintf(stderr, "open failed %s\n", filepath);
return false;
}
google::protobuf::io::IstreamInputStream input(&fs);
google::protobuf::io::CodedInputStream codedstr(&input);
#if GOOGLE_PROTOBUF_VERSION >= 3011000
codedstr.SetTotalBytesLimit(INT_MAX);
#else
codedstr.SetTotalBytesLimit(INT_MAX, INT_MAX / 2);
#endif
bool success = message->ParseFromCodedStream(&codedstr);
fs.close();
return success;
}
static std::vector<int> get_node_attr_ai(const onnx::NodeProto& node, const char* key)
{
std::vector<int> v;
for (int i = 0; i < node.attribute_size(); i++)
{
const onnx::AttributeProto& attr = node.attribute(i);
if (attr.name() == key)
{
v.resize(attr.ints_size());
for (int j = 0; j < attr.ints_size(); j++)
{
v[j] = std::max(std::min(attr.ints(j), (::google::protobuf::int64)INT_MAX), (::google::protobuf::int64)INT_MIN);
}
break;
}
}
return v;
}
static std::vector<float> get_node_attr_af(const onnx::NodeProto& node, const char* key)
{
std::vector<float> v;
for (int i = 0; i < node.attribute_size(); i++)
{
const onnx::AttributeProto& attr = node.attribute(i);
if (attr.name() == key)
{
v.resize(attr.floats_size());
for (int j = 0; j < attr.floats_size(); j++)
{
v[j] = attr.floats(j);
}
break;
}
}
return v;
}
static int get_node_attr_i(const onnx::NodeProto& node, const char* key, int def = 0)
{
for (int i = 0; i < node.attribute_size(); i++)
{
const onnx::AttributeProto& attr = node.attribute(i);
if (attr.name() == key)
{
return std::max(std::min(attr.i(), (::google::protobuf::int64)INT_MAX), (::google::protobuf::int64)INT_MIN);
}
}
return def;
}
static float get_node_attr_f(const onnx::NodeProto& node, const char* key, float def = 0.f)
{
for (int i = 0; i < node.attribute_size(); i++)
{
const onnx::AttributeProto& attr = node.attribute(i);
if (attr.name() == key)
{
return attr.f();
}
}
return def;
}
static std::string get_node_attr_s(const onnx::NodeProto& node, const char* key, const std::string& def = std::string())
{
for (int i = 0; i < node.attribute_size(); i++)
{
const onnx::AttributeProto& attr = node.attribute(i);
if (attr.name() == key)
{
return attr.s();
}
}
return def;
}
static onnx::TensorProto get_node_attr_tensor(const onnx::NodeProto& node, const char* key)
{
for (int i = 0; i < node.attribute_size(); i++)
{
const onnx::AttributeProto& attr = node.attribute(i);
if (attr.name() == key)
{
return attr.t();
}
}
return onnx::TensorProto();
}
static float get_node_attr_from_input_f(const onnx::TensorProto& tp)
{
float v = 0.f;
// float
if (tp.data_type() == 1)
{
const float* shape_data = 0;
if (tp.has_raw_data())
{
shape_data = (const float*)tp.raw_data().data();
}
else
{
shape_data = tp.float_data().data();
}
v = shape_data[0];
}
// double
else if (tp.data_type() == 11)
{
const double* shape_data = 0;
if (tp.has_raw_data())
{
shape_data = (const double*)tp.raw_data().data();
}
else
{
shape_data = tp.double_data().data();
}
v = shape_data[0];
}
// int64
else if (tp.data_type() == 7)
{
const int64_t* shape_data = 0;
if (tp.has_raw_data())
{
shape_data = (const int64_t*)tp.raw_data().data();
}
else
{
shape_data = tp.int64_data().data();
}
v = std::max(std::min(shape_data[0], (::google::protobuf::int64)INT_MAX), (::google::protobuf::int64)INT_MIN);
}
// int32
else if (tp.data_type() == 6)
{
const int32_t* shape_data = 0;
if (tp.has_raw_data())
{
shape_data = (const int32_t*)tp.raw_data().data();
}
else
{
shape_data = tp.int32_data().data();
}
v = shape_data[0];
}
else
{
fprintf(stderr, "Unknown data type %d\n", tp.data_type());
abort();
}
return v;
}
static std::vector<int> get_node_attr_from_input_ai(const onnx::TensorProto& tp)
{
int size = 0;
std::vector<int> v;
// int64
if (tp.data_type() == 7)
{
const int64_t* shape_data = 0;
if (tp.has_raw_data())
{
shape_data = (const int64_t*)tp.raw_data().data();
size = (int)(tp.raw_data().size() / 8);
}
else
{
shape_data = tp.int64_data().data();
size = tp.int64_data_size();
}
for (int j = 0; j < size; j++)
{
int vi = std::max(std::min(shape_data[j], (::google::protobuf::int64)INT_MAX), (::google::protobuf::int64)INT_MIN);
v.push_back(vi);
}
}
// int32
else if (tp.data_type() == 6)
{
const int32_t* shape_data = 0;
if (tp.has_raw_data())
{
shape_data = (const int32_t*)tp.raw_data().data();
size = (int)(tp.raw_data().size() / 4);
}
else
{
shape_data = tp.int32_data().data();
size = tp.int32_data_size();
}
for (int j = 0; j < size; j++)
{
v.push_back(shape_data[j]);
}
}
else
{
fprintf(stderr, "Unknown data type %d\n", tp.data_type());
}
return v;
}
static std::vector<float> get_node_attr_from_input_af(const onnx::TensorProto& tp)
{
int size = 0;
std::vector<float> v;
// float
if (tp.data_type() == 1)
{
const float* shape_data = 0;
if (tp.has_raw_data())
{
shape_data = (const float*)tp.raw_data().data();
size = (int)(tp.raw_data().size() / 4);
}
else
{
shape_data = tp.float_data().data();
size = tp.float_data_size();
}
for (int j = 0; j < size; j++)
{
v.push_back(shape_data[j]);
}
}
// double
else if (tp.data_type() == 11)
{
const double* shape_data = 0;
if (tp.has_raw_data())
{
shape_data = (const double*)tp.raw_data().data();
size = (int)(tp.raw_data().size() / 8);
}
else
{
shape_data = tp.double_data().data();
size = tp.double_data_size();
}
for (int j = 0; j < size; j++)
{
v.push_back((float)shape_data[j]);
}
}
else
{
fprintf(stderr, "Unknown data type %d\n", tp.data_type());
}
return v;
}
static int get_tensor_proto_data_size(const onnx::TensorProto& tp)
{
if (tp.has_raw_data())
{
const std::string& raw_data = tp.raw_data();
int size = (int)raw_data.size() / 4;
return size;
}
else if (tp.data_type() == 1)
{
return tp.float_data_size();
}
return 0;
}
static void fwrite_tensor_proto_data(const onnx::TensorProto& tp, FILE* bp)
{
int size = get_tensor_proto_data_size(tp);
if (tp.has_raw_data())
{
const std::string& raw_data = tp.raw_data();
fwrite(raw_data.data(), sizeof(float), size, bp);
}
else if (tp.data_type() == 1)
{
fwrite(tp.float_data().data(), sizeof(float), size, bp);
}
}
static void fuse_weight_reshape(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// weight <= Reshape(weight)
if (node->op_type() == "Reshape")
{
// check weight
if (weights.find(node->input(0)) == weights.end())
continue;
weights[node->output(0)] = weights[node->input(0)];
// set weight shape directly
std::vector<int> shape;
if (node->input_size() == 1)
{
shape = get_node_attr_ai(*node, "shape");
}
else if (node->input_size() == 2)
{
// opset 5
shape = get_node_attr_from_input_ai(weights[node->input(1)]);
}
weights[node->output(0)].clear_dims();
for (int j = 0; j < shape.size(); j++)
{
weights[node->output(0)].add_dims(shape[j]);
}
// reduce
node->set_op_type("noop_reducedncnn");
node_reference[node->input(0)] -= 1;
if (node->input_size() == 2)
{
node_reference[node->input(1)] -= 1;
}
reduced_node_count += 1;
i += 1;
}
}
}
static void fuse_weight_transpose(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// weight <= Transpose(weight)
if (node->op_type() == "Transpose")
{
// check weight
if (weights.find(node->input(0)) == weights.end())
continue;
if (weights[node->input(0)].dims_size() != 2)
continue;
// perm = (1, 0)
std::vector<int> perm = get_node_attr_ai(*node, "perm");
if (perm.size() != 2)
continue;
if (perm[0] != 1 || perm[1] != 0)
continue;
weights[node->output(0)] = weights[node->input(0)];
// permute weight
{
onnx::TensorProto& B = weights[node->output(0)];
const int h = B.dims(0);
const int w = B.dims(1);
std::vector<float> permuted_data;
permuted_data.reserve((size_t)h * w);
const float* bptr = B.has_raw_data() ? (const float*)B.raw_data().data() : B.float_data().data();
for (int j = 0; j < w; j++)
{
for (int k = 0; k < h; k++)
{
float vb = bptr[k * w + j];
permuted_data.push_back(vb);
}
}
B.set_dims(0, w);
B.set_dims(1, h);
if (B.has_raw_data())
{
B.set_raw_data(permuted_data.data(), permuted_data.size() * sizeof(float));
}
else
{
for (int j = 0; j < (int)permuted_data.size(); j++)
B.set_float_data(j, permuted_data[j]);
}
}
// reduce
node->set_op_type("noop_reducedncnn");
node_reference[node->input(0)] -= 1;
reduced_node_count += 1;
i += 1;
}
}
}
static void fuse_shufflechannel(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// ShuffleChannel <= Reshape - Transpose - Reshape
// ShuffleChannel <= Reshape - Transpose - Constant - Reshape
if (node->op_type() == "Reshape")
{
if (node_reference[node->output(0)] != 1)
continue;
std::vector<int> shape;
if (node->input_size() == 1)
{
shape = get_node_attr_ai(*node, "shape");
}
else
{
// skip weight reshape
if (weights.find(node->input(1)) == weights.end())
continue;
shape = get_node_attr_from_input_ai(weights[node->input(1)]);
}
// 1 groups channels_per_group, height, width
// reverse style = channels_per_group, groups, height * width
if (shape.size() != 5 && shape.size() != 3)
continue;
if (shape.size() == 5 && shape[0] != 1)
continue;
if (i + 2 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 2);
if (node3->op_type() == "Constant")
{
if (i + 3 >= node_count)
continue;
node3 = mutable_graph->mutable_node(i + 3);
}
if (node2->op_type() != "Transpose" || node3->op_type() != "Reshape")
continue;
if (node_reference[node2->output(0)] != 1)
continue;
// 0 2 1 3 4
// reverse style = 1 0 2
std::vector<int> perm = get_node_attr_ai(*node2, "perm");
if (perm.size() != 5 && perm.size() != 3)
continue;
if (perm.size() == 5 && (perm[0] != 0 || perm[1] != 2 || perm[2] != 1 || perm[3] != 3 || perm[4] != 4))
continue;
if (perm.size() == 3 && (perm[0] != 1 || perm[1] != 0 || perm[2] != 2))
continue;
std::vector<int> shape3;
if (node3->input_size() == 1)
{
shape3 = get_node_attr_ai(*node3, "shape");
}
else
{
// skip weight reshape
if (weights.find(node3->input(1)) == weights.end())
continue;
shape3 = get_node_attr_from_input_ai(weights[node3->input(1)]);
}
// 1, -1, height, width
// reverse style = group, -1, channels_per_group, height, width
if (shape3.size() != 4 && shape3.size() != 5)
continue;
if (shape3.size() == 4 && (shape3[0] != 1 || (shape3[1] != -1 && shape3[1] != shape[1] * shape[2])))
continue;
if (shape3.size() == 5 && (shape3[0] != shape[1] || shape3[2] != shape[0] || shape3[3] * shape3[4] != shape[2]))
continue;
// reduce
node->set_op_type("noop_reducedncnn");
node2->set_op_type("noop_reducedncnn");
if (node->input_size() == 2)
{
node_reference[node->input(1)] -= 1;
}
node_reference[node->output(0)] -= 1;
node_reference[node2->output(0)] -= 1;
if (node3->input_size() == 2)
{
node_reference[node3->input(1)] -= 1;
}
blob_names.erase(node->output(0));
blob_names.erase(node2->output(0));
node3->set_op_type("ShuffleChannel");
node3->set_input(0, node->input(0));
onnx::AttributeProto* attr_group = node3->add_attribute();
attr_group->set_name("group");
attr_group->set_i(shape[1]);
onnx::AttributeProto* attr_reverse = node3->add_attribute();
attr_reverse->set_name("reverse");
attr_reverse->set_i(shape.size() == 3);
reduced_node_count += 2;
i += 2;
}
}
}
static void fuse_shufflechannel_split(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// Split <= ShuffleChannel(reverse type) - Gather(0) - Gather(1)
if (node->op_type() == "ShuffleChannel")
{
// reverse = 1
int reverse = get_node_attr_i(*node, "reverse");
if (reverse != 1)
continue;
if (i + 2 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 2);
if (node2->op_type() != "Gather" || node3->op_type() != "Gather")
continue;
if (node2->input(0) != node->output(0) || node3->input(0) != node->output(0))
continue;
// axis = 0
int gather2_axis = get_node_attr_i(*node2, "axis");
if (gather2_axis != 0)
continue;
// indices = 0
if (weights.find(node2->input(1)) == weights.end())
continue;
std::vector<int> gather2_indices = get_node_attr_from_input_ai(weights[node2->input(1)]);
if (gather2_indices.size() != 1 || gather2_indices[0] != 0)
continue;
// axis = 0
int gather3_axis = get_node_attr_i(*node3, "axis");
if (gather3_axis != 0)
continue;
// indices = 1
if (weights.find(node3->input(1)) == weights.end())
continue;
std::vector<int> gather3_indices = get_node_attr_from_input_ai(weights[node3->input(1)]);
if (gather3_indices.size() != 1 || gather3_indices[0] != 1)
continue;
// reduce
node2->set_op_type("noop_reducedncnn");
node_reference[node->output(0)] -= 2;
node_reference[node2->input(1)] -= 1;
node_reference[node3->input(1)] -= 1;
node3->set_op_type("Split");
node3->clear_input();
node3->add_input(node->output(0));
node3->add_output(node3->output(0));
node3->set_output(0, node2->output(0));
node3->clear_attribute();
onnx::AttributeProto* attr_axis = node3->add_attribute();
attr_axis->set_name("axis");
attr_axis->set_i(1);
reduced_node_count += 1;
i += 1;
}
}
}
static void fuse_hardswish(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// HardSwish <= Add(+3) - Clip(0,6) - Mul(X,) - Div(/6)
// HardSwish <= Add(+3) - Clip(0,6) - Mul(X,) - Mul(*(1/6))
// HardSwish <= Add(+3) - Clip(0,6) - Mul(X,) - Constant - Div(/6)
// HardSwish <= Add(+3) - Clip(0,6) - Mul(X,) - Constant - Mul(*(1/6))
// out = x * F.relu6(x + 3, inplace=True) / 6
if (node->op_type() == "Add")
{
if (node_reference[node->output(0)] != 1)
continue;
if (i + 3 >= node_count)
continue;
if (weights.find(node->input(1)) == weights.end())
continue;
const onnx::TensorProto& add_three = weights[node->input(1)];
if (add_three.dims_size() != 0 || get_tensor_proto_data_size(add_three) != 1)
continue;
float constant_add_three = get_node_attr_from_input_f(add_three);
if (constant_add_three != 3.f)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 2);
onnx::NodeProto* node4 = mutable_graph->mutable_node(i + 3);
if (node4->op_type() == "Constant")
{
if (i + 4 >= node_count)
continue;
node4 = mutable_graph->mutable_node(i + 4);
}
if (node2->op_type() != "Clip" || node3->op_type() != "Mul" || (node4->op_type() != "Div" && node4->op_type() != "Mul"))
continue;
if (node_reference[node2->output(0)] != 1)
continue;
float relu6_min;
float relu6_max;
if (node2->input_size() == 1)
{
relu6_min = get_node_attr_f(*node2, "min", -FLT_MAX);
relu6_max = get_node_attr_f(*node2, "max", FLT_MAX);
}
else
{
const onnx::TensorProto& min_tp = weights[node2->input(1)];
const onnx::TensorProto& max_tp = weights[node2->input(2)];
relu6_min = get_node_attr_from_input_f(min_tp);
relu6_max = get_node_attr_from_input_f(max_tp);
}
if (relu6_min != 0.f || relu6_max != 6.f)
continue;
if (node_reference[node3->output(0)] != 1)
continue;
if (node3->input(0) != node->input(0) || node3->input(1) != node2->output(0))
continue;
if (weights.find(node4->input(1)) == weights.end())
continue;
const onnx::TensorProto& div_six = weights[node4->input(1)];
if (div_six.dims_size() != 0 || get_tensor_proto_data_size(div_six) != 1)
continue;
float constant_div_six = get_node_attr_from_input_f(div_six);
if (node4->op_type() == "Div" && constant_div_six != 6.f)
continue;
if (node4->op_type() == "Mul" && constant_div_six != 1 / 6.f)
continue;
// reduce
node->set_op_type("noop_reducedncnn");
node2->set_op_type("noop_reducedncnn");
node3->set_op_type("noop_reducedncnn");
node_reference[node->input(0)] -= 1;
node_reference[node->input(1)] -= 1;
node_reference[node->output(0)] -= 1;
if (node2->input_size() == 3)
{
node_reference[node2->input(1)] -= 1;
node_reference[node2->input(2)] -= 1;
}
node_reference[node2->output(0)] -= 1;
node_reference[node3->output(0)] -= 1;
node_reference[node4->input(1)] -= 1;
blob_names.erase(node->output(0));
blob_names.erase(node2->output(0));
blob_names.erase(node3->output(0));
node4->set_op_type("HardSwish");
node4->clear_input();
node4->add_input(node->input(0));
onnx::AttributeProto* attr_alpha = node4->add_attribute();
attr_alpha->set_name("alpha");
attr_alpha->set_f(1.f / 6.f);
onnx::AttributeProto* attr_beta = node4->add_attribute();
attr_beta->set_name("beta");
attr_beta->set_f(3.f / 6.f);
reduced_node_count += 3;
i += 3;
}
}
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// HardSwish <= HardSigmoid - Mul
// out = x * hsigmoid(x)
if (node->op_type() == "HardSigmoid")
{
if (node_reference[node->output(0)] != 1)
continue;
float alpha = get_node_attr_f(*node, "alpha", 0.2f);
float beta = get_node_attr_f(*node, "beta", 0.5f);
if (i + 1 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
if (node2->op_type() != "Mul")
continue;
if (node2->input(0) != node->input(0) || node2->input(1) != node->output(0))
continue;
// reduce
node->set_op_type("noop_reducedncnn");
node_reference[node->input(0)] -= 1;
node_reference[node->output(0)] -= 1;
blob_names.erase(node->output(0));
node2->set_op_type("HardSwish");
node2->clear_input();
node2->add_input(node->input(0));
onnx::AttributeProto* attr_alpha = node2->add_attribute();
attr_alpha->set_name("alpha");
attr_alpha->set_f(alpha);
onnx::AttributeProto* attr_beta = node2->add_attribute();
attr_beta->set_name("beta");
attr_beta->set_f(beta);
reduced_node_count += 1;
i += 1;
}
}
}
static void fuse_hardsigmoid(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// HardSigmoid <= Add(+3) - Clip(0,6) - Div(/6)
// HardSigmoid <= Add(+3) - Clip(0,6) - Mul(*(1/6))
// HardSigmoid <= Add(+3) - Clip(0,6) - Constant - Div(/6)
// HardSigmoid <= Add(+3) - Clip(0,6) - Constant - Mul(*(1/6))
// out = F.relu6(x + 3, inplace=True) / 6
if (node->op_type() == "Add")
{
if (node_reference[node->output(0)] != 1)
continue;
if (i + 2 >= node_count)
continue;
if (weights.find(node->input(1)) == weights.end())
continue;
const onnx::TensorProto& add_three = weights[node->input(1)];
if (add_three.dims_size() != 0 || get_tensor_proto_data_size(add_three) != 1)
continue;
float constant_add_three = get_node_attr_from_input_f(add_three);
if (constant_add_three != 3.f)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 2);
if (node3->op_type() == "Constant")
{
if (i + 3 >= node_count)
continue;
node3 = mutable_graph->mutable_node(i + 3);
}
if (node2->op_type() != "Clip" || (node3->op_type() != "Div" && node3->op_type() != "Mul"))
continue;
if (node_reference[node2->output(0)] != 1)
continue;
float relu6_min;
float relu6_max;
if (node2->input_size() == 1)
{
relu6_min = get_node_attr_f(*node2, "min", -FLT_MAX);
relu6_max = get_node_attr_f(*node2, "max", FLT_MAX);
}
else
{
const onnx::TensorProto& min_tp = weights[node2->input(1)];
const onnx::TensorProto& max_tp = weights[node2->input(2)];
relu6_min = get_node_attr_from_input_f(min_tp);
relu6_max = get_node_attr_from_input_f(max_tp);
}
if (relu6_min != 0.f || relu6_max != 6.f)
continue;
if (weights.find(node3->input(1)) == weights.end())
continue;
const onnx::TensorProto& div_six = weights[node3->input(1)];
if (div_six.dims_size() != 0 || get_tensor_proto_data_size(div_six) != 1)
continue;
float constant_div_six = get_node_attr_from_input_f(div_six);
if (node3->op_type() == "Div" && constant_div_six != 6.f)
continue;
if (node3->op_type() == "Mul" && constant_div_six != 1 / 6.f)
continue;
// reduce
node->set_op_type("noop_reducedncnn");
node2->set_op_type("noop_reducedncnn");
node_reference[node->input(1)] -= 1;
node_reference[node->output(0)] -= 1;
if (node2->input_size() == 3)
{
node_reference[node2->input(1)] -= 1;
node_reference[node2->input(2)] -= 1;
}
node_reference[node2->output(0)] -= 1;
node_reference[node3->input(1)] -= 1;
blob_names.erase(node->output(0));
blob_names.erase(node2->output(0));
node3->set_op_type("HardSigmoid");
node3->clear_input();
node3->add_input(node->input(0));
onnx::AttributeProto* attr_alpha = node3->add_attribute();
attr_alpha->set_name("alpha");
attr_alpha->set_f(1.f / 6.f);
onnx::AttributeProto* attr_beta = node3->add_attribute();
attr_beta->set_name("beta");
attr_beta->set_f(3.f / 6.f);
reduced_node_count += 2;
i += 2;
}
}
}
static void fuse_swish(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// Swish <= Sigmoid - Mul
// x * torch.sigmoid(x)
if (node->op_type() == "Sigmoid")
{
if (node_reference[node->output(0)] != 1)
continue;
if (i + 1 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
if (node2->op_type() != "Mul")
continue;
if (node2->input(0) != node->input(0) || node2->input(1) != node->output(0))
continue;
// reduce
node->set_op_type("noop_reducedncnn");
node_reference[node->input(0)] -= 1;
node_reference[node->output(0)] -= 1;
blob_names.erase(node->output(0));
node2->set_op_type("Swish");
node2->clear_input();
node2->add_input(node->input(0));
reduced_node_count += 1;
i += 1;
}
}
}
static void fuse_batchnorm1d_squeeze_unsqueeze(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// BatchNormalization <= Unsqueeze - BatchNormalization - Squeeze
if (node->op_type() == "Unsqueeze")
{
if (node_reference[node->output(0)] != 1)
continue;
if (i + 2 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 2);
if (node2->op_type() != "BatchNormalization" || node3->op_type() != "Squeeze")
continue;
if (node_reference[node2->output(0)] != 1)
continue;
if (node2->input(0) != node->output(0) || node3->input(0) != node2->output(0))
continue;
// reduce
node->set_op_type("noop_reducedncnn");
node3->set_op_type("noop_reducedncnn");
node_reference[node->output(0)] -= 1;
node_reference[node2->output(0)] -= 1;
blob_names.erase(node->output(0));
blob_names.erase(node2->output(0));
node2->set_input(0, node->input(0));
node2->set_output(0, node3->output(0));
reduced_node_count += 2;
i += 2;
}
}
}
static void fuse_unsqueeze_prelu(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// PReLU <= Unsqueeze - PReLU
if (node->op_type() == "Unsqueeze")
{
// check weight
if (weights.find(node->input(0)) == weights.end())
continue;
onnx::TensorProto& B = weights[node->input(0)];
if (B.dims_size() != 1)
continue;
if (node_reference[node->output(0)] != 1)
continue;
// axes = (1, 2)
std::vector<int> axes = get_node_attr_ai(*node, "axes");
if (axes.size() != 2)
continue;
if (axes[0] != 1 || axes[1] != 2)
continue;
if (i + 1 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
if (node2->op_type() != "PRelu")
continue;
if (node2->input(1) != node->output(0))
continue;
// reduce
node->set_op_type("noop_reducedncnn");
node_reference[node->output(0)] -= 1;
blob_names.erase(node->output(0));
node2->set_input(1, node->input(0));
reduced_node_count += 1;
i += 1;
}
}
}
static void fuse_normalize(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// Normalize <= X - ReduceL2 - Clip - Expand - Div
// Normalize <= X - ReduceL2 - Clip - Shape - Expand - Div
if (node->op_type() == "ReduceL2")
{
if (node_reference[node->output(0)] != 1)
continue;
// axes = (1)
std::vector<int> axes = get_node_attr_ai(*node, "axes");
if (axes.size() != 1)
continue;
if (axes[0] != 1)
continue;
if (i + 3 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 2);
onnx::NodeProto* node4 = mutable_graph->mutable_node(i + 3);
bool has_shape_node = node3->op_type() == "Shape";
onnx::NodeProto* node_shape = 0;
if (has_shape_node)
{
if (i + 4 >= node_count)
continue;
node_shape = node3;
node3 = mutable_graph->mutable_node(i + 3);
node4 = mutable_graph->mutable_node(i + 4);
}
if (node2->op_type() != "Clip" || node3->op_type() != "Expand" || node4->op_type() != "Div")
continue;
if (node_reference[node2->output(0)] != 1)
continue;
if (node_reference[node3->output(0)] != 1)
continue;
if (node2->input(0) != node->output(0) || node3->input(0) != node2->output(0)
|| node4->input(0) != node->input(0) || node4->input(1) != node3->output(0))
continue;
if (has_shape_node)
{
if (node_shape->input(0) != node->input(0) || node3->input(1) != node_shape->output(0))
continue;
}
// +eps
float clip_min;
if (node2->input_size() == 1)
{
clip_min = get_node_attr_f(*node2, "min", -FLT_MAX);
}
else
{
const onnx::TensorProto& min_tp = weights[node2->input(1)];
clip_min = get_node_attr_from_input_f(min_tp);
}
// reduce
node->set_op_type("noop_reducedncnn");
node2->set_op_type("noop_reducedncnn");
if (has_shape_node)
{
node_shape->set_op_type("noop_reducedncnn");
}
node3->set_op_type("noop_reducedncnn");
node_reference[node->input(0)] -= has_shape_node ? 2 : 1;
node_reference[node->output(0)] -= 1;
node_reference[node2->output(0)] -= 1;
if (has_shape_node)
{
node_reference[node_shape->output(0)] -= 1;
}
node_reference[node3->output(0)] -= 1;
if (node3->input_size() == 2)
{
node_reference[node3->input(1)] -= 1;
}
blob_names.erase(node->output(0));
blob_names.erase(node2->output(0));
if (has_shape_node)
{
blob_names.erase(node_shape->output(0));
}
blob_names.erase(node3->output(0));
node4->set_op_type("Normalize");
node4->clear_input();
node4->add_input(node->input(0));
onnx::AttributeProto* attr_alpha = node4->add_attribute();
attr_alpha->set_name("eps");
attr_alpha->set_f(clip_min);
reduced_node_count += has_shape_node ? 4 : 3;
i += has_shape_node ? 4 : 3;
}
}
}
static void fuse_groupnorm(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// GroupNorm <= X - Reshape - InstanceNormalization - Reshape - Mul - Add
if (node->op_type() == "Reshape")
{
if (node_reference[node->output(0)] != 1)
continue;
std::vector<int> shape;
if (node->input_size() == 1)
{
shape = get_node_attr_ai(*node, "shape");
}
else
{
// skip weight reshape
if (weights.find(node->input(1)) == weights.end())
continue;
shape = get_node_attr_from_input_ai(weights[node->input(1)]);
}
// 0, group, -1
if (shape.size() != 3)
continue;
if (shape[0] != 0 || shape[2] != -1)
continue;
int groups = shape[1];
if (i + 4 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 2);
onnx::NodeProto* node4 = mutable_graph->mutable_node(i + 3);
onnx::NodeProto* node5 = mutable_graph->mutable_node(i + 4);
if (node2->op_type() != "InstanceNormalization" || node3->op_type() != "Reshape" || node4->op_type() != "Mul" || node5->op_type() != "Add")
continue;
if (node_reference[node2->output(0)] != 1)
continue;
if (node_reference[node3->output(0)] != 1)
continue;
if (node_reference[node4->output(0)] != 1)
continue;
if (node2->input(0) != node->output(0) || node3->input(0) != node2->output(0)
|| node4->input(0) != node3->output(0) || node5->input(0) != node4->output(0))
continue;
// +eps
float eps = get_node_attr_f(*node2, "epsilon", 1e-05f);
// InstanceNormalization S=1 B=0
std::vector<float> S = get_node_attr_from_input_af(weights[node2->input(1)]);
std::vector<float> B = get_node_attr_from_input_af(weights[node2->input(2)]);
if ((int)S.size() != groups || (int)B.size() != groups)
continue;
bool instancenorm_affine = false;
for (int j = 0; j < groups; j++)
{
if (S[j] != 1.f || B[j] != 0.f)
{
instancenorm_affine = true;
break;
}
}
if (instancenorm_affine)
continue;
std::vector<int> shape2;
if (node3->input_size() == 1)
{
shape2 = get_node_attr_ai(*node3, "shape");
}
else
{
// skip weight reshape
if (weights.find(node3->input(1)) == weights.end())
continue;
shape2 = get_node_attr_from_input_ai(weights[node3->input(1)]);
}
// 1, channels, w, h
if (shape2.size() != 4)
continue;
if (shape2[0] != 1)
continue;
int channels = shape2[1];
// affine
std::vector<float> affine_S = get_node_attr_from_input_af(weights[node4->input(1)]);
std::vector<float> affine_B = get_node_attr_from_input_af(weights[node5->input(1)]);
if (affine_S.size() == 1 && affine_S[0] == 1.f && affine_B.size() == 1 && affine_B[0] == 0.f)
{
// no affine
}
else if ((int)affine_S.size() != channels && (int)affine_B.size() != channels)
{
// we only allow per-channel affine
continue;
}
// reduce
node->set_op_type("noop_reducedncnn");
node2->set_op_type("noop_reducedncnn");
node3->set_op_type("noop_reducedncnn");
node4->set_op_type("noop_reducedncnn");
if (node->input_size() == 2)
{
node_reference[node->input(1)] -= 1;
}
node_reference[node->output(0)] -= 1;
node_reference[node2->input(1)] -= 1;
node_reference[node2->input(2)] -= 1;
node_reference[node2->output(0)] -= 1;
if (node3->input_size() == 2)
{
node_reference[node3->input(1)] -= 1;
}
node_reference[node3->output(0)] -= 1;
node_reference[node4->output(0)] -= 1;
blob_names.erase(node->output(0));
blob_names.erase(node2->output(0));
blob_names.erase(node3->output(0));
blob_names.erase(node4->output(0));
std::string affine_scale = node4->input(1);
std::string affine_bias = node5->input(1);
node5->set_op_type("GroupNorm");
node5->clear_input();
node5->add_input(node->input(0));
node5->add_input(affine_scale);
node5->add_input(affine_bias);
onnx::AttributeProto* attr_groups = node5->add_attribute();
attr_groups->set_name("groups");
attr_groups->set_i(groups);
onnx::AttributeProto* attr_channels = node5->add_attribute();
attr_channels->set_name("channels");
attr_channels->set_i(channels);
onnx::AttributeProto* attr_eps = node5->add_attribute();
attr_eps->set_name("epsilon");
attr_eps->set_f(eps);
onnx::AttributeProto* attr_affine = node5->add_attribute();
attr_affine->set_name("affine");
attr_affine->set_i(1);
reduced_node_count += 4;
i += 4;
}
}
}
static void fuse_layernorm(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// LayerNorm <= X - ReduceMean - Sub - Pow - ReduceMean - Add - Sqrt - Div
// LayerNorm <= X - ReduceMean - Sub - Pow - ReduceMean - Add - Sqrt - Div - Mul - Add
if (node->op_type() == "ReduceMean")
{
if (node_reference[node->output(0)] != 1)
continue;
std::vector<int> axes = get_node_attr_ai(*node, "axes");
// -1
// -2 -1
if (axes.size() != 1 && axes.size() != 2)
continue;
int normed_axes = (int)axes.size();
if (normed_axes == 1 && axes[0] != -1)
continue;
if (normed_axes == 2 && (axes[0] != -2 || axes[1] != -1))
continue;
if (i + 6 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 2);
onnx::NodeProto* node4 = mutable_graph->mutable_node(i + 3);
onnx::NodeProto* node5 = mutable_graph->mutable_node(i + 4);
onnx::NodeProto* node6 = mutable_graph->mutable_node(i + 5);
onnx::NodeProto* node7 = mutable_graph->mutable_node(i + 6);
if (node2->op_type() != "Sub" || node3->op_type() != "Pow" || node4->op_type() != "ReduceMean" || node5->op_type() != "Add" || node6->op_type() != "Sqrt" || node7->op_type() != "Div")
continue;
if (node_reference[node2->output(0)] != 2)
continue;
if (node_reference[node3->output(0)] != 1)
continue;
if (node_reference[node4->output(0)] != 1)
continue;
if (node_reference[node5->output(0)] != 1)
continue;
if (node_reference[node6->output(0)] != 1)
continue;
if (node2->input(0) != node->input(0) || node2->input(1) != node->output(0)
|| node3->input(0) != node2->output(0) || node4->input(0) != node3->output(0)
|| node5->input(0) != node4->output(0) || node6->input(0) != node5->output(0)
|| node7->input(0) != node2->output(0) || node7->input(1) != node6->output(0))
continue;
if (weights.find(node3->input(1)) == weights.end())
continue;
const onnx::TensorProto& pow_two = weights[node3->input(1)];
if (pow_two.dims_size() != 0 || get_tensor_proto_data_size(pow_two) != 1)
continue;
float constant_pow_two = get_node_attr_from_input_f(pow_two);
if (constant_pow_two != 2.f)
continue;
std::vector<int> axes4 = get_node_attr_ai(*node4, "axes");
// -1
// -2 -1
if ((int)axes4.size() != normed_axes)
continue;
if (normed_axes == 1 && axes4[0] != -1)
continue;
if (normed_axes == 2 && (axes4[0] != -2 || axes4[1] != -1))
continue;
if (weights.find(node5->input(1)) == weights.end())
continue;
const onnx::TensorProto& add_eps = weights[node5->input(1)];
if (add_eps.dims_size() != 0 || get_tensor_proto_data_size(add_eps) != 1)
continue;
float eps = get_node_attr_from_input_f(add_eps);
int affine = 0;
while (i + 8 < node_count)
{
onnx::NodeProto* node8 = mutable_graph->mutable_node(i + 7);
onnx::NodeProto* node9 = mutable_graph->mutable_node(i + 8);
if (node8->op_type() != "Mul" || node9->op_type() != "Add")
break;
if (node_reference[node7->output(0)] != 1)
break;
if (node_reference[node8->output(0)] != 1)
break;
if (node8->input(0) != node7->output(0) || node9->input(0) != node8->output(0))
break;
// affine
std::vector<float> affine_S = get_node_attr_from_input_af(weights[node8->input(1)]);
std::vector<float> affine_B = get_node_attr_from_input_af(weights[node9->input(1)]);
if (affine_S.size() != affine_B.size())
break;
affine = 1;
break;
}
// reduce
node->set_op_type("noop_reducedncnn");
node2->set_op_type("noop_reducedncnn");
node3->set_op_type("noop_reducedncnn");
node4->set_op_type("noop_reducedncnn");
node5->set_op_type("noop_reducedncnn");
node6->set_op_type("noop_reducedncnn");
node_reference[node->input(0)] -= 1;
node_reference[node2->input(0)] -= 1;
node_reference[node2->input(1)] -= 1;
node_reference[node3->input(0)] -= 1;
node_reference[node3->input(1)] -= 1;
node_reference[node4->input(0)] -= 1;
node_reference[node5->input(0)] -= 1;
node_reference[node5->input(1)] -= 1;
node_reference[node6->input(0)] -= 1;
node_reference[node7->input(0)] -= 1;
node_reference[node7->input(1)] -= 1;
blob_names.erase(node->output(0));
blob_names.erase(node2->output(0));
blob_names.erase(node3->output(0));
blob_names.erase(node4->output(0));
blob_names.erase(node5->output(0));
blob_names.erase(node6->output(0));
node_reference[node->input(0)] += 1;
if (affine == 0)
{
node7->set_op_type("LayerNorm");
node7->clear_input();
node7->add_input(node->input(0));
onnx::AttributeProto* attr_eps = node7->add_attribute();
attr_eps->set_name("epsilon");
attr_eps->set_f(eps);
onnx::AttributeProto* attr_affine = node7->add_attribute();
attr_affine->set_name("affine");
attr_affine->set_i(affine);
reduced_node_count += 6;
i += 6;
}
else // if (affine == 1)
{
onnx::NodeProto* node8 = mutable_graph->mutable_node(i + 7);
onnx::NodeProto* node9 = mutable_graph->mutable_node(i + 8);
node7->set_op_type("noop_reducedncnn");
node8->set_op_type("noop_reducedncnn");
node_reference[node8->input(0)] -= 1;
node_reference[node9->input(0)] -= 1;
blob_names.erase(node7->output(0));
blob_names.erase(node8->output(0));
std::string affine_scale = node8->input(1);
std::string affine_bias = node9->input(1);
node9->set_op_type("LayerNorm");
node9->clear_input();
node9->add_input(node->input(0));
node9->add_input(affine_scale);
node9->add_input(affine_bias);
onnx::AttributeProto* attr_eps = node9->add_attribute();
attr_eps->set_name("epsilon");
attr_eps->set_f(eps);
onnx::AttributeProto* attr_affine = node9->add_attribute();
attr_affine->set_name("affine");
attr_affine->set_i(affine);
reduced_node_count += 8;
i += 8;
}
}
}
}
static void fuse_flatten(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// Flatten <= X - Shape - Gather - Constant - Unsqueeze - Unsqueeze - Concat - Reshape
if (node->op_type() == "Shape")
{
if (node_reference[node->output(0)] != 1)
continue;
if (i + 6 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 2);
onnx::NodeProto* node4 = mutable_graph->mutable_node(i + 3);
onnx::NodeProto* node5 = mutable_graph->mutable_node(i + 4);
onnx::NodeProto* node6 = mutable_graph->mutable_node(i + 5);
onnx::NodeProto* node7 = mutable_graph->mutable_node(i + 6);
if (node2->op_type() != "Gather" || node3->op_type() != "Constant" || node4->op_type() != "Unsqueeze" || node5->op_type() != "Unsqueeze"
|| node6->op_type() != "Concat" || node7->op_type() != "Reshape")
continue;
if (node_reference[node2->output(0)] != 1)
continue;
// if (node_reference[node3->output(0)] != 1)
// continue;
if (node_reference[node4->output(0)] != 1)
continue;
if (node_reference[node5->output(0)] != 1)
continue;
if (node_reference[node6->output(0)] != 1)
continue;
if (node2->input(0) != node->output(0) || node4->input(0) != node2->output(0) || node5->input(0) != node3->output(0)
|| node6->input(0) != node4->output(0) || node6->input(1) != node5->output(0)
|| node7->input(0) != node->input(0) || node7->input(1) != node6->output(0))
continue;
// axis = 0
int gather_axis = get_node_attr_i(*node2, "axis");
if (gather_axis != 0)
continue;
// indices = 0
if (weights.find(node2->input(1)) == weights.end())
continue;
std::vector<int> gather_indices = get_node_attr_from_input_ai(weights[node2->input(1)]);
if (gather_indices.size() != 1 || gather_indices[0] != 0)
continue;
// axes = (0)
std::vector<int> unsqueeze_axes = get_node_attr_ai(*node4, "axes");
if (unsqueeze_axes.size() != 1)
continue;
if (unsqueeze_axes[0] != 0)
continue;
// axes = (0)
std::vector<int> unsqueeze2_axes = get_node_attr_ai(*node5, "axes");
if (unsqueeze2_axes.size() != 1)
continue;
if (unsqueeze2_axes[0] != 0)
continue;
// data = -1
if (weights.find(node5->input(0)) == weights.end())
continue;
std::vector<int> unsqueeze2_data = get_node_attr_from_input_ai(weights[node5->input(0)]);
if (unsqueeze2_data.size() != 1 || unsqueeze2_data[0] != -1)
continue;
// axis = 0
int concat_axis = get_node_attr_i(*node6, "axis");
if (concat_axis != 0)
continue;
// reduce
node->set_op_type("noop_reducedncnn");
node2->set_op_type("noop_reducedncnn");
// node3->set_op_type("noop_reducedncnn");
node4->set_op_type("noop_reducedncnn");
node5->set_op_type("noop_reducedncnn");
node6->set_op_type("noop_reducedncnn");
node_reference[node->input(0)] -= 1;
node_reference[node->output(0)] -= 1;
node_reference[node2->input(1)] -= 1;
node_reference[node2->output(0)] -= 1;
// node_reference[node3->output(0)] -= 1;
node_reference[node4->output(0)] -= 1;
node_reference[node5->input(0)] -= 1;
node_reference[node5->output(0)] -= 1;
node_reference[node6->output(0)] -= 1;
blob_names.erase(node->output(0));
blob_names.erase(node2->output(0));
// blob_names.erase(node3->output(0));
blob_names.erase(node4->output(0));
blob_names.erase(node5->output(0));
blob_names.erase(node6->output(0));
node7->set_op_type("Flatten");
node7->clear_input();
node7->add_input(node->input(0));
reduced_node_count += 5;
i += 5;
}
}
}
static void fuse_pixelshuffle(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// PixelShuffle <= Reshape - Transpose - Reshape
// PixelShuffle <= Reshape - Transpose - Constant - Reshape
if (node->op_type() == "Reshape")
{
if (node_reference[node->output(0)] != 1)
continue;
std::vector<int> shape;
if (node->input_size() == 1)
{
shape = get_node_attr_ai(*node, "shape");
}
else
{
// skip weight reshape
if (weights.find(node->input(1)) == weights.end())
continue;
shape = get_node_attr_from_input_ai(weights[node->input(1)]);
}
// -1, 3, upscale_factor, upscale_factor, height, width
if (shape.size() != 6)
continue;
if (shape[0] != 1 && shape[0] != -1)
continue;
if (shape[2] != shape[3])
continue;
if (i + 2 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 2);
if (node3->op_type() == "Constant")
{
if (i + 3 >= node_count)
continue;
node3 = mutable_graph->mutable_node(i + 3);
}
if (node2->op_type() != "Transpose" || node3->op_type() != "Reshape")
continue;
if (node_reference[node2->output(0)] != 1)
continue;
// 0 1 4 2 5 3
std::vector<int> perm = get_node_attr_ai(*node2, "perm");
if (perm.size() != 6)
continue;
if (perm[0] != 0 || perm[1] != 1 || perm[2] != 4 || perm[3] != 2 || perm[4] != 5 || perm[5] != 3)
continue;
std::vector<int> shape3;
if (node3->input_size() == 1)
{
shape3 = get_node_attr_ai(*node3, "shape");
}
else
{
// skip weight reshape
if (weights.find(node3->input(1)) == weights.end())
continue;
shape3 = get_node_attr_from_input_ai(weights[node3->input(1)]);
}
// -1, 3, height, width
if (shape3.size() != 4)
continue;
if (shape3[0] != 1 && shape3[0] != -1)
continue;
if (shape3[1] != shape[1] || shape3[2] != shape[2] * shape[4] || shape3[3] != shape[3] * shape[5])
continue;
// reduce
node->set_op_type("noop_reducedncnn");
node2->set_op_type("noop_reducedncnn");
if (node->input_size() == 2)
{
node_reference[node->input(1)] -= 1;
}
node_reference[node->output(0)] -= 1;
node_reference[node2->output(0)] -= 1;
if (node3->input_size() == 2)
{
node_reference[node3->input(1)] -= 1;
}
blob_names.erase(node->output(0));
blob_names.erase(node2->output(0));
node3->set_op_type("PixelShuffle");
node3->set_input(0, node->input(0));
onnx::AttributeProto* attr_group = node3->add_attribute();
attr_group->set_name("scale_factor");
attr_group->set_i(shape[2]);
reduced_node_count += 2;
i += 2;
}
}
}
static void fuse_reorg(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// PixelShuffle <= Reshape - Transpose - Reshape
// PixelShuffle <= Reshape - Transpose - Constant - Reshape
if (node->op_type() == "Reshape")
{
if (node_reference[node->output(0)] != 1)
continue;
std::vector<int> shape;
if (node->input_size() == 1)
{
shape = get_node_attr_ai(*node, "shape");
}
else
{
// skip weight reshape
if (weights.find(node->input(1)) == weights.end())
continue;
shape = get_node_attr_from_input_ai(weights[node->input(1)]);
}
// -1, 3, out_height, block_size, out_width, block_size
if (shape.size() != 6)
continue;
if (shape[0] != 1 && shape[0] != -1)
continue;
if (shape[3] != shape[5])
continue;
if (i + 2 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 2);
if (node3->op_type() == "Constant")
{
if (i + 3 >= node_count)
continue;
node3 = mutable_graph->mutable_node(i + 3);
}
if (node2->op_type() != "Transpose" || node3->op_type() != "Reshape")
continue;
if (node_reference[node2->output(0)] != 1)
continue;
// 0 1 3 5 2 4
std::vector<int> perm = get_node_attr_ai(*node2, "perm");
if (perm.size() != 6)
continue;
if (perm[0] != 0 || perm[1] != 1 || perm[2] != 3 || perm[3] != 5 || perm[4] != 2 || perm[5] != 4)
continue;
std::vector<int> shape3;
if (node3->input_size() == 1)
{
shape3 = get_node_attr_ai(*node3, "shape");
}
else
{
// skip weight reshape
if (weights.find(node3->input(1)) == weights.end())
continue;
shape3 = get_node_attr_from_input_ai(weights[node3->input(1)]);
}
// -1, out_channels, out_height, out_width
if (shape3.size() != 4)
continue;
if (shape3[0] != 1 && shape3[0] != -1)
continue;
if (shape3[1] != shape[1] * shape[3] * shape[5] || shape3[2] != shape[2] || shape3[3] != shape[4])
continue;
// reduce
node->set_op_type("noop_reducedncnn");
node2->set_op_type("noop_reducedncnn");
if (node->input_size() == 2)
{
node_reference[node->input(1)] -= 1;
}
node_reference[node->output(0)] -= 1;
node_reference[node2->output(0)] -= 1;
if (node3->input_size() == 2)
{
node_reference[node3->input(1)] -= 1;
}
blob_names.erase(node->output(0));
blob_names.erase(node2->output(0));
node3->set_op_type("Reorg");
node3->set_input(0, node->input(0));
onnx::AttributeProto* attr_group = node3->add_attribute();
attr_group->set_name("stride");
attr_group->set_i(shape[3]);
reduced_node_count += 2;
i += 2;
}
}
}
static void fuse_expand_broadcast(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// Add/Sub/Mul/Div/Min/Max <= Expand - Add/Sub/Mul/Div/Min/Max
if (node->op_type() == "Expand")
{
if (node_reference[node->output(0)] != 1)
continue;
if (i + 1 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
if (node2->op_type() != "Add" && node2->op_type() != "Sub" && node2->op_type() != "Mul" && node2->op_type() != "Div" && node2->op_type() != "Min" && node2->op_type() != "Max")
continue;
if (node2->input(1) != node->output(0) && node2->input(0) != node->output(0))
continue;
// reduce
node->set_op_type("noop_reducedncnn");
node_reference[node->output(0)] -= 1;
if (node->input_size() == 2)
{
node_reference[node->input(1)] -= 1;
}
blob_names.erase(node->output(0));
if (node2->input(0) == node->output(0))
{
node2->set_input(0, node->input(0));
}
else
{
node2->set_input(1, node->input(0));
}
reduced_node_count += 1;
i += 1;
}
}
}
static void fuse_lstm_gru_rnn(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// LSTM(bi) <= LSTM(bi) - Transpose - Reshape - Transpose
if (node->op_type() == "LSTM" || node->op_type() == "GRU" || node->op_type() == "RNN")
{
if (node_reference[node->output(0)] != 1)
continue;
if (i + 2 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 2);
if (node2->op_type() != "Transpose" || node3->op_type() != "Reshape")
continue;
if (node_reference[node2->output(0)] != 1)
continue;
if (node2->input(0) != node->output(0) || node3->input(0) != node2->output(0))
continue;
std::string direction = get_node_attr_s(*node, "direction");
if (direction != "bidirectional")
continue;
// 0 2 1 3
std::vector<int> perm = get_node_attr_ai(*node2, "perm");
if (perm.size() != 4)
continue;
if (perm[0] != 0 || perm[1] != 2 || perm[2] != 1 || perm[3] != 3)
continue;
std::vector<int> shape;
if (node3->input_size() == 1)
{
shape = get_node_attr_ai(*node3, "shape");
}
else
{
// skip weight reshape
if (weights.find(node3->input(1)) == weights.end())
continue;
shape = get_node_attr_from_input_ai(weights[node3->input(1)]);
}
// 0 0 -1
if (shape.size() != 3)
continue;
if (shape[0] != 0 || shape[1] != 0 || shape[2] != -1)
continue;
// reduce
node2->set_op_type("noop_reducedncnn");
node3->set_op_type("noop_reducedncnn");
node_reference[node->output(0)] -= 1;
node_reference[node2->output(0)] -= 1;
if (node3->input_size() == 2)
{
node_reference[node3->input(1)] -= 1;
}
blob_names.erase(node->output(0));
blob_names.erase(node2->output(0));
node->set_output(0, node3->output(0));
reduced_node_count += 2;
i += 2;
if (i + 1 < node_count)
{
if (node_reference[node3->output(0)] != 1)
continue;
onnx::NodeProto* node4 = mutable_graph->mutable_node(i + 1);
if (node4->op_type() != "Transpose")
continue;
if (node4->input(0) != node->output(0))
continue;
// 1 0 2
std::vector<int> perm4 = get_node_attr_ai(*node4, "perm");
if (perm4.size() != 3)
continue;
if (perm4[0] != 1 || perm4[1] != 0 || perm4[2] != 2)
continue;
// reduce
node4->set_op_type("noop_reducedncnn");
node_reference[node->output(0)] -= 1;
blob_names.erase(node->output(0));
node->set_output(0, node4->output(0));
reduced_node_count += 1;
i += 1;
}
}
}
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// LSTM(uni) <= LSTM(uni) - Squeeze - Transpose
if (node->op_type() == "LSTM" || node->op_type() == "GRU" || node->op_type() == "RNN")
{
if (node_reference[node->output(0)] != 1)
continue;
if (i + 1 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
if (node2->op_type() != "Squeeze")
continue;
if (node2->input(0) != node->output(0))
continue;
std::string direction = get_node_attr_s(*node, "direction");
if (direction == "bidirectional")
continue;
// 1
std::vector<int> axes = get_node_attr_ai(*node2, "axes");
if (axes.size() != 1)
continue;
if (axes[0] != 1)
continue;
// reduce
node2->set_op_type("noop_reducedncnn");
node_reference[node->output(0)] -= 1;
blob_names.erase(node->output(0));
node->set_output(0, node2->output(0));
reduced_node_count += 1;
i += 1;
if (i + 1 < node_count)
{
if (node_reference[node2->output(0)] != 1)
continue;
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 1);
if (node3->op_type() != "Transpose")
continue;
if (node3->input(0) != node->output(0))
continue;
// 1 0 2
std::vector<int> perm4 = get_node_attr_ai(*node3, "perm");
if (perm4.size() != 3)
continue;
if (perm4[0] != 1 || perm4[1] != 0 || perm4[2] != 2)
continue;
// reduce
node3->set_op_type("noop_reducedncnn");
node_reference[node->output(0)] -= 1;
blob_names.erase(node->output(0));
node->set_output(0, node3->output(0));
reduced_node_count += 1;
i += 1;
}
}
}
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// LSTM <= Transpose - LSTM
if (node->op_type() == "Transpose")
{
if (node_reference[node->output(0)] != 1)
continue;
// 1 0 2
std::vector<int> perm = get_node_attr_ai(*node, "perm");
if (perm.size() != 3)
continue;
if (perm[0] != 1 || perm[1] != 0 || perm[2] != 2)
continue;
if (i + 1 >= node_count)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
if (node2->op_type() != "LSTM" && node->op_type() != "GRU" && node->op_type() != "RNN")
continue;
if (node2->input(0) != node->output(0))
continue;
// reduce
node->set_op_type("noop_reducedncnn");
node_reference[node->output(0)] -= 1;
blob_names.erase(node->output(0));
node2->set_input(0, node->input(0));
reduced_node_count += 1;
i += 1;
}
}
}
static void fuse_multiheadattention(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// MultiHeadAttention <= MatMul(q) - Add
// - MatMul(k) - Add
// - MatMul(v) - Add
// - Mul
// - Reshape - Transpose
// - Reshape - Reshape - Transpose - Transpose
// - Gemm - Softmax - Gemm - Transpose - Reshape - MatMul - Add
if (node->op_type() == "MatMul")
{
if (i + 19 >= node_count)
continue;
if (node_reference[node->output(0)] != 1)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 2);
onnx::NodeProto* node4 = mutable_graph->mutable_node(i + 3);
onnx::NodeProto* node5 = mutable_graph->mutable_node(i + 4);
onnx::NodeProto* node6 = mutable_graph->mutable_node(i + 5);
onnx::NodeProto* node7 = mutable_graph->mutable_node(i + 6);
onnx::NodeProto* node8 = mutable_graph->mutable_node(i + 7);
onnx::NodeProto* node9 = mutable_graph->mutable_node(i + 8);
onnx::NodeProto* node10 = mutable_graph->mutable_node(i + 9);
onnx::NodeProto* node11 = mutable_graph->mutable_node(i + 10);
onnx::NodeProto* node12 = mutable_graph->mutable_node(i + 11);
onnx::NodeProto* node13 = mutable_graph->mutable_node(i + 12);
onnx::NodeProto* node14 = mutable_graph->mutable_node(i + 13);
onnx::NodeProto* node15 = mutable_graph->mutable_node(i + 14);
onnx::NodeProto* node16 = mutable_graph->mutable_node(i + 15);
onnx::NodeProto* node17 = mutable_graph->mutable_node(i + 16);
onnx::NodeProto* node18 = mutable_graph->mutable_node(i + 17);
onnx::NodeProto* node19 = mutable_graph->mutable_node(i + 18);
onnx::NodeProto* node20 = mutable_graph->mutable_node(i + 19);
if (node2->op_type() != "Add" || node3->op_type() != "MatMul" || node4->op_type() != "Add" || node5->op_type() != "MatMul" || node6->op_type() != "Add" || node7->op_type() != "Mul" || node8->op_type() != "Reshape" || node9->op_type() != "Transpose" || node10->op_type() != "Reshape" || node11->op_type() != "Reshape" || node12->op_type() != "Transpose" || node13->op_type() != "Transpose" || node14->op_type() != "MatMul" || node15->op_type() != "Softmax" || node16->op_type() != "MatMul" || node17->op_type() != "Transpose" || node18->op_type() != "Reshape" || node19->op_type() != "MatMul" || node20->op_type() != "Add")
continue;
if (node_reference[node2->output(0)] != 1 || node_reference[node3->output(0)] != 1 || node_reference[node4->output(0)] != 1 || node_reference[node5->output(0)] != 1 || node_reference[node6->output(0)] != 1 || node_reference[node7->output(0)] != 1 || node_reference[node8->output(0)] != 1 || node_reference[node9->output(0)] != 1 || node_reference[node10->output(0)] != 1 || node_reference[node11->output(0)] != 1 || node_reference[node12->output(0)] != 1 || node_reference[node13->output(0)] != 1 || node_reference[node14->output(0)] != 1 || node_reference[node15->output(0)] != 1 || node_reference[node16->output(0)] != 1 || node_reference[node17->output(0)] != 1 || node_reference[node18->output(0)] != 1 || node_reference[node19->output(0)] != 1)
continue;
if (node2->input(0) != node->output(0) || node4->input(0) != node3->output(0) || node6->input(0) != node5->output(0) || node7->input(0) != node2->output(0) || node8->input(0) != node7->output(0) || node9->input(0) != node8->output(0) || node10->input(0) != node4->output(0) || node11->input(0) != node6->output(0) || node12->input(0) != node11->output(0) || node13->input(0) != node10->output(0) || node14->input(0) != node9->output(0) || node14->input(1) != node13->output(0) || node15->input(0) != node14->output(0) || node16->input(0) != node15->output(0) || node16->input(1) != node12->output(0) || node17->input(0) != node16->output(0) || node18->input(0) != node17->output(0) || node19->input(0) != node18->output(0) || node20->input(0) != node19->output(0))
continue;
std::vector<float> q_B = get_node_attr_from_input_af(weights[node2->input(1)]);
std::vector<float> k_B = get_node_attr_from_input_af(weights[node4->input(1)]);
std::vector<float> v_B = get_node_attr_from_input_af(weights[node6->input(1)]);
std::vector<float> o_B = get_node_attr_from_input_af(weights[node20->input(1)]);
if (q_B.size() != k_B.size() || q_B.size() != v_B.size() || q_B.size() != o_B.size())
continue;
int embed_dim = q_B.size();
// 1 0 2
std::vector<int> perm9 = get_node_attr_ai(*node9, "perm");
std::vector<int> perm12 = get_node_attr_ai(*node12, "perm");
if (perm9.size() != 3 || perm12.size() != 3)
continue;
if (perm9[0] != 1 || perm9[1] != 0 || perm9[2] != 2 || perm12[0] != 1 || perm12[1] != 0 || perm12[2] != 2)
continue;
// 1 2 0
std::vector<int> perm13 = get_node_attr_ai(*node13, "perm");
if (perm13.size() != 3)
continue;
if (perm13[0] != 1 || perm13[1] != 2 || perm13[2] != 0)
continue;
// 1 0 2
std::vector<int> perm17 = get_node_attr_ai(*node17, "perm");
if (perm17.size() != 3)
continue;
if (perm17[0] != 1 || perm17[1] != 0 || perm17[2] != 2)
continue;
int softmax_axis = get_node_attr_i(*node15, "axis");
if (softmax_axis != 2)
continue;
// 1/-1, seqlen * num_heads, embed_dim / num_heads
std::vector<int> shape8;
std::vector<int> shape10;
std::vector<int> shape11;
if (node8->input_size() == 1)
{
shape8 = get_node_attr_ai(*node8, "shape");
}
else
{
// skip weight reshape
if (weights.find(node8->input(1)) == weights.end())
continue;
shape8 = get_node_attr_from_input_ai(weights[node8->input(1)]);
}
if (node10->input_size() == 1)
{
shape10 = get_node_attr_ai(*node10, "shape");
}
else
{
// skip weight reshape
if (weights.find(node10->input(1)) == weights.end())
continue;
shape10 = get_node_attr_from_input_ai(weights[node10->input(1)]);
}
if (node11->input_size() == 1)
{
shape11 = get_node_attr_ai(*node11, "shape");
}
else
{
// skip weight reshape
if (weights.find(node11->input(1)) == weights.end())
continue;
shape11 = get_node_attr_from_input_ai(weights[node11->input(1)]);
}
if (shape8.size() != 3 || shape10.size() != 3 || shape11.size() != 3)
continue;
if (shape8[1] != shape10[1] || shape8[1] != shape11[1] || shape8[2] != shape10[2] || shape8[2] != shape11[2])
continue;
int num_heads = embed_dim / shape8[2];
// 1, seqlen, embed_dim
std::vector<int> shape18;
if (node18->input_size() == 1)
{
shape18 = get_node_attr_ai(*node18, "shape");
}
else
{
// skip weight reshape
if (weights.find(node18->input(1)) == weights.end())
continue;
shape18 = get_node_attr_from_input_ai(weights[node18->input(1)]);
}
if (shape18.size() != 3)
continue;
if (shape18[2] != embed_dim || shape18[1] * num_heads != shape8[1])
continue;
// reduce
node->set_op_type("noop_reducedncnn");
node2->set_op_type("noop_reducedncnn");
node3->set_op_type("noop_reducedncnn");
node4->set_op_type("noop_reducedncnn");
node5->set_op_type("noop_reducedncnn");
node6->set_op_type("noop_reducedncnn");
node7->set_op_type("noop_reducedncnn");
node8->set_op_type("noop_reducedncnn");
node9->set_op_type("noop_reducedncnn");
node10->set_op_type("noop_reducedncnn");
node11->set_op_type("noop_reducedncnn");
node12->set_op_type("noop_reducedncnn");
node13->set_op_type("noop_reducedncnn");
node14->set_op_type("noop_reducedncnn");
node15->set_op_type("noop_reducedncnn");
node16->set_op_type("noop_reducedncnn");
node17->set_op_type("noop_reducedncnn");
node18->set_op_type("noop_reducedncnn");
node19->set_op_type("noop_reducedncnn");
node_reference[node2->input(0)] -= 1;
node_reference[node4->input(0)] -= 1;
node_reference[node6->input(0)] -= 1;
node_reference[node7->input(0)] -= 1;
node_reference[node7->input(1)] -= 1;
node_reference[node8->input(0)] -= 1;
if (node8->input_size() == 2)
{
node_reference[node8->input(1)] -= 1;
}
node_reference[node9->input(0)] -= 1;
node_reference[node10->input(0)] -= 1;
if (node10->input_size() == 2)
{
node_reference[node10->input(1)] -= 1;
}
node_reference[node11->input(0)] -= 1;
if (node11->input_size() == 2)
{
node_reference[node11->input(1)] -= 1;
}
node_reference[node12->input(0)] -= 1;
node_reference[node13->input(0)] -= 1;
node_reference[node14->input(0)] -= 1;
node_reference[node14->input(1)] -= 1;
node_reference[node15->input(0)] -= 1;
node_reference[node16->input(0)] -= 1;
node_reference[node16->input(1)] -= 1;
node_reference[node17->input(0)] -= 1;
node_reference[node18->input(0)] -= 1;
if (node18->input_size() == 2)
{
node_reference[node18->input(1)] -= 1;
}
node_reference[node19->input(0)] -= 1;
node_reference[node20->input(0)] -= 1;
blob_names.erase(node->output(0));
blob_names.erase(node2->output(0));
blob_names.erase(node3->output(0));
blob_names.erase(node4->output(0));
blob_names.erase(node5->output(0));
blob_names.erase(node6->output(0));
blob_names.erase(node7->output(0));
blob_names.erase(node8->output(0));
blob_names.erase(node9->output(0));
blob_names.erase(node10->output(0));
blob_names.erase(node11->output(0));
blob_names.erase(node12->output(0));
blob_names.erase(node13->output(0));
blob_names.erase(node14->output(0));
blob_names.erase(node15->output(0));
blob_names.erase(node16->output(0));
blob_names.erase(node17->output(0));
blob_names.erase(node18->output(0));
blob_names.erase(node19->output(0));
std::string qw = node->input(1);
std::string qb = node2->input(1);
std::string kw = node3->input(1);
std::string kb = node4->input(1);
std::string vw = node5->input(1);
std::string vb = node6->input(1);
std::string ow = node19->input(1);
std::string ob = node20->input(1);
node20->set_op_type("MultiHeadAttention");
node20->clear_input();
node20->add_input(node->input(0));
node20->add_input(node3->input(0));
node20->add_input(node5->input(0));
// q
node20->add_input(qw);
node20->add_input(qb);
// k
node20->add_input(kw);
node20->add_input(kb);
// v
node20->add_input(vw);
node20->add_input(vb);
// out linear
node20->add_input(ow);
node20->add_input(ob);
onnx::AttributeProto* attr_embed_dim = node20->add_attribute();
attr_embed_dim->set_name("embed_dim");
attr_embed_dim->set_i(embed_dim);
onnx::AttributeProto* attr_num_heads = node20->add_attribute();
attr_num_heads->set_name("num_heads");
attr_num_heads->set_i(num_heads);
reduced_node_count += 19;
i += 19;
}
}
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// MultiHeadAttention <= MatMul(qkv) - Add - Split
// - Mul
// - Reshape - Transpose
// - Reshape - Reshape - Transpose - Transpose
// - Gemm - Softmax - Gemm - Transpose - Reshape - MatMul - Add
if (node->op_type() == "MatMul")
{
if (i + 16 >= node_count)
continue;
if (node_reference[node->output(0)] != 1)
continue;
onnx::NodeProto* node2 = mutable_graph->mutable_node(i + 1);
onnx::NodeProto* node3 = mutable_graph->mutable_node(i + 2);
onnx::NodeProto* node4 = mutable_graph->mutable_node(i + 3);
onnx::NodeProto* node5 = mutable_graph->mutable_node(i + 4);
onnx::NodeProto* node6 = mutable_graph->mutable_node(i + 5);
onnx::NodeProto* node7 = mutable_graph->mutable_node(i + 6);
onnx::NodeProto* node8 = mutable_graph->mutable_node(i + 7);
onnx::NodeProto* node9 = mutable_graph->mutable_node(i + 8);
onnx::NodeProto* node10 = mutable_graph->mutable_node(i + 9);
onnx::NodeProto* node11 = mutable_graph->mutable_node(i + 10);
onnx::NodeProto* node12 = mutable_graph->mutable_node(i + 11);
onnx::NodeProto* node13 = mutable_graph->mutable_node(i + 12);
onnx::NodeProto* node14 = mutable_graph->mutable_node(i + 13);
onnx::NodeProto* node15 = mutable_graph->mutable_node(i + 14);
onnx::NodeProto* node16 = mutable_graph->mutable_node(i + 15);
onnx::NodeProto* node17 = mutable_graph->mutable_node(i + 16);
if (node2->op_type() != "Add" || node3->op_type() != "Split" || node4->op_type() != "Mul" || node5->op_type() != "Reshape" || node6->op_type() != "Transpose" || node7->op_type() != "Reshape" || node8->op_type() != "Reshape" || node9->op_type() != "Transpose" || node10->op_type() != "Transpose" || node11->op_type() != "MatMul" || node12->op_type() != "Softmax" || node13->op_type() != "MatMul" || node14->op_type() != "Transpose" || node15->op_type() != "Reshape" || node16->op_type() != "MatMul" || node17->op_type() != "Add")
continue;
if (node_reference[node2->output(0)] != 1 || node_reference[node3->output(0)] != 1 || node_reference[node3->output(1)] != 1 || node_reference[node3->output(2)] != 1 || node_reference[node4->output(0)] != 1 || node_reference[node5->output(0)] != 1 || node_reference[node6->output(0)] != 1 || node_reference[node7->output(0)] != 1 || node_reference[node8->output(0)] != 1 || node_reference[node9->output(0)] != 1 || node_reference[node10->output(0)] != 1 || node_reference[node11->output(0)] != 1 || node_reference[node12->output(0)] != 1 || node_reference[node13->output(0)] != 1 || node_reference[node14->output(0)] != 1 || node_reference[node15->output(0)] != 1 || node_reference[node16->output(0)] != 1)
continue;
if (node2->input(0) != node->output(0) || node3->input(0) != node2->output(0) || node4->input(0) != node3->output(0) || node5->input(0) != node4->output(0) || node6->input(0) != node5->output(0) || node7->input(0) != node3->output(1) || node8->input(0) != node3->output(2) || node9->input(0) != node8->output(0) || node10->input(0) != node7->output(0) || node11->input(0) != node6->output(0) || node11->input(1) != node10->output(0) || node12->input(0) != node11->output(0) || node13->input(0) != node12->output(0) || node13->input(1) != node9->output(0) || node14->input(0) != node13->output(0) || node15->input(0) != node14->output(0) || node16->input(0) != node15->output(0) || node17->input(0) != node16->output(0))
continue;
std::vector<float> qkv_B = get_node_attr_from_input_af(weights[node2->input(1)]);
std::vector<float> o_B = get_node_attr_from_input_af(weights[node17->input(1)]);
if (qkv_B.size() != o_B.size() * 3)
continue;
int embed_dim = o_B.size();
// 1 0 2
std::vector<int> perm6 = get_node_attr_ai(*node6, "perm");
std::vector<int> perm9 = get_node_attr_ai(*node9, "perm");
if (perm6.size() != 3 || perm9.size() != 3)
continue;
if (perm6[0] != 1 || perm6[1] != 0 || perm6[2] != 2 || perm9[0] != 1 || perm9[1] != 0 || perm9[2] != 2)
continue;
// 1 2 0
std::vector<int> perm10 = get_node_attr_ai(*node10, "perm");
if (perm10.size() != 3)
continue;
if (perm10[0] != 1 || perm10[1] != 2 || perm10[2] != 0)
continue;
// 1 0 2
std::vector<int> perm14 = get_node_attr_ai(*node14, "perm");
if (perm14.size() != 3)
continue;
if (perm14[0] != 1 || perm14[1] != 0 || perm14[2] != 2)
continue;
int softmax_axis = get_node_attr_i(*node12, "axis");
if (softmax_axis != 2)
continue;
// 1/-1, seqlen * num_heads, embed_dim / num_heads
std::vector<int> shape5;
std::vector<int> shape7;
std::vector<int> shape8;
if (node5->input_size() == 1)
{
shape5 = get_node_attr_ai(*node5, "shape");
}
else
{
// skip weight reshape
if (weights.find(node5->input(1)) == weights.end())
continue;
shape5 = get_node_attr_from_input_ai(weights[node5->input(1)]);
}
if (node7->input_size() == 1)
{
shape7 = get_node_attr_ai(*node7, "shape");
}
else
{
// skip weight reshape
if (weights.find(node7->input(1)) == weights.end())
continue;
shape7 = get_node_attr_from_input_ai(weights[node7->input(1)]);
}
if (node8->input_size() == 1)
{
shape8 = get_node_attr_ai(*node8, "shape");
}
else
{
// skip weight reshape
if (weights.find(node8->input(1)) == weights.end())
continue;
shape8 = get_node_attr_from_input_ai(weights[node8->input(1)]);
}
if (shape5.size() != 3 || shape7.size() != 3 || shape8.size() != 3)
continue;
if (shape5[1] != shape7[1] || shape5[1] != shape8[1] || shape5[2] != shape7[2] || shape5[2] != shape8[2])
continue;
int num_heads = embed_dim / shape5[2];
// 1, seqlen, embed_dim
std::vector<int> shape15;
if (node15->input_size() == 1)
{
shape15 = get_node_attr_ai(*node15, "shape");
}
else
{
// skip weight reshape
if (weights.find(node15->input(1)) == weights.end())
continue;
shape15 = get_node_attr_from_input_ai(weights[node15->input(1)]);
}
if (shape15.size() != 3)
continue;
if (shape15[2] != embed_dim || shape15[1] * num_heads != shape8[1])
continue;
// reduce
node->set_op_type("noop_reducedncnn");
node2->set_op_type("noop_reducedncnn");
node3->set_op_type("noop_reducedncnn");
node4->set_op_type("noop_reducedncnn");
node5->set_op_type("noop_reducedncnn");
node6->set_op_type("noop_reducedncnn");
node7->set_op_type("noop_reducedncnn");
node8->set_op_type("noop_reducedncnn");
node9->set_op_type("noop_reducedncnn");
node10->set_op_type("noop_reducedncnn");
node11->set_op_type("noop_reducedncnn");
node12->set_op_type("noop_reducedncnn");
node13->set_op_type("noop_reducedncnn");
node14->set_op_type("noop_reducedncnn");
node15->set_op_type("noop_reducedncnn");
node16->set_op_type("noop_reducedncnn");
node_reference[node2->input(0)] -= 1;
node_reference[node3->input(0)] -= 1;
node_reference[node4->input(0)] -= 1;
node_reference[node4->input(1)] -= 1;
node_reference[node5->input(0)] -= 1;
if (node5->input_size() == 2)
{
node_reference[node5->input(1)] -= 1;
}
node_reference[node6->input(0)] -= 1;
node_reference[node7->input(0)] -= 1;
if (node7->input_size() == 2)
{
node_reference[node7->input(1)] -= 1;
}
node_reference[node8->input(0)] -= 1;
if (node8->input_size() == 2)
{
node_reference[node8->input(1)] -= 1;
}
node_reference[node9->input(0)] -= 1;
node_reference[node10->input(0)] -= 1;
node_reference[node11->input(0)] -= 1;
node_reference[node11->input(1)] -= 1;
node_reference[node12->input(0)] -= 1;
node_reference[node13->input(0)] -= 1;
node_reference[node13->input(1)] -= 1;
node_reference[node14->input(0)] -= 1;
node_reference[node15->input(0)] -= 1;
if (node15->input_size() == 2)
{
node_reference[node15->input(1)] -= 1;
}
node_reference[node16->input(0)] -= 1;
node_reference[node17->input(0)] -= 1;
blob_names.erase(node->output(0));
blob_names.erase(node2->output(0));
blob_names.erase(node3->output(0));
blob_names.erase(node3->output(1));
blob_names.erase(node3->output(2));
blob_names.erase(node4->output(0));
blob_names.erase(node5->output(0));
blob_names.erase(node6->output(0));
blob_names.erase(node7->output(0));
blob_names.erase(node8->output(0));
blob_names.erase(node9->output(0));
blob_names.erase(node10->output(0));
blob_names.erase(node11->output(0));
blob_names.erase(node12->output(0));
blob_names.erase(node13->output(0));
blob_names.erase(node14->output(0));
blob_names.erase(node15->output(0));
blob_names.erase(node16->output(0));
std::string qkvw = node->input(1);
std::string qkvb = node2->input(1);
std::string ow = node16->input(1);
std::string ob = node17->input(1);
node17->set_op_type("MultiHeadAttention");
node17->clear_input();
node17->add_input(node->input(0));
// qkv
node17->add_input(qkvw);
node17->add_input(qkvb);
// out linear
node17->add_input(ow);
node17->add_input(ob);
onnx::AttributeProto* attr_embed_dim = node17->add_attribute();
attr_embed_dim->set_name("embed_dim");
attr_embed_dim->set_i(embed_dim);
onnx::AttributeProto* attr_num_heads = node17->add_attribute();
attr_num_heads->set_name("num_heads");
attr_num_heads->set_i(num_heads);
reduced_node_count += 16;
i += 16;
}
}
}
static void fuse_binaryop_with_scalar(onnx::GraphProto* mutable_graph, std::map<std::string, onnx::TensorProto>& weights, std::map<std::string, int>& node_reference, std::set<std::string>& blob_names, int& reduced_node_count)
{
int node_count = mutable_graph->node_size();
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// Add/Sub/Mul/Div/Min/Max/Pow(a, x)
if (node->op_type() == "Add" || node->op_type() == "Sub" || node->op_type() == "Mul" || node->op_type() == "Div" || node->op_type() == "Max" || node->op_type() == "Min" || node->op_type() == "Pow")
{
if (weights.find(node->input(0)) == weights.end())
continue;
const onnx::TensorProto& scalar_b = weights[node->input(0)];
if (scalar_b.dims_size() != 0 || get_tensor_proto_data_size(scalar_b) != 1)
continue;
if (node->op_type() == "Sub")
{
node->set_op_type("RSub");
}
else if (node->op_type() == "Div")
{
node->set_op_type("RDiv");
}
float b = get_node_attr_from_input_f(scalar_b);
node_reference[node->input(0)] -= 1;
std::string input = node->input(1);
node->clear_input();
node->add_input(input);
onnx::AttributeProto* attr_with_scalar = node->add_attribute();
attr_with_scalar->set_name("with_scalar");
attr_with_scalar->set_i(1);
onnx::AttributeProto* attr_b = node->add_attribute();
attr_b->set_name("b");
attr_b->set_f(b);
}
}
for (int i = 0; i < node_count; i++)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
// Add/Sub/Mul/Div/Min/Max/Pow(x, b)
if (node->op_type() == "Add" || node->op_type() == "Sub" || node->op_type() == "Mul" || node->op_type() == "Div" || node->op_type() == "Max" || node->op_type() == "Min" || node->op_type() == "Pow")
{
if (weights.find(node->input(1)) == weights.end())
continue;
const onnx::TensorProto& scalar_b = weights[node->input(1)];
if (scalar_b.dims_size() != 0 || get_tensor_proto_data_size(scalar_b) != 1)
continue;
float b = get_node_attr_from_input_f(scalar_b);
node_reference[node->input(1)] -= 1;
std::string input = node->input(0);
node->clear_input();
node->add_input(input);
onnx::AttributeProto* attr_with_scalar = node->add_attribute();
attr_with_scalar->set_name("with_scalar");
attr_with_scalar->set_i(1);
onnx::AttributeProto* attr_b = node->add_attribute();
attr_b->set_name("b");
attr_b->set_f(b);
}
}
}
int main(int argc, char** argv)
{
if (!(argc == 2 || argc == 4))
{
fprintf(stderr, "Usage: %s [onnxpb] [ncnnparam] [ncnnbin]\n", argv[0]);
return -1;
}
const char* onnxpb = argv[1];
const char* ncnn_prototxt = argc == 4 ? argv[2] : "ncnn.param";
const char* ncnn_modelbin = argc == 4 ? argv[3] : "ncnn.bin";
onnx::ModelProto model;
// load
bool s1 = read_proto_from_binary(onnxpb, &model);
if (!s1)
{
fprintf(stderr, "read_proto_from_binary failed\n");
return -1;
}
FILE* pp = fopen(ncnn_prototxt, "wb");
FILE* bp = fopen(ncnn_modelbin, "wb");
// magic
fprintf(pp, "7767517\n");
const onnx::GraphProto& graph = model.graph();
onnx::GraphProto* mutable_graph = model.mutable_graph();
int node_count = graph.node_size();
// node reference
std::map<std::string, int> node_reference;
// weight node and weight reshape node
std::map<std::string, onnx::TensorProto> weights;
for (int j = 0; j < graph.initializer_size(); j++)
{
const onnx::TensorProto& initializer = graph.initializer(j);
// fprintf(stderr, "weight = %s %d\n", initializer.name().c_str(), initializer.data_type());
weights[initializer.name()] = initializer;
}
// topological sort
{
// name -> producer node index
std::set<std::string> producers;
for (int j = 0; j < graph.input_size(); j++)
{
const std::string& input_name = graph.input(j).name();
producers.insert(input_name);
}
for (int i = 0; i < node_count;)
{
onnx::NodeProto* node = mutable_graph->mutable_node(i);
bool swapnode = false;
std::string missing_input_name;
for (int j = 0; j < (int)node->input_size(); j++)
{
const std::string& input_name = node->input(j);
if (input_name.empty())
continue;
if (producers.find(input_name) == producers.end() && weights.find(input_name) == weights.end())
{
swapnode = true;
missing_input_name = input_name;
break;
}
}
if (!swapnode)
{
for (int j = 0; j < (int)node->output_size(); j++)
{
const std::string& output_name = node->output(j);
if (output_name.empty())
continue;
producers.insert(output_name);
}
i++;
continue;
}
// find node that produce missing_input_name
int q = i + 1;
for (; q < node_count; q++)
{
onnx::NodeProto* nodeq = mutable_graph->mutable_node(q);
bool found = false;
for (int j = 0; j < (int)nodeq->output_size(); j++)
{
const std::string& output_name = nodeq->output(j);
if (output_name == missing_input_name)
{
found = true;
break;
}
}
if (found)
break;
}
if (q == node_count)
{
fprintf(stderr, "cannot find node produces %s but node %d requires it\n", missing_input_name.c_str(), i);
return -1;
}
// fprintf(stderr, "swap %d %d\n", i, q);
// swap this node with q
onnx::NodeProto* nodeq = mutable_graph->mutable_node(q);
onnx::NodeProto tmp = *node;
*node = *nodeq;
*nodeq = tmp;
}
}
// global definition line
// [layer count] [blob count]
std::set<std::string> blob_names;
for (int i = 0; i < node_count; i++)
{
const onnx::NodeProto& node = graph.node(i);
const std::string& op = node.op_type();
std::string name = node.name();
if (name.empty())
{
name = node.output(0);
}
if (op == "Constant")
{
onnx::TensorProto tensor = get_node_attr_tensor(node, "value");
weights[node.output(0)] = tensor;
}
for (int j = 0; j < (int)node.input_size(); j++)
{
const std::string& input_name = node.input(j);
blob_names.insert(input_name);
if (node_reference.find(input_name) == node_reference.end())
{
node_reference[input_name] = 1;
}
else
{
node_reference[input_name] = node_reference[input_name] + 1;
}
}
if (op == "Dropout")
{
const std::string& output_name = node.output(0);
blob_names.insert(output_name);
node_reference[output_name] = 0;
continue;
}
for (int j = 0; j < (int)node.output_size(); j++)
{
const std::string& output_name = node.output(j);
blob_names.insert(output_name);
node_reference[output_name] = 0;
}
}
// include Input node
int input_node_count = 0;
for (int j = 0; j < graph.input_size(); j++)
{
const std::string& input_name = graph.input(j).name();
// check weight
if (weights.find(input_name) != weights.end())
continue;
blob_names.insert(input_name);
input_node_count++;
}
// for (auto a: node_reference)
// {
// fprintf(stderr, "a = %s %d\n", a.first.c_str(), a.second);
// }
// op chain fusion
int reduced_node_count = 0;
fuse_weight_reshape(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_weight_transpose(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_shufflechannel(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_shufflechannel_split(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_hardsigmoid(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_hardswish(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_swish(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_batchnorm1d_squeeze_unsqueeze(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_unsqueeze_prelu(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_normalize(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_groupnorm(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_layernorm(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_flatten(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_pixelshuffle(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_reorg(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_expand_broadcast(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_lstm_gru_rnn(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_multiheadattention(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
fuse_binaryop_with_scalar(mutable_graph, weights, node_reference, blob_names, reduced_node_count);
// reduce common const weight node_reference
for (int i = 0; i < node_count; i++)
{
const onnx::NodeProto& node = graph.node(i);
const std::string& op = node.op_type();
if (op == "BatchNormalization")
{
node_reference[node.input(1)] -= 1;
node_reference[node.input(2)] -= 1;
node_reference[node.input(3)] -= 1;
node_reference[node.input(4)] -= 1;
}
else if (op == "BiasGelu")
{
node_reference[node.input(1)] -= 1;
}
else if (op == "Clip")
{
if (node.input_size() == 3)
{
node_reference[node.input(1)] -= 1;
node_reference[node.input(2)] -= 1;
}
}
else if (op == "Conv")
{
node_reference[node.input(1)] -= 1;
if (node.input_size() == 3)
{
node_reference[node.input(2)] -= 1;
}
}
else if (op == "ConvTranspose")
{
node_reference[node.input(1)] -= 1;
if (node.input_size() == 3)
{
node_reference[node.input(2)] -= 1;
}
}
else if (op == "EmbedLayerNormalization")
{
node_reference[node.input(1)] -= 1;
node_reference[node.input(2)] -= 1;
node_reference[node.input(3)] -= 1;
node_reference[node.input(4)] -= 1;
node_reference[node.input(5)] -= 1;
node_reference[node.input(6)] -= 1;
}
else if (op == "Gemm")
{
float alpha = get_node_attr_f(node, "alpha", 1.f);
float beta = get_node_attr_f(node, "beta", 1.f);
int transA = get_node_attr_i(node, "transA", 0);
int transB = get_node_attr_i(node, "transB", 0);
if (alpha == 1.f && beta == 1.f && transA == 0 && transB == 1)
{
// InnerProduct-like A * B + C
node_reference[node.input(1)] -= 1;
node_reference[node.input(2)] -= 1;
}
}
else if (op == "GroupNorm")
{
int affine = get_node_attr_i(node, "affine", 1);
if (affine)
{
node_reference[node.input(1)] -= 1;
node_reference[node.input(2)] -= 1;
}
}
else if (op == "GRU")
{
for (int j = 1; j < node.input_size(); j++)
{
node_reference[node.input(j)] -= 1;
}
}
else if (op == "InstanceNormalization")
{
node_reference[node.input(1)] -= 1;
node_reference[node.input(2)] -= 1;
}
else if (op == "LayerNorm")
{
int affine = get_node_attr_i(node, "affine", 1);
if (affine)
{
node_reference[node.input(1)] -= 1;
node_reference[node.input(2)] -= 1;
}
}
else if (op == "LSTM")
{
for (int j = 1; j < node.input_size(); j++)
{
node_reference[node.input(j)] -= 1;
}
}
else if (op == "MatMul")
{
if (weights.find(node.input(1)) != weights.end() && weights[node.input(1)].dims_size() == 2)
{
// InnerProduct
node_reference[node.input(1)] -= 1;
}
}
else if (op == "MultiHeadAttention")
{
if (node.input_size() == 5)
{
node_reference[node.input(1)] -= 1;
node_reference[node.input(2)] -= 1;
node_reference[node.input(3)] -= 1;
node_reference[node.input(4)] -= 1;
}
else
{
node_reference[node.input(3)] -= 1;
node_reference[node.input(4)] -= 1;
node_reference[node.input(5)] -= 1;
node_reference[node.input(6)] -= 1;
node_reference[node.input(7)] -= 1;
node_reference[node.input(8)] -= 1;
node_reference[node.input(9)] -= 1;
node_reference[node.input(10)] -= 1;
}
}
else if (op == "Pad")
{
if (node.input_size() >= 2)
{
node_reference[node.input(1)] -= 1;
}
}
else if (op == "PRelu")
{
node_reference[node.input(1)] -= 1;
}
else if (op == "Reshape")
{
if (node.input_size() >= 2)
{
node_reference[node.input(1)] -= 1;
}
}
else if (op == "Resize")
{
if (node.input_size() == 2)
{
// opset 10
node_reference[node.input(1)] -= 1;
}
else
{
// opset 11+
node_reference[node.input(1)] -= 1;
node_reference[node.input(2)] -= 1;
if (node.input_size() >= 4)
{
node_reference[node.input(3)] -= 1;
}
}
}
else if (op == "RNN")
{
for (int j = 1; j < node.input_size(); j++)
{
node_reference[node.input(j)] -= 1;
}
}
else if (op == "SkipLayerNormalization")
{
node_reference[node.input(2)] -= 1;
node_reference[node.input(3)] -= 1;
node_reference[node.input(4)] -= 1;
}
else if (op == "Slice")
{
if (node.input_size() >= 2)
{
node_reference[node.input(1)] -= 1;
node_reference[node.input(2)] -= 1;
if (node.input_size() >= 4)
node_reference[node.input(3)] -= 1;
if (node.input_size() >= 5)
node_reference[node.input(4)] -= 1;
}
}
else if (op == "Upsample")
{
if (node.input_size() >= 2)
{
node_reference[node.input(1)] -= 1;
}
}
else if (op == "adaptive_avg_pool2d" || op == "adaptive_max_pool2d")
{
if (node.input_size() >= 2)
{
node_reference[node.input(1)] -= 1;
}
}
}
// for (auto a: node_reference)
// {
// fprintf(stderr, "b = %s %d\n", a.first.c_str(), a.second);
// }
// count all weight node with zero reference
int zero_reference_weight_node_count = 0;
for (std::map<std::string, onnx::TensorProto>::iterator it = weights.begin(); it != weights.end(); it++)
{
const std::string& input_name = it->first;
// there may be some weight nodes in initializer but none of the graph node use them
// add them to blob_names so we could get proper blob count later
blob_names.insert(input_name);
int refcount = node_reference[input_name];
if (refcount == 0)
zero_reference_weight_node_count++;
}
// we always treat constant node as weight or binaryop_weights
// do not count it twice for layer_count
int constant_node_count_moved_to_weight = 0;
for (int i = 0; i < node_count; i++)
{
const onnx::NodeProto& node = graph.node(i);
const std::string& op = node.op_type();
if (op == "Constant")
{
constant_node_count_moved_to_weight++;
}
}
// some op may have anonymous input
// LSTM sequence_lens
blob_names.erase("");
node_reference.erase("");
// remove node_reference entry with reference equals to one
int split_layer_count = 0;
int splitncnn_blob_count = 0;
// split node reference
std::map<std::string, int> split_node_reference;
for (std::map<std::string, int>::iterator it = node_reference.begin(); it != node_reference.end(); it++)
{
if (it->second > 1)
{
split_layer_count++;
splitncnn_blob_count += it->second;
split_node_reference[it->first] = it->second;
}
}
fprintf(pp, "%zu %zu\n", node_count - constant_node_count_moved_to_weight + weights.size() - zero_reference_weight_node_count - reduced_node_count + input_node_count + split_layer_count, blob_names.size() - zero_reference_weight_node_count + splitncnn_blob_count);
int internal_split = 0;
// place Input at the beginning
for (int j = 0; j < graph.input_size(); j++)
{
const std::string& input_name = graph.input(j).name();
// check weight
if (weights.find(input_name) != weights.end())
continue;
fprintf(pp, "%-16s %-24s 0 1 %s\n", "Input", input_name.c_str(), input_name.c_str());
int refcount = node_reference[input_name];
if (refcount <= 1)
{
continue;
}
char splitname[256];
sprintf(splitname, "splitncnn_input%d", j);
fprintf(pp, "%-16s %-24s %d %d", "Split", splitname, 1, refcount);
fprintf(pp, " %s", input_name.c_str());
for (int k = 0; k < refcount; k++)
{
fprintf(pp, " %s_splitncnn_%d", input_name.c_str(), k);
}
fprintf(pp, "\n");
}
// place MemoryData next
for (std::map<std::string, onnx::TensorProto>::iterator weight_it = weights.begin(); weight_it != weights.end(); weight_it++)
{
const std::string& input_name = weight_it->first;
int refcount = node_reference[input_name];
if (refcount == 0)
{
continue;
}
fprintf(pp, "%-16s %-24s 0 1 %s", "MemoryData", input_name.c_str(), input_name.c_str());
const onnx::TensorProto& M = weights[input_name];
if (M.dims_size() == 0)
{
fprintf(pp, " 0=%d", get_tensor_proto_data_size(M));
}
else if (M.dims_size() == 1)
{
fprintf(pp, " 0=%d", (int)M.dims(0));
}
else if (M.dims_size() == 2)
{
fprintf(pp, " 0=%d", (int)M.dims(1));
if (M.dims(0) != 1)
{
fprintf(pp, " 1=%d", (int)M.dims(0));
}
}
else if (M.dims_size() == 3)
{
fprintf(pp, " 0=%d", (int)M.dims(2));
fprintf(pp, " 1=%d", (int)M.dims(1));
if (M.dims(0) != 1)
{
fprintf(pp, " 2=%d", (int)M.dims(0));
}
}
else if (M.dims_size() == 4)
{
fprintf(pp, " 0=%d", (int)M.dims(3));
fprintf(pp, " 1=%d", (int)M.dims(2));
fprintf(pp, " 2=%d", (int)M.dims(1));
}
fprintf(pp, "\n");
fwrite_tensor_proto_data(M, bp);
if (refcount <= 1)
{
continue;
}
char splitname[256];
sprintf(splitname, "splitncnn_%d", internal_split);
fprintf(pp, "%-16s %-24s %d %d", "Split", splitname, 1, refcount);
fprintf(pp, " %s", input_name.c_str());
for (int k = 0; k < refcount; k++)
{
fprintf(pp, " %s_splitncnn_%d", input_name.c_str(), k);
}
fprintf(pp, "\n");
internal_split++;
}
for (int i = 0; i < node_count; i++)
{
const onnx::NodeProto& node = graph.node(i);
const std::string& op = node.op_type();
// fprintf(stderr, "op = %s\n", op.c_str());
if (op == "noop_reducedncnn")
{
continue;
}
std::string name = node.name();
if (name.empty())
{
name = node.output(0);
}
int input_size = node.input_size();
int output_size = node.output_size();
for (int j = 0; j < (int)node.input_size(); j++)
{
const std::string& input_name = node.input(j);
// check weight
if (weights.find(input_name) != weights.end() && node_reference[input_name] == 0)
{
input_size--;
}
if (input_name.empty())
{
input_size--;
}
// fprintf(stderr, " input = %s\n", input_name.c_str());
}
/*
for (int j=0; j<(int)node.output_size(); j++)
{
const std::string& output_name = node.output(j);
fprintf(stderr, " output = %s\n", output_name.c_str());
}
*/
if (op == "Abs")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "Acos")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "Add")
{
fprintf(pp, "%-16s", "BinaryOp");
}
else if (op == "Asin")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "Atan")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "AveragePool" || op == "MaxPool")
{
std::vector<int> kernel_shape = get_node_attr_ai(node, "kernel_shape");
if (kernel_shape.size() == 1)
{
fprintf(pp, "%-16s", "Pooling1D");
}
else
{
fprintf(pp, "%-16s", "Pooling");
}
}
else if (op == "BatchNormalization")
{
fprintf(pp, "%-16s", "BatchNorm");
}
else if (op == "BiasGelu")
{
fprintf(pp, "%-16s", "BiasGelu");
}
else if (op == "Ceil")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "Clip")
{
fprintf(pp, "%-16s", "Clip");
}
else if (op == "Concat")
{
fprintf(pp, "%-16s", "Concat");
}
else if (op == "Constant")
{
continue;
}
else if (op == "Conv")
{
std::vector<int> kernel_shape = get_node_attr_ai(node, "kernel_shape");
if (kernel_shape.size() == 1)
{
fprintf(pp, "%-16s", "Convolution1D");
}
else
{
int group = get_node_attr_i(node, "group", 1);
if (group > 1)
{
fprintf(pp, "%-16s", "ConvolutionDepthWise");
}
else
{
fprintf(pp, "%-16s", "Convolution");
}
}
}
else if (op == "ConvTranspose")
{
int group = get_node_attr_i(node, "group", 1);
if (group > 1)
{
fprintf(pp, "%-16s", "DeconvolutionDepthWise");
}
else
{
fprintf(pp, "%-16s", "Deconvolution");
}
}
else if (op == "Cos")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "DepthToSpace")
{
fprintf(pp, "%-16s", "PixelShuffle");
}
else if (op == "Div")
{
fprintf(pp, "%-16s", "BinaryOp");
}
else if (op == "Dropout")
{
fprintf(pp, "%-16s", "Dropout");
output_size = 1;
}
else if (op == "Elu")
{
fprintf(pp, "%-16s", "ELU");
}
else if (op == "EmbedLayerNormalization")
{
fprintf(pp, "%-16s", "EmbedLayerNormalization");
}
else if (op == "Exp")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "Flatten")
{
fprintf(pp, "%-16s", "Flatten");
}
else if (op == "Floor")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "Gemm")
{
float alpha = get_node_attr_f(node, "alpha", 1.f);
float beta = get_node_attr_f(node, "beta", 1.f);
int transA = get_node_attr_i(node, "transA", 0);
int transB = get_node_attr_i(node, "transB", 0);
if (alpha == 1.f && beta == 1.f && transA == 0 && transB == 1)
{
// InnerProduct-like A * B + C
fprintf(pp, "%-16s", "InnerProduct");
}
else
{
fprintf(pp, "%-16s", "Gemm");
}
}
else if (op == "GlobalAveragePool")
{
fprintf(pp, "%-16s", "Pooling");
}
else if (op == "GlobalMaxPool")
{
fprintf(pp, "%-16s", "Pooling");
}
else if (op == "adaptive_avg_pool2d" || op == "adaptive_max_pool2d")
{
fprintf(pp, "%-16s", "Pooling");
}
else if (op == "GroupNorm")
{
fprintf(pp, "%-16s", "GroupNorm");
}
else if (op == "GRU")
{
fprintf(pp, "%-16s", "GRU");
}
else if (op == "HardSigmoid")
{
fprintf(pp, "%-16s", "HardSigmoid");
}
else if (op == "HardSwish")
{
fprintf(pp, "%-16s", "HardSwish");
}
else if (op == "ImageScaler")
{
fprintf(pp, "%-16s", "Scale");
}
else if (op == "InstanceNormalization")
{
fprintf(pp, "%-16s", "InstanceNorm");
}
else if (op == "LayerNorm")
{
fprintf(pp, "%-16s", "LayerNorm");
}
else if (op == "LeakyRelu")
{
fprintf(pp, "%-16s", "ReLU");
}
else if (op == "Log")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "LRN")
{
fprintf(pp, "%-16s", "LRN");
}
else if (op == "LSTM")
{
fprintf(pp, "%-16s", "LSTM");
}
else if (op == "MatMul")
{
if (weights.find(node.input(1)) != weights.end() && weights[node.input(1)].dims_size() == 2)
{
fprintf(pp, "%-16s", "InnerProduct");
}
else
{
fprintf(pp, "%-16s", "Gemm");
}
}
else if (op == "Max")
{
fprintf(pp, "%-16s", "BinaryOp");
}
else if (op == "Min")
{
fprintf(pp, "%-16s", "BinaryOp");
}
else if (op == "Mul")
{
fprintf(pp, "%-16s", "BinaryOp");
}
else if (op == "MultiHeadAttention")
{
fprintf(pp, "%-16s", "MultiHeadAttention");
}
else if (op == "Neg")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "Normalize")
{
fprintf(pp, "%-16s", "Normalize");
}
else if (op == "Pad")
{
fprintf(pp, "%-16s", "Padding");
}
else if (op == "PixelShuffle")
{
fprintf(pp, "%-16s", "PixelShuffle");
}
else if (op == "Pow")
{
fprintf(pp, "%-16s", "BinaryOp");
}
else if (op == "PRelu")
{
fprintf(pp, "%-16s", "PReLU");
}
else if (op == "Reciprocal")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "ReduceMax" || op == "ReduceMin" || op == "ReduceMean" || op == "ReduceProd" || op == "ReduceSum" || op == "ReduceSumSquare" || op == "ReduceL1" || op == "ReduceL2" || op == "ReduceLogSum" || op == "ReduceLogSumExp")
{
fprintf(pp, "%-16s", "Reduction");
}
else if (op == "Relu")
{
fprintf(pp, "%-16s", "ReLU");
}
else if (op == "Reorg")
{
fprintf(pp, "%-16s", "Reorg");
}
else if (op == "Reshape")
{
fprintf(pp, "%-16s", "Reshape");
}
else if (op == "RNN")
{
fprintf(pp, "%-16s", "RNN");
}
else if (op == "RDiv")
{
fprintf(pp, "%-16s", "BinaryOp");
}
else if (op == "RSub")
{
fprintf(pp, "%-16s", "BinaryOp");
}
else if (op == "ShuffleChannel")
{
fprintf(pp, "%-16s", "ShuffleChannel");
}
else if (op == "Sigmoid")
{
fprintf(pp, "%-16s", "Sigmoid");
}
else if (op == "Sin")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "SkipLayerNormalization")
{
fprintf(pp, "%-16s", "SkipLayerNormalization");
}
else if (op == "Slice")
{
fprintf(pp, "%-16s", "Crop");
}
else if (op == "Softmax")
{
fprintf(pp, "%-16s", "Softmax");
}
else if (op == "Softplus")
{
fprintf(pp, "%-16s", "Softplus");
}
else if (op == "Split")
{
fprintf(pp, "%-16s", "Slice");
}
else if (op == "Sqrt")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "Squeeze")
{
fprintf(pp, "%-16s", "Squeeze");
}
else if (op == "Sub")
{
fprintf(pp, "%-16s", "BinaryOp");
}
else if (op == "Sum")
{
fprintf(pp, "%-16s", "Eltwise");
}
else if (op == "Swish")
{
fprintf(pp, "%-16s", "Swish");
}
else if (op == "Tan")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "Tanh")
{
fprintf(pp, "%-16s", "UnaryOp");
}
else if (op == "Transpose")
{
fprintf(pp, "%-16s", "Permute");
}
else if (op == "Upsample" || op == "Resize")
{
fprintf(pp, "%-16s", "Interp");
}
else if (op == "Unsqueeze")
{
fprintf(pp, "%-16s", "ExpandDims");
}
else
{
// TODO
fprintf(stderr, "%s not supported yet!\n", op.c_str());
fprintf(pp, "%-16s", op.c_str());
}
fprintf(pp, " %-24s %d %d", name.c_str(), input_size, output_size);
for (int j = 0; j < (int)node.input_size(); j++)
{
std::string input_name = node.input(j);
// check weight
if (weights.find(input_name) != weights.end() && node_reference[input_name] == 0)
{
continue;
}
if (input_name.empty())
{
continue;
}
if (split_node_reference.find(input_name) != split_node_reference.end())
{
int refidx = split_node_reference[input_name] - 1;
split_node_reference[input_name] = refidx;
char splitsuffix[256];
sprintf(splitsuffix, "_splitncnn_%d", refidx);
input_name = input_name + splitsuffix;
}
fprintf(pp, " %s", input_name.c_str());
}
for (int j = 0; j < output_size; j++)
{
const std::string& output_name = node.output(j);
fprintf(pp, " %s", output_name.c_str());
}
if (op == "Abs")
{
int op_type = 0;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "Acos")
{
int op_type = 13;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "Add")
{
int op_type = 0;
fprintf(pp, " 0=%d", op_type);
int with_scalar = get_node_attr_i(node, "with_scalar", 0);
float b = get_node_attr_f(node, "b", 0.f);
if (with_scalar)
{
fprintf(pp, " 1=%d", with_scalar);
fprintf(pp, " 2=%e", b);
}
}
else if (op == "Asin")
{
int op_type = 12;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "Atan")
{
int op_type = 14;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "AveragePool" || op == "MaxPool")
{
std::string auto_pad = get_node_attr_s(node, "auto_pad");
int ceil_mode = get_node_attr_i(node, "ceil_mode", 0);
std::vector<int> kernel_shape = get_node_attr_ai(node, "kernel_shape");
std::vector<int> strides = get_node_attr_ai(node, "strides");
std::vector<int> pads = get_node_attr_ai(node, "pads");
int pool = op == "AveragePool" ? 1 : 0;
int pad_mode = 1;
if (auto_pad == "SAME_UPPER")
{
pad_mode = 2;
}
else if (auto_pad == "SAME_LOWER")
{
pad_mode = 3;
}
if (ceil_mode == 1)
{
pad_mode = 0;
}
fprintf(pp, " 0=%d", pool);
if (kernel_shape.size() == 1)
{
fprintf(pp, " 1=%d", kernel_shape[0]);
}
else if (kernel_shape.size() == 2)
{
fprintf(pp, " 1=%d", kernel_shape[1]);
fprintf(pp, " 11=%d", kernel_shape[0]);
}
if (strides.size() == 1)
{
fprintf(pp, " 2=%d", strides[0]);
}
else if (strides.size() == 2)
{
fprintf(pp, " 2=%d", strides[1]);
fprintf(pp, " 12=%d", strides[0]);
}
if (pads.size() == 1)
{
fprintf(pp, " 3=%d", pads[0]);
}
else if (pads.size() == 2)
{
fprintf(pp, " 3=%d", pads[1]);
fprintf(pp, " 13=%d", pads[0]);
}
else if (pads.size() == 4)
{
fprintf(pp, " 3=%d", pads[1]);
fprintf(pp, " 13=%d", pads[0]);
fprintf(pp, " 14=%d", pads[3]);
fprintf(pp, " 15=%d", pads[2]);
}
fprintf(pp, " 5=%d", pad_mode);
if (op == "AveragePool")
{
int avgpool_count_include_pad = get_node_attr_i(node, "count_include_pad", 0);
fprintf(pp, " 6=%d", avgpool_count_include_pad);
}
}
else if (op == "BatchNormalization")
{
float epsilon = get_node_attr_f(node, "epsilon", 1e-5f);
const onnx::TensorProto& scale = weights[node.input(1)];
const onnx::TensorProto& B = weights[node.input(2)];
const onnx::TensorProto& mean = weights[node.input(3)];
const onnx::TensorProto& var = weights[node.input(4)];
int channels = get_tensor_proto_data_size(scale);
fprintf(pp, " 0=%d", channels);
fwrite_tensor_proto_data(scale, bp);
fwrite_tensor_proto_data(mean, bp);
// apply epsilon to var
{
const float* v = var.has_raw_data() ? (const float*)var.raw_data().data() : var.float_data().data();
for (int j = 0; j < channels; j++)
{
float ve = v[j] + epsilon;
fwrite(&ve, sizeof(float), 1, bp);
}
}
fwrite_tensor_proto_data(B, bp);
}
else if (op == "BiasGelu")
{
const onnx::TensorProto& B = weights[node.input(1)];
fprintf(pp, " 0=%d", get_tensor_proto_data_size(B));
int quantize_tag = 0;
fwrite(&quantize_tag, sizeof(int), 1, bp);
fwrite_tensor_proto_data(B, bp);
}
else if (op == "Ceil")
{
int op_type = 3;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "Clip")
{
float min;
float max;
if (node.input_size() == 1)
{
min = get_node_attr_f(node, "min", -FLT_MAX);
max = get_node_attr_f(node, "max", FLT_MAX);
}
else
{
min = weights.find(node.input(1)) != weights.end() ? get_node_attr_from_input_f(weights[node.input(1)]) : -FLT_MAX;
max = weights.find(node.input(2)) != weights.end() ? get_node_attr_from_input_f(weights[node.input(2)]) : FLT_MAX;
}
fprintf(pp, " 0=%e", min);
fprintf(pp, " 1=%e", max);
}
else if (op == "Concat")
{
int axis = get_node_attr_i(node, "axis", 1);
fprintf(pp, " 0=%d", axis > 0 ? axis - 1 : axis);
}
else if (op == "Constant")
{
// never reach here
}
else if (op == "Conv")
{
const onnx::TensorProto& W = weights[node.input(1)];
int num_filter = W.dims(0);
int has_bias = node.input_size() == 3 ? 1 : 0;
std::string auto_pad = get_node_attr_s(node, "auto_pad");
std::vector<int> kernel_shape = get_node_attr_ai(node, "kernel_shape");
std::vector<int> dilations = get_node_attr_ai(node, "dilations");
std::vector<int> strides = get_node_attr_ai(node, "strides");
std::vector<int> pads = get_node_attr_ai(node, "pads");
int group = get_node_attr_i(node, "group", 1);
fprintf(pp, " 0=%d", num_filter);
if (kernel_shape.size() == 1)
{
fprintf(pp, " 1=%d", kernel_shape[0]);
}
else if (kernel_shape.size() == 2)
{
fprintf(pp, " 1=%d", kernel_shape[1]);
fprintf(pp, " 11=%d", kernel_shape[0]);
}
if (dilations.size() == 1)
{
fprintf(pp, " 2=%d", dilations[0]);
}
else if (dilations.size() == 2)
{
fprintf(pp, " 2=%d", dilations[1]);
fprintf(pp, " 12=%d", dilations[0]);
}
if (strides.size() == 1)
{
fprintf(pp, " 3=%d", strides[0]);
}
else if (strides.size() == 2)
{
fprintf(pp, " 3=%d", strides[1]);
fprintf(pp, " 13=%d", strides[0]);
}
if (auto_pad == "SAME_UPPER")
{
fprintf(pp, " 4=-233");
}
else if (auto_pad == "SAME_LOWER")
{
fprintf(pp, " 4=-234");
}
else
{
if (pads.size() == 1)
{
fprintf(pp, " 4=%d", pads[0]);
}
else if (pads.size() == 2)
{
fprintf(pp, " 4=%d", pads[1]);
fprintf(pp, " 14=%d", pads[0]);
}
else if (pads.size() == 4)
{
fprintf(pp, " 4=%d", pads[1]);
fprintf(pp, " 14=%d", pads[0]);
fprintf(pp, " 15=%d", pads[3]);
fprintf(pp, " 16=%d", pads[2]);
}
}
fprintf(pp, " 5=%d", has_bias);
fprintf(pp, " 6=%d", get_tensor_proto_data_size(W));
if (group > 1)
{
fprintf(pp, " 7=%d", group);
}
int quantize_tag = 0;
fwrite(&quantize_tag, sizeof(int), 1, bp);
fwrite_tensor_proto_data(W, bp);
if (has_bias)
{
const onnx::TensorProto& B = weights[node.input(2)];
fwrite_tensor_proto_data(B, bp);
}
}
else if (op == "ConvTranspose")
{
const onnx::TensorProto& W = weights[node.input(1)];
int has_bias = node.input_size() == 3 ? 1 : 0;
std::string auto_pad = get_node_attr_s(node, "auto_pad");
std::vector<int> kernel_shape = get_node_attr_ai(node, "kernel_shape");
std::vector<int> dilations = get_node_attr_ai(node, "dilations");
std::vector<int> strides = get_node_attr_ai(node, "strides");
std::vector<int> output_padding = get_node_attr_ai(node, "output_padding");
std::vector<int> output_shape = get_node_attr_ai(node, "output_shape");
std::vector<int> pads = get_node_attr_ai(node, "pads");
int group = get_node_attr_i(node, "group", 1);
int num_filter = W.dims(1) * group;
fprintf(pp, " 0=%d", num_filter);
if (kernel_shape.size() == 1)
{
fprintf(pp, " 1=%d", kernel_shape[0]);
}
else if (kernel_shape.size() == 2)
{
fprintf(pp, " 1=%d", kernel_shape[1]);
fprintf(pp, " 11=%d", kernel_shape[0]);
}
if (dilations.size() == 1)
{
fprintf(pp, " 2=%d", dilations[0]);
}
else if (dilations.size() == 2)
{
fprintf(pp, " 2=%d", dilations[1]);
fprintf(pp, " 12=%d", dilations[0]);
}
if (strides.size() == 1)
{
fprintf(pp, " 3=%d", strides[0]);
}
else if (strides.size() == 2)
{
fprintf(pp, " 3=%d", strides[1]);
fprintf(pp, " 13=%d", strides[0]);
}
if (auto_pad == "SAME_UPPER")
{
fprintf(pp, " 4=-233");
}
else if (auto_pad == "SAME_LOWER")
{
fprintf(pp, " 4=-234");
}
else
{
if (pads.size() == 1)
{
fprintf(pp, " 4=%d", pads[0]);
}
else if (pads.size() == 2)
{
fprintf(pp, " 4=%d", pads[1]);
fprintf(pp, " 14=%d", pads[0]);
}
else if (pads.size() == 4)
{
fprintf(pp, " 4=%d", pads[1]);
fprintf(pp, " 14=%d", pads[0]);
fprintf(pp, " 15=%d", pads[3]);
fprintf(pp, " 16=%d", pads[2]);
}
}
if (output_padding.size() == 1)
{
fprintf(pp, " 18=%d", output_padding[0]);
}
else if (output_padding.size() == 2)
{
fprintf(pp, " 18=%d", output_padding[1]);
fprintf(pp, " 19=%d", output_padding[0]);
}
if (output_shape.size() == 1)
{
fprintf(pp, " 20=%d", output_shape[0]);
}
else if (output_shape.size() == 2)
{
fprintf(pp, " 20=%d", output_shape[1]);
fprintf(pp, " 21=%d", output_shape[0]);
}
fprintf(pp, " 5=%d", has_bias);
fprintf(pp, " 6=%d", get_tensor_proto_data_size(W));
if (group > 1)
{
fprintf(pp, " 7=%d", group);
}
int quantize_tag = 0;
fwrite(&quantize_tag, sizeof(int), 1, bp);
int maxk = 0;
if (kernel_shape.size() == 2)
{
maxk = kernel_shape[1] * kernel_shape[0];
}
else
{
maxk = kernel_shape[0] * kernel_shape[0];
}
int weight_data_size = get_tensor_proto_data_size(W);
const float* weight_data = 0;
if (W.has_raw_data())
{
weight_data = (const float*)W.raw_data().data();
}
else if (W.data_type() == 1)
{
weight_data = W.float_data().data();
}
for (int g = 0; g < group; g++)
{
// reorder weight from inch-outch to outch-inch
int num_filter_g = num_filter / group;
int num_input = weight_data_size / maxk / num_filter_g / group;
const float* weight_data_ptr = weight_data + g * maxk * num_filter_g * num_input;
for (int k = 0; k < num_filter_g; k++)
{
for (int j = 0; j < num_input; j++)
{
fwrite(weight_data_ptr + (j * num_filter_g + k) * maxk, sizeof(float), maxk, bp);
}
}
}
if (has_bias)
{
const onnx::TensorProto& B = weights[node.input(2)];
fwrite_tensor_proto_data(B, bp);
}
}
else if (op == "Cos")
{
int op_type = 10;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "DepthToSpace")
{
// pixelshuffle
int scale_factor = get_node_attr_i(node, "blocksize", 1);
std::string mode = get_node_attr_s(node, "mode");
fprintf(pp, " 0=%d", scale_factor);
if (mode == "CRD")
{
fprintf(pp, " 1=0");
}
else if (mode == "DCR")
{
fprintf(pp, " 1=1");
}
}
else if (op == "Div")
{
int op_type = 3;
fprintf(pp, " 0=%d", op_type);
int with_scalar = get_node_attr_i(node, "with_scalar", 0);
float b = get_node_attr_f(node, "b", 0.f);
if (with_scalar)
{
fprintf(pp, " 1=%d", with_scalar);
fprintf(pp, " 2=%e", b);
}
}
else if (op == "Dropout")
{
// no-op
}
else if (op == "Elu")
{
float alpha = get_node_attr_f(node, "alpha", 1.f);
fprintf(pp, " 0=%e", alpha);
}
else if (op == "EmbedLayerNormalization")
{
const onnx::TensorProto& words = weights[node.input(2)];
const onnx::TensorProto& positions = weights[node.input(3)];
const onnx::TensorProto& W = weights[node.input(5)];
const onnx::TensorProto& B = weights[node.input(6)];
fprintf(pp, " 0=%d", get_tensor_proto_data_size(B));
fprintf(pp, " 1=%d", get_tensor_proto_data_size(words));
fprintf(pp, " 2=%d", get_tensor_proto_data_size(positions));
int quantize_tag = 0;
fwrite(&quantize_tag, sizeof(int), 1, bp);
fwrite_tensor_proto_data(words, bp);
fwrite(&quantize_tag, sizeof(int), 1, bp);
fwrite_tensor_proto_data(positions, bp);
fwrite(&quantize_tag, sizeof(int), 1, bp);
fwrite_tensor_proto_data(W, bp);
fwrite(&quantize_tag, sizeof(int), 1, bp);
fwrite_tensor_proto_data(B, bp);
}
else if (op == "Exp")
{
int op_type = 7;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "Flatten")
{
int axis = get_node_attr_i(node, "axis", 1);
if (axis != 1)
{
fprintf(stderr, "Unsupported Flatten axis %d!\n", axis);
}
}
else if (op == "Floor")
{
int op_type = 2;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "Gemm")
{
float alpha = get_node_attr_f(node, "alpha", 1.f);
float beta = get_node_attr_f(node, "beta", 1.f);
int transA = get_node_attr_i(node, "transA", 0);
int transB = get_node_attr_i(node, "transB", 0);
if (alpha == 1.f && beta == 1.f && transA == 0 && transB == 1)
{
// InnerProduct-like A * B + C
const onnx::TensorProto& B = weights[node.input(1)];
const onnx::TensorProto& C = weights[node.input(2)];
fprintf(pp, " 0=%d", get_tensor_proto_data_size(C));
fprintf(pp, " 1=1");
fprintf(pp, " 2=%d", get_tensor_proto_data_size(B));
int quantize_tag = 0;
fwrite(&quantize_tag, sizeof(int), 1, bp);
fwrite_tensor_proto_data(B, bp);
fwrite_tensor_proto_data(C, bp);
}
else
{
// gemm
fprintf(pp, " 0=%e", alpha);
fprintf(pp, " 1=%e", beta);
fprintf(pp, " 2=%d", transA);
fprintf(pp, " 3=%d", transB);
}
}
else if (op == "GlobalAveragePool")
{
int pool = 1;
int global_pool = 1;
fprintf(pp, " 0=%d", pool);
fprintf(pp, " 4=%d", global_pool);
}
else if (op == "GlobalMaxPool")
{
int pool = 0;
int global_pool = 1;
fprintf(pp, " 0=%d", pool);
fprintf(pp, " 4=%d", global_pool);
}
else if (op == "adaptive_avg_pool2d" || op == "adaptive_max_pool2d")
{
int pool = 0;
if (op == "adaptive_avg_pool2d")
{
pool = 1;
}
int adaptive_pooling = 1;
const onnx::TensorProto& out_shape_tp = weights[node.input(1)];
std::vector<int> out_shape = get_node_attr_from_input_ai(out_shape_tp);
fprintf(pp, " 0=%d", pool);
fprintf(pp, " 7=%d", adaptive_pooling);
if (out_shape.size() == 1)
{
fprintf(pp, " 8=%d", out_shape[0]);
}
else if (out_shape.size() == 2)
{
// out_w
fprintf(pp, " 8=%d", out_shape[1]);
// out_h
fprintf(pp, " 18=%d", out_shape[0]);
}
}
else if (op == "GroupNorm")
{
int groups = get_node_attr_i(node, "groups", 1);
int channels = get_node_attr_i(node, "channels", 1);
float eps = get_node_attr_f(node, "epsilon", 1e-5f);
int affine = get_node_attr_i(node, "affine", 1);
if (affine)
{
// discard affine-less S=1 B=0
std::vector<float> affine_S = get_node_attr_from_input_af(weights[node.input(1)]);
std::vector<float> affine_B = get_node_attr_from_input_af(weights[node.input(2)]);
if (affine_S.size() == 1 && affine_S[0] == 1.f && affine_B.size() == 1 && affine_B[0] == 0.f)
{
affine = 0;
}
else
{
affine = 0;
{
for (int j = 0; j < channels; j++)
{
if (affine_S[j] != 1.f || affine_B[j] != 0.f)
{
affine = 1;
break;
}
}
}
}
}
fprintf(pp, " 0=%d", groups);
fprintf(pp, " 1=%d", channels);
fprintf(pp, " 2=%e", eps);
fprintf(pp, " 3=%d", affine);
if (affine)
{
const onnx::TensorProto& scale = weights[node.input(1)];
const onnx::TensorProto& B = weights[node.input(2)];
fwrite_tensor_proto_data(scale, bp);
fwrite_tensor_proto_data(B, bp);
}
}
else if (op == "GRU")
{
const onnx::TensorProto& W = weights[node.input(1)];
const onnx::TensorProto& R = weights[node.input(2)];
const onnx::TensorProto& B = weights[node.input(3)];
int hidden_size = get_node_attr_i(node, "hidden_size", 0);
std::string direction = get_node_attr_s(node, "direction");
int direction_type = 0;
if (direction == "forward")
{
direction_type = 0;
}
else if (direction == "reverse")
{
direction_type = 1;
}
else if (direction == "bidirectional")
{
direction_type = 2;
}
int weight_data_size = get_tensor_proto_data_size(W);
fprintf(pp, " 0=%d", hidden_size);
fprintf(pp, " 1=%d", weight_data_size);
fprintf(pp, " 2=%d", direction_type);
int num_directions = direction_type == 2 ? 2 : 1;
int quantize_tag = 0;
// reorder num_directions-URN-hidden-size to num_directions-RUN-hidden-size
{
fwrite(&quantize_tag, sizeof(int), 1, bp);
int weight_data_size_g = get_tensor_proto_data_size(W) / 3 / num_directions;
const float* wptr = W.has_raw_data() ? (const float*)W.raw_data().data() : W.float_data().data();
const float* uptr = wptr;
const float* rptr = wptr + weight_data_size_g;
const float* nptr = wptr + weight_data_size_g * 2;
fwrite(rptr, sizeof(float), weight_data_size_g, bp);
fwrite(uptr, sizeof(float), weight_data_size_g, bp);
fwrite(nptr, sizeof(float), weight_data_size_g, bp);
if (direction_type == 2)
{
uptr += weight_data_size_g * 3;
rptr += weight_data_size_g * 3;
nptr += weight_data_size_g * 3;
fwrite(rptr, sizeof(float), weight_data_size_g, bp);
fwrite(uptr, sizeof(float), weight_data_size_g, bp);
fwrite(nptr, sizeof(float), weight_data_size_g, bp);
}
}
// reduce U and R bias except N
// reorder num_directions-URN-hidden to num_directions-RUN-hidden
{
fwrite(&quantize_tag, sizeof(int), 1, bp);
int bias_data_size_g = get_tensor_proto_data_size(B) / 2 / 3 / num_directions;
const float* bptr = B.has_raw_data() ? (const float*)B.raw_data().data() : B.float_data().data();
const float* wuptr = bptr;
const float* wrptr = bptr + bias_data_size_g;
const float* wnptr = bptr + bias_data_size_g * 2;
const float* buptr = bptr + bias_data_size_g * 3;
const float* brptr = bptr + bias_data_size_g * 4;
const float* bnptr = bptr + bias_data_size_g * 5;
for (int j = 0; j < bias_data_size_g; j++)
{
float vb = wrptr[j] + brptr[j];
fwrite(&vb, sizeof(float), 1, bp);
}
for (int j = 0; j < bias_data_size_g; j++)
{
float vb = wuptr[j] + buptr[j];
fwrite(&vb, sizeof(float), 1, bp);
}
fwrite(wnptr, sizeof(float), bias_data_size_g, bp);
fwrite(bnptr, sizeof(float), bias_data_size_g, bp);
if (direction_type == 2)
{
wuptr += bias_data_size_g * 6;
wrptr += bias_data_size_g * 6;
wnptr += bias_data_size_g * 6;
buptr += bias_data_size_g * 6;
brptr += bias_data_size_g * 6;
bnptr += bias_data_size_g * 6;
for (int j = 0; j < bias_data_size_g; j++)
{
float vb = wrptr[j] + brptr[j];
fwrite(&vb, sizeof(float), 1, bp);
}
for (int j = 0; j < bias_data_size_g; j++)
{
float vb = wuptr[j] + buptr[j];
fwrite(&vb, sizeof(float), 1, bp);
}
fwrite(wnptr, sizeof(float), bias_data_size_g, bp);
fwrite(bnptr, sizeof(float), bias_data_size_g, bp);
}
}
// reorder num_directions-URN-hidden-hidden to num_directions-RUN-hidden-hidden
{
fwrite(&quantize_tag, sizeof(int), 1, bp);
int weight_data_size_g = get_tensor_proto_data_size(R) / 3 / num_directions;
const float* Rptr = R.has_raw_data() ? (const float*)R.raw_data().data() : R.float_data().data();
const float* uptr = Rptr;
const float* rptr = Rptr + weight_data_size_g;
const float* nptr = Rptr + weight_data_size_g * 2;
fwrite(rptr, sizeof(float), weight_data_size_g, bp);
fwrite(uptr, sizeof(float), weight_data_size_g, bp);
fwrite(nptr, sizeof(float), weight_data_size_g, bp);
if (direction_type == 2)
{
uptr += weight_data_size_g * 3;
rptr += weight_data_size_g * 3;
nptr += weight_data_size_g * 3;
fwrite(rptr, sizeof(float), weight_data_size_g, bp);
fwrite(uptr, sizeof(float), weight_data_size_g, bp);
fwrite(nptr, sizeof(float), weight_data_size_g, bp);
}
}
}
else if (op == "HardSigmoid")
{
float alpha = get_node_attr_f(node, "alpha", 0.2f);
float beta = get_node_attr_f(node, "beta", 0.5f);
fprintf(pp, " 0=%e", alpha);
fprintf(pp, " 1=%e", beta);
}
else if (op == "HardSwish")
{
float alpha = get_node_attr_f(node, "alpha", 0.2f);
float beta = get_node_attr_f(node, "beta", 0.5f);
fprintf(pp, " 0=%e", alpha);
fprintf(pp, " 1=%e", beta);
}
else if (op == "ImageScaler")
{
std::vector<float> bias = get_node_attr_af(node, "bias");
float scale = get_node_attr_f(node, "scale", 1.f);
int channels = (int)bias.size();
fprintf(pp, " 0=%d", channels);
fprintf(pp, " 1=1");
for (int j = 0; j < channels; j++)
{
fwrite(&scale, sizeof(float), 1, bp);
}
fwrite(&bias[0], sizeof(float), channels, bp);
}
else if (op == "InstanceNormalization")
{
float eps = get_node_attr_f(node, "epsilon", 1e-5f);
// discard affine-less S=1 B=0
std::vector<float> affine_S = get_node_attr_from_input_af(weights[node.input(1)]);
std::vector<float> affine_B = get_node_attr_from_input_af(weights[node.input(2)]);
int channels = (int)affine_S.size();
int affine = 0;
{
for (int j = 0; j < channels; j++)
{
if (affine_S[j] != 1.f || affine_B[j] != 0.f)
{
affine = 1;
break;
}
}
}
fprintf(pp, " 0=%d", channels);
fprintf(pp, " 1=%e", eps);
fprintf(pp, " 2=%d", affine);
if (affine)
{
const onnx::TensorProto& scale = weights[node.input(1)];
const onnx::TensorProto& B = weights[node.input(2)];
fwrite_tensor_proto_data(scale, bp);
fwrite_tensor_proto_data(B, bp);
}
}
else if (op == "LayerNorm")
{
float eps = get_node_attr_f(node, "epsilon", 1e-5f);
int affine = get_node_attr_i(node, "affine", 1);
if (affine)
{
// discard affine-less S=1 B=0
std::vector<float> affine_S = get_node_attr_from_input_af(weights[node.input(1)]);
std::vector<float> affine_B = get_node_attr_from_input_af(weights[node.input(2)]);
int affine_size = (int)affine_S.size();
affine = 0;
{
for (int j = 0; j < affine_size; j++)
{
if (affine_S[j] != 1.f || affine_B[j] != 0.f)
{
affine = 1;
break;
}
}
}
if (affine)
{
fprintf(pp, " 0=%d", affine_size);
}
}
fprintf(pp, " 1=%e", eps);
fprintf(pp, " 2=%d", affine);
if (affine)
{
const onnx::TensorProto& scale = weights[node.input(1)];
const onnx::TensorProto& B = weights[node.input(2)];
fwrite_tensor_proto_data(scale, bp);
fwrite_tensor_proto_data(B, bp);
}
}
else if (op == "LeakyRelu")
{
float alpha = get_node_attr_f(node, "alpha", 0.01f);
fprintf(pp, " 0=%e", alpha);
}
else if (op == "Log")
{
int op_type = 8;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "LRN")
{
float alpha = get_node_attr_f(node, "alpha", 1.f);
float beta = get_node_attr_f(node, "beta", 0.5f);
float bias = get_node_attr_f(node, "bias", 1.f);
int size = get_node_attr_i(node, "size", 1);
int norm_region = 0;
fprintf(pp, " 0=%d", norm_region);
fprintf(pp, " 1=%d", size);
fprintf(pp, " 2=%e", alpha);
fprintf(pp, " 3=%e", beta);
fprintf(pp, " 4=%e", bias);
}
else if (op == "LSTM")
{
const onnx::TensorProto& W = weights[node.input(1)];
const onnx::TensorProto& R = weights[node.input(2)];
const onnx::TensorProto& B = weights[node.input(3)];
int hidden_size = get_node_attr_i(node, "hidden_size", 0);
std::string direction = get_node_attr_s(node, "direction");
int direction_type = 0;
if (direction == "forward")
{
direction_type = 0;
}
else if (direction == "reverse")
{
direction_type = 1;
}
else if (direction == "bidirectional")
{
direction_type = 2;
}
int weight_data_size = get_tensor_proto_data_size(W);
fprintf(pp, " 0=%d", hidden_size);
fprintf(pp, " 1=%d", weight_data_size);
fprintf(pp, " 2=%d", direction_type);
int num_directions = direction_type == 2 ? 2 : 1;
int quantize_tag = 0;
// reorder num_directions-IOFG-hidden-size to num_directions-IFOG-hidden-size
{
fwrite(&quantize_tag, sizeof(int), 1, bp);
int weight_data_size_g = get_tensor_proto_data_size(W) / 4 / num_directions;
const float* wptr = W.has_raw_data() ? (const float*)W.raw_data().data() : W.float_data().data();
const float* iptr = wptr;
const float* optr = wptr + weight_data_size_g;
const float* fptr = wptr + weight_data_size_g * 2;
const float* gptr = wptr + weight_data_size_g * 3;
fwrite(iptr, sizeof(float), weight_data_size_g, bp);
fwrite(fptr, sizeof(float), weight_data_size_g, bp);
fwrite(optr, sizeof(float), weight_data_size_g, bp);
fwrite(gptr, sizeof(float), weight_data_size_g, bp);
if (direction_type == 2)
{
iptr += weight_data_size_g * 4;
optr += weight_data_size_g * 4;
fptr += weight_data_size_g * 4;
gptr += weight_data_size_g * 4;
fwrite(iptr, sizeof(float), weight_data_size_g, bp);
fwrite(fptr, sizeof(float), weight_data_size_g, bp);
fwrite(optr, sizeof(float), weight_data_size_g, bp);
fwrite(gptr, sizeof(float), weight_data_size_g, bp);
}
}
// reduce xc and hc bias
// reorder num_directions-IOFG-hidden to num_directions-IFOG-hidden
{
fwrite(&quantize_tag, sizeof(int), 1, bp);
int bias_data_size_g = get_tensor_proto_data_size(B) / 2 / 4 / num_directions;
const float* xcbptr = B.has_raw_data() ? (const float*)B.raw_data().data() : B.float_data().data();
const float* xiptr = xcbptr;
const float* xoptr = xcbptr + bias_data_size_g;
const float* xfptr = xcbptr + bias_data_size_g * 2;
const float* xgptr = xcbptr + bias_data_size_g * 3;
const float* hiptr = xcbptr + bias_data_size_g * 4;
const float* hoptr = xcbptr + bias_data_size_g * 5;
const float* hfptr = xcbptr + bias_data_size_g * 6;
const float* hgptr = xcbptr + bias_data_size_g * 7;
for (int j = 0; j < bias_data_size_g; j++)
{
float vb = xiptr[j] + hiptr[j];
fwrite(&vb, sizeof(float), 1, bp);
}
for (int j = 0; j < bias_data_size_g; j++)
{
float vb = xfptr[j] + hfptr[j];
fwrite(&vb, sizeof(float), 1, bp);
}
for (int j = 0; j < bias_data_size_g; j++)
{
float vb = xoptr[j] + hoptr[j];
fwrite(&vb, sizeof(float), 1, bp);
}
for (int j = 0; j < bias_data_size_g; j++)
{
float vb = xgptr[j] + hgptr[j];
fwrite(&vb, sizeof(float), 1, bp);
}
if (direction_type == 2)
{
xiptr += bias_data_size_g * 8;
xoptr += bias_data_size_g * 8;
xfptr += bias_data_size_g * 8;
xgptr += bias_data_size_g * 8;
hiptr += bias_data_size_g * 8;
hoptr += bias_data_size_g * 8;
hfptr += bias_data_size_g * 8;
hgptr += bias_data_size_g * 8;
for (int j = 0; j < bias_data_size_g; j++)
{
float vb = xiptr[j] + hiptr[j];
fwrite(&vb, sizeof(float), 1, bp);
}
for (int j = 0; j < bias_data_size_g; j++)
{
float vb = xfptr[j] + hfptr[j];
fwrite(&vb, sizeof(float), 1, bp);
}
for (int j = 0; j < bias_data_size_g; j++)
{
float vb = xoptr[j] + hoptr[j];
fwrite(&vb, sizeof(float), 1, bp);
}
for (int j = 0; j < bias_data_size_g; j++)
{
float vb = xgptr[j] + hgptr[j];
fwrite(&vb, sizeof(float), 1, bp);
}
}
}
// reorder num_directions-IOFG-hidden-hidden to num_directions-IFOG-hidden-hidden
{
fwrite(&quantize_tag, sizeof(int), 1, bp);
int weight_data_size_g = get_tensor_proto_data_size(R) / 4 / num_directions;
const float* rptr = R.has_raw_data() ? (const float*)R.raw_data().data() : R.float_data().data();
const float* iptr = rptr;
const float* optr = rptr + weight_data_size_g;
const float* fptr = rptr + weight_data_size_g * 2;
const float* gptr = rptr + weight_data_size_g * 3;
fwrite(iptr, sizeof(float), weight_data_size_g, bp);
fwrite(fptr, sizeof(float), weight_data_size_g, bp);
fwrite(optr, sizeof(float), weight_data_size_g, bp);
fwrite(gptr, sizeof(float), weight_data_size_g, bp);
if (direction_type == 2)
{
iptr += weight_data_size_g * 4;
optr += weight_data_size_g * 4;
fptr += weight_data_size_g * 4;
gptr += weight_data_size_g * 4;
fwrite(iptr, sizeof(float), weight_data_size_g, bp);
fwrite(fptr, sizeof(float), weight_data_size_g, bp);
fwrite(optr, sizeof(float), weight_data_size_g, bp);
fwrite(gptr, sizeof(float), weight_data_size_g, bp);
}
}
}
else if (op == "MatMul")
{
if (weights.find(node.input(1)) != weights.end() && weights[node.input(1)].dims_size() == 2)
{
// InnerProduct
const onnx::TensorProto& B = weights[node.input(1)];
int weight_data_size = get_tensor_proto_data_size(B);
int num_output = B.dims(B.dims_size() - 1);
int num_input = weight_data_size / num_output;
fprintf(pp, " 0=%d", num_output);
fprintf(pp, " 1=0");
fprintf(pp, " 2=%d", weight_data_size);
int quantize_tag = 0;
fwrite(&quantize_tag, sizeof(int), 1, bp);
// reorder num_input-num_output to num_output-num_input
{
const float* bptr = B.has_raw_data() ? (const float*)B.raw_data().data() : B.float_data().data();
for (int j = 0; j < num_output; j++)
{
for (int k = 0; k < num_input; k++)
{
float vb = bptr[k * num_output + j];
fwrite(&vb, sizeof(float), 1, bp);
}
}
}
// fwrite_tensor_proto_data(B, bp)
}
else
{
// default matrix multiplication
}
}
else if (op == "Max")
{
int op_type = 4;
fprintf(pp, " 0=%d", op_type);
int with_scalar = get_node_attr_i(node, "with_scalar", 0);
float b = get_node_attr_f(node, "b", 0.f);
if (with_scalar)
{
fprintf(pp, " 1=%d", with_scalar);
fprintf(pp, " 2=%e", b);
}
}
else if (op == "Min")
{
int op_type = 5;
fprintf(pp, " 0=%d", op_type);
int with_scalar = get_node_attr_i(node, "with_scalar", 0);
float b = get_node_attr_f(node, "b", 0.f);
if (with_scalar)
{
fprintf(pp, " 1=%d", with_scalar);
fprintf(pp, " 2=%e", b);
}
}
else if (op == "Mul")
{
int op_type = 2;
fprintf(pp, " 0=%d", op_type);
int with_scalar = get_node_attr_i(node, "with_scalar", 0);
float b = get_node_attr_f(node, "b", 0.f);
if (with_scalar)
{
fprintf(pp, " 1=%d", with_scalar);
fprintf(pp, " 2=%e", b);
}
}
else if (op == "MultiHeadAttention")
{
int embed_dim = get_node_attr_i(node, "embed_dim", 0);
int num_heads = get_node_attr_i(node, "num_heads", 0);
fprintf(pp, " 0=%d", embed_dim);
fprintf(pp, " 1=%d", num_heads);
if (node.input_size() == 5)
{
const onnx::TensorProto& qkvw = weights[node.input(1)];
const onnx::TensorProto& qkvb = weights[node.input(2)];
const onnx::TensorProto& ow = weights[node.input(3)];
const onnx::TensorProto& ob = weights[node.input(4)];
int weight_data_size = get_tensor_proto_data_size(ow);
fprintf(pp, " 2=%d", weight_data_size);
int quantize_tag = 0;
fwrite(&quantize_tag, sizeof(int), 1, bp);
// transpose qw
{
const float* wptr = qkvw.has_raw_data() ? (const float*)qkvw.raw_data().data() : qkvw.float_data().data();
const float* bptr = qkvb.has_raw_data() ? (const float*)qkvb.raw_data().data() : qkvb.float_data().data();
for (int j = 0; j < embed_dim; j++)
{
for (int k = 0; k < embed_dim; k++)
{
float vb = wptr[k * embed_dim * 3 + j];
fwrite(&vb, sizeof(float), 1, bp);
}
}
fwrite(bptr, sizeof(float), embed_dim, bp);
}
fwrite(&quantize_tag, sizeof(int), 1, bp);
// transpose kw
{
const float* wptr = qkvw.has_raw_data() ? (const float*)qkvw.raw_data().data() : qkvw.float_data().data();
const float* bptr = qkvb.has_raw_data() ? (const float*)qkvb.raw_data().data() : qkvb.float_data().data();
bptr += embed_dim;
for (int j = 0; j < embed_dim; j++)
{
for (int k = 0; k < embed_dim; k++)
{
float vb = wptr[k * embed_dim * 3 + j + embed_dim];
fwrite(&vb, sizeof(float), 1, bp);
}
}
fwrite(bptr, sizeof(float), embed_dim, bp);
}
fwrite(&quantize_tag, sizeof(int), 1, bp);
// transpose vw
{
const float* wptr = qkvw.has_raw_data() ? (const float*)qkvw.raw_data().data() : qkvw.float_data().data();
const float* bptr = qkvb.has_raw_data() ? (const float*)qkvb.raw_data().data() : qkvb.float_data().data();
bptr += embed_dim * 2;
for (int j = 0; j < embed_dim; j++)
{
for (int k = 0; k < embed_dim; k++)
{
float vb = wptr[k * embed_dim * 3 + j + embed_dim * 2];
fwrite(&vb, sizeof(float), 1, bp);
}
}
fwrite(bptr, sizeof(float), embed_dim, bp);
}
fwrite(&quantize_tag, sizeof(int), 1, bp);
// transpose ow
{
const float* wptr = ow.has_raw_data() ? (const float*)ow.raw_data().data() : ow.float_data().data();
for (int j = 0; j < embed_dim; j++)
{
for (int k = 0; k < embed_dim; k++)
{
float vb = wptr[k * embed_dim + j];
fwrite(&vb, sizeof(float), 1, bp);
}
}
}
fwrite_tensor_proto_data(ob, bp);
}
else
{
const onnx::TensorProto& qw = weights[node.input(3)];
const onnx::TensorProto& qb = weights[node.input(4)];
const onnx::TensorProto& kw = weights[node.input(5)];
const onnx::TensorProto& kb = weights[node.input(6)];
const onnx::TensorProto& vw = weights[node.input(7)];
const onnx::TensorProto& vb = weights[node.input(8)];
const onnx::TensorProto& ow = weights[node.input(9)];
const onnx::TensorProto& ob = weights[node.input(10)];
int weight_data_size = get_tensor_proto_data_size(qw);
fprintf(pp, " 2=%d", weight_data_size);
int quantize_tag = 0;
fwrite(&quantize_tag, sizeof(int), 1, bp);
// transpose qw
{
const float* wptr = qw.has_raw_data() ? (const float*)qw.raw_data().data() : qw.float_data().data();
for (int j = 0; j < embed_dim; j++)
{
for (int k = 0; k < embed_dim; k++)
{
float vb = wptr[k * embed_dim + j];
fwrite(&vb, sizeof(float), 1, bp);
}
}
}
fwrite_tensor_proto_data(qb, bp);
fwrite(&quantize_tag, sizeof(int), 1, bp);
// transpose kw
{
const float* wptr = kw.has_raw_data() ? (const float*)kw.raw_data().data() : kw.float_data().data();
for (int j = 0; j < embed_dim; j++)
{
for (int k = 0; k < embed_dim; k++)
{
float vb = wptr[k * embed_dim + j];
fwrite(&vb, sizeof(float), 1, bp);
}
}
}
fwrite_tensor_proto_data(kb, bp);
fwrite(&quantize_tag, sizeof(int), 1, bp);
// transpose vw
{
const float* wptr = vw.has_raw_data() ? (const float*)vw.raw_data().data() : vw.float_data().data();
for (int j = 0; j < embed_dim; j++)
{
for (int k = 0; k < embed_dim; k++)
{
float vb = wptr[k * embed_dim + j];
fwrite(&vb, sizeof(float), 1, bp);
}
}
}
fwrite_tensor_proto_data(vb, bp);
fwrite(&quantize_tag, sizeof(int), 1, bp);
// transpose ow
{
const float* wptr = ow.has_raw_data() ? (const float*)ow.raw_data().data() : ow.float_data().data();
for (int j = 0; j < embed_dim; j++)
{
for (int k = 0; k < embed_dim; k++)
{
float vb = wptr[k * embed_dim + j];
fwrite(&vb, sizeof(float), 1, bp);
}
}
}
fwrite_tensor_proto_data(ob, bp);
}
}
else if (op == "Neg")
{
int op_type = 1;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "Normalize")
{
float eps = get_node_attr_f(node, "eps", 0.f);
int scale_data_size = 1;
fprintf(pp, " 1=1"); // channel_shared
fprintf(pp, " 2=%e", eps);
fprintf(pp, " 3=%d", scale_data_size);
fprintf(pp, " 9=1"); // TODO hardcode pytorch style
const float scale_data[1] = {1.f};
fwrite(scale_data, sizeof(float), 1, bp);
}
else if (op == "Pad")
{
std::string mode = get_node_attr_s(node, "mode");
float value = get_node_attr_f(node, "value", 0.f);
std::vector<int> pads;
if (node.input_size() == 1)
{
pads = get_node_attr_ai(node, "pads");
}
else
{
pads = get_node_attr_from_input_ai(weights[node.input(1)]);
}
int type = 0;
if (mode == "constant")
{
type = 0;
}
else if (mode == "edge")
{
type = 1;
}
else if (mode == "reflect")
{
type = 2;
}
int pad_size = (int)pads.size();
int top = 0;
int bottom = 0;
int left = 0;
int right = 0;
int front = 0;
int behind = 0;
if (pad_size == 8)
{
//NCHW
top = pads[2];
bottom = pads[6];
left = pads[3];
right = pads[7];
front = pads[1];
behind = pads[5];
}
else if (pad_size == 6)
{
//NHW
top = pads[1];
bottom = pads[4];
left = pads[2];
right = pads[5];
}
else
{
//NW
left = pads[1];
right = pads[3];
}
fprintf(pp, " 0=%d", top);
fprintf(pp, " 1=%d", bottom);
fprintf(pp, " 2=%d", left);
fprintf(pp, " 3=%d", right);
fprintf(pp, " 4=%d", type);
fprintf(pp, " 5=%e", value);
fprintf(pp, " 7=%d", front);
fprintf(pp, " 8=%d", behind);
}
else if (op == "Pow")
{
int op_type = 6;
fprintf(pp, " 0=%d", op_type);
int with_scalar = get_node_attr_i(node, "with_scalar", 0);
float b = get_node_attr_f(node, "b", 0.f);
if (with_scalar)
{
fprintf(pp, " 1=%d", with_scalar);
fprintf(pp, " 2=%e", b);
}
}
else if (op == "PixelShuffle")
{
int scale_factor = get_node_attr_i(node, "scale_factor", 1);
fprintf(pp, " 0=%d", scale_factor);
}
else if (op == "PRelu")
{
const onnx::TensorProto& slope = weights[node.input(1)];
int num_slope = get_tensor_proto_data_size(slope);
fprintf(pp, " 0=%d", num_slope);
fwrite_tensor_proto_data(slope, bp);
}
else if (op == "Reciprocal")
{
int op_type = 15;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "ReduceMax" || op == "ReduceMin" || op == "ReduceMean" || op == "ReduceProd" || op == "ReduceSum" || op == "ReduceSumSquare" || op == "ReduceL1" || op == "ReduceL2" || op == "ReduceLogSum" || op == "ReduceLogSumExp")
{
int op_type = -233;
if (op == "ReduceSum")
op_type = 0;
else if (op == "ReduceSumSquare")
op_type = 2;
else if (op == "ReduceMean")
op_type = 3;
else if (op == "ReduceMax")
op_type = 4;
else if (op == "ReduceMin")
op_type = 5;
else if (op == "ReduceProd")
op_type = 6;
else if (op == "ReduceL1")
op_type = 7;
else if (op == "ReduceL2")
op_type = 8;
else if (op == "ReduceLogSum")
op_type = 9;
else if (op == "ReduceLogSumExp")
op_type = 10;
fprintf(pp, " 0=%d", op_type);
std::vector<int> axes = get_node_attr_ai(node, "axes");
int keepdims = get_node_attr_i(node, "keepdims", 1);
if (axes.size() > 0)
{
// if axes set, reduce according to axes
fprintf(pp, " 1=%d", 0);
fprintf(pp, " -23303=%zu", axes.size());
for (size_t j = 0; j < axes.size(); j++)
{
if (axes[j] == 0 || axes[j] > 4 || axes[j] < -3)
fprintf(stderr, "Unsupported reduction axes !\n");
fprintf(pp, ",%d", axes[j] > 0 ? axes[j] - 1 : axes[j]);
}
}
else
{
// if axes not set, reduce all axes by default
fprintf(pp, " 1=%d", 1);
}
fprintf(pp, " 4=%d", keepdims);
fprintf(pp, " 5=1");
}
else if (op == "Reorg")
{
int stride = get_node_attr_i(node, "stride", 1);
fprintf(pp, " 0=%d", stride);
}
else if (op == "Reshape")
{
std::vector<int> shape;
if (node.input_size() == 1)
{
shape = get_node_attr_ai(node, "shape");
}
else
{
shape = get_node_attr_from_input_ai(weights[node.input(1)]);
}
if (shape.size() == 1)
{
fprintf(pp, " 0=%d", shape[0]); // should never reach here
}
else if (shape.size() == 2)
{
fprintf(pp, " 0=%d", shape[1]);
}
else if (shape.size() == 3)
{
fprintf(pp, " 0=%d", shape[2]);
fprintf(pp, " 1=%d", shape[1]);
}
else if (shape.size() == 4)
{
fprintf(pp, " 0=%d", shape[3]);
fprintf(pp, " 1=%d", shape[2]);
fprintf(pp, " 2=%d", shape[1]);
}
else if (shape.size() == 5)
{
fprintf(pp, " 0=%d", shape[4] * shape[3]);
fprintf(pp, " 1=%d", shape[2]);
fprintf(pp, " 2=%d", shape[1]);
}
}
else if (op == "Resize")
{
std::string mode = get_node_attr_s(node, "mode");
std::string align = get_node_attr_s(node, "coordinate_transformation_mode");
std::vector<float> scales;
std::vector<int> sizes;
if (node.input_size() == 2)
{
// opset 10
scales = get_node_attr_from_input_af(weights[node.input(1)]);
}
else
{
// opset 11+
scales = get_node_attr_from_input_af(weights[node.input(2)]);
if (node.input_size() >= 4)
{
sizes = get_node_attr_from_input_ai(weights[node.input(3)]);
}
}
int resize_type = 1;
if (mode == "nearest")
{
resize_type = 1;
}
else if (mode == "linear")
{
resize_type = 2;
}
else if (mode == "cubic")
{
resize_type = 3;
}
if (scales.empty() && sizes.empty())
{
fprintf(stderr, "Unsupported Resize scales and sizes are all empty!\n");
}
float h_scale = 1.f;
float w_scale = 1.f;
if (scales.size() == 2)
{
w_scale = scales[1];
}
else if (scales.size() == 3)
{
h_scale = scales[1];
w_scale = scales[2];
}
else if (scales.size() == 4)
{
h_scale = scales[2];
w_scale = scales[3];
if (scales[1] != 1.f)
fprintf(stderr, "Unsupported Resize scales !\n");
}
int output_height = 0;
int output_width = 0;
if (sizes.size() == 2)
{
output_width = sizes[1];
}
else if (sizes.size() == 3)
{
output_height = sizes[1];
output_width = sizes[2];
}
else if (sizes.size() == 4)
{
output_height = sizes[2];
output_width = sizes[3];
}
int align_corner = 0;
if (align == "align_corners")
{
align_corner = 1;
}
fprintf(pp, " 0=%d", resize_type);
fprintf(pp, " 1=%e", h_scale);
fprintf(pp, " 2=%e", w_scale);
fprintf(pp, " 3=%d", output_height);
fprintf(pp, " 4=%d", output_width);
fprintf(pp, " 6=%d", align_corner);
}
else if (op == "RNN")
{
const onnx::TensorProto& W = weights[node.input(1)];
const onnx::TensorProto& R = weights[node.input(2)];
const onnx::TensorProto& B = weights[node.input(3)];
int hidden_size = get_node_attr_i(node, "hidden_size", 0);
std::string direction = get_node_attr_s(node, "direction");
int direction_type = 0;
if (direction == "forward")
{
direction_type = 0;
}
else if (direction == "reverse")
{
direction_type = 1;
}
else if (direction == "bidirectional")
{
direction_type = 2;
}
int weight_data_size = get_tensor_proto_data_size(W);
fprintf(pp, " 0=%d", hidden_size);
fprintf(pp, " 1=%d", weight_data_size);
fprintf(pp, " 2=%d", direction_type);
int num_directions = direction_type == 2 ? 2 : 1;
int quantize_tag = 0;
fwrite(&quantize_tag, sizeof(int), 1, bp);
fwrite_tensor_proto_data(W, bp);
// reduce xc and hc bias
{
fwrite(&quantize_tag, sizeof(int), 1, bp);
int bias_data_size_g = get_tensor_proto_data_size(B) / 2 / num_directions;
const float* bptr = B.has_raw_data() ? (const float*)B.raw_data().data() : B.float_data().data();
const float* xiptr = bptr;
const float* hiptr = bptr + bias_data_size_g;
for (int j = 0; j < bias_data_size_g; j++)
{
float vb = xiptr[j] + hiptr[j];
fwrite(&vb, sizeof(float), 1, bp);
}
if (direction_type == 2)
{
xiptr += bias_data_size_g * 2;
hiptr += bias_data_size_g * 2;
for (int j = 0; j < bias_data_size_g; j++)
{
float vb = xiptr[j] + hiptr[j];
fwrite(&vb, sizeof(float), 1, bp);
}
}
}
fwrite(&quantize_tag, sizeof(int), 1, bp);
fwrite_tensor_proto_data(R, bp);
}
else if (op == "RDiv")
{
int op_type = 8;
fprintf(pp, " 0=%d", op_type);
int with_scalar = get_node_attr_i(node, "with_scalar", 0);
float b = get_node_attr_f(node, "b", 0.f);
if (with_scalar)
{
fprintf(pp, " 1=%d", with_scalar);
fprintf(pp, " 2=%e", b);
}
}
else if (op == "RSub")
{
int op_type = 7;
fprintf(pp, " 0=%d", op_type);
int with_scalar = get_node_attr_i(node, "with_scalar", 0);
float b = get_node_attr_f(node, "b", 0.f);
if (with_scalar)
{
fprintf(pp, " 1=%d", with_scalar);
fprintf(pp, " 2=%e", b);
}
}
else if (op == "ShuffleChannel")
{
int group = get_node_attr_i(node, "group", 1);
int reverse = get_node_attr_i(node, "reverse", 0);
fprintf(pp, " 0=%d", group);
fprintf(pp, " 1=%d", reverse);
}
else if (op == "Sigmoid")
{
// no param
}
else if (op == "Sin")
{
int op_type = 9;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "SkipLayerNormalization")
{
const onnx::TensorProto& W = weights[node.input(2)];
const onnx::TensorProto& B = weights[node.input(3)];
const onnx::TensorProto& B2 = weights[node.input(4)];
fprintf(pp, " 0=%d", get_tensor_proto_data_size(B));
int quantize_tag = 0;
fwrite(&quantize_tag, sizeof(int), 1, bp);
fwrite_tensor_proto_data(W, bp);
fwrite(&quantize_tag, sizeof(int), 1, bp);
fwrite_tensor_proto_data(B, bp);
fwrite(&quantize_tag, sizeof(int), 1, bp);
fwrite_tensor_proto_data(B2, bp);
}
else if (op == "Slice")
{
std::vector<int> starts;
std::vector<int> ends;
std::vector<int> axes;
std::vector<int> steps;
if (node.input_size() == 1)
{
starts = get_node_attr_ai(node, "starts");
ends = get_node_attr_ai(node, "ends");
axes = get_node_attr_ai(node, "axes");
steps = get_node_attr_ai(node, "steps"); // TODO
}
else
{
starts = get_node_attr_from_input_ai(weights[node.input(1)]);
ends = get_node_attr_from_input_ai(weights[node.input(2)]);
if (node.input_size() >= 4)
axes = get_node_attr_from_input_ai(weights[node.input(3)]);
if (node.input_size() >= 5)
steps = get_node_attr_from_input_ai(weights[node.input(4)]);
}
// assert step == 1
for (int i = 0; i < (int)steps.size(); i++)
{
if (steps[i] != 1)
fprintf(stderr, "Unsupported slice step !\n");
}
// filter out N-dim axis
if (!axes.empty())
{
for (int i = 0; i < (int)axes.size(); i++)
{
int axis = axes[i];
if (axis == 0)
{
starts.erase(starts.begin() + i);
ends.erase(ends.begin() + i);
axes.erase(axes.begin() + i);
break;
}
}
}
fprintf(pp, " -23309=%d", (int)starts.size());
for (int i = 0; i < (int)starts.size(); i++)
{
fprintf(pp, ",%d", starts[i]);
}
fprintf(pp, " -23310=%d", (int)ends.size());
for (int i = 0; i < (int)ends.size(); i++)
{
fprintf(pp, ",%d", ends[i]);
}
if (!axes.empty())
{
fprintf(pp, " -23311=%d", (int)axes.size());
for (int i = 0; i < (int)axes.size(); i++)
{
int axis = axes[i];
if (axis == 0 || axis > 3 || axis < -3)
fprintf(stderr, "Unsupported slice axes !\n");
if (axis > 0)
axis = axis - 1; // -1 for skip N-dim
fprintf(pp, ",%d", axis);
}
}
}
else if (op == "Softmax")
{
int axis = get_node_attr_i(node, "axis", 1);
fprintf(pp, " 0=%d", axis - 1);
fprintf(pp, " 1=1");
}
else if (op == "Split")
{
int axis = get_node_attr_i(node, "axis", 0);
std::vector<int> split = get_node_attr_ai(node, "split");
if (axis < 1)
fprintf(stderr, "Unsupported split axis !\n");
fprintf(pp, " -23300=%d", output_size);
if (split.empty())
{
for (int i = 0; i < output_size; i++)
{
fprintf(pp, ",-233");
}
}
else
{
for (size_t i = 0; i < split.size() - 1; i++)
{
fprintf(pp, ",%d", split[i]);
}
fprintf(pp, ",-233");
}
fprintf(pp, " 1=%d", axis - 1);
}
else if (op == "Sqrt")
{
int op_type = 5;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "Squeeze")
{
std::vector<int> axes = get_node_attr_ai(node, "axes");
if (axes.empty())
{
fprintf(pp, " 0=1");
fprintf(pp, " 1=1");
fprintf(pp, " 2=1");
}
else
{
fprintf(pp, " -23303=%zu", axes.size());
for (int i = 0; i < (int)axes.size(); i++)
{
if (axes[i] == 0 || axes[i] > 4 || axes[i] < -3)
fprintf(stderr, "Unsupported squeeze axes !\n");
fprintf(pp, ",%d", axes[i] > 0 ? axes[i] - 1 : axes[i]);
}
}
}
else if (op == "Sub")
{
int op_type = 1;
fprintf(pp, " 0=%d", op_type);
int with_scalar = get_node_attr_i(node, "with_scalar", 0);
float b = get_node_attr_f(node, "b", 0.f);
if (with_scalar)
{
fprintf(pp, " 1=%d", with_scalar);
fprintf(pp, " 2=%e", b);
}
}
else if (op == "Sum")
{
int op_type = 1;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "Swish")
{
// no param
}
else if (op == "Tan")
{
int op_type = 11;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "Tanh")
{
int op_type = 16;
fprintf(pp, " 0=%d", op_type);
}
else if (op == "Transpose")
{
std::vector<int> perm = get_node_attr_ai(node, "perm");
if (perm.size() == 3)
{
if (perm[1] == 1 && perm[2] == 2)
fprintf(pp, " 0=0"); // w h
else if (perm[1] == 2 && perm[2] == 1)
fprintf(pp, " 0=1"); // h w
else if (perm[0] == 1 && perm[1] == 0 && perm[2] == 2)
fprintf(pp, " 0=0"); // w h
else if (perm[0] == 2 && perm[1] == 0 && perm[2] == 1)
fprintf(pp, " 0=1"); // h w
}
else if (perm.size() == 4)
{
if (perm[1] == 1 && perm[2] == 2 && perm[3] == 3)
fprintf(pp, " 0=0"); // w h c
else if (perm[1] == 1 && perm[2] == 3 && perm[3] == 2)
fprintf(pp, " 0=1"); // h w c
else if (perm[1] == 2 && perm[2] == 1 && perm[3] == 3)
fprintf(pp, " 0=2"); // w c h
else if (perm[1] == 2 && perm[2] == 3 && perm[3] == 1)
fprintf(pp, " 0=3"); // c w h
else if (perm[1] == 3 && perm[2] == 1 && perm[3] == 2)
fprintf(pp, " 0=4"); // h c w
else if (perm[1] == 3 && perm[2] == 2 && perm[3] == 1)
fprintf(pp, " 0=5"); // c h w
}
else if (perm.size() == 5)
{
if (perm[1] == 1 && perm[2] == 2 && perm[3] == 3 && perm[4] == 4)
fprintf(pp, " 0=0"); // wx h c
else if (perm[1] == 1 && perm[2] == 3 && perm[3] == 4 && perm[4] == 2)
fprintf(pp, " 0=1"); // h wx c
else if (perm[1] == 2 && perm[2] == 1 && perm[3] == 3 && perm[4] == 4)
fprintf(pp, " 0=2"); // wx c h
else if (perm[1] == 2 && perm[2] == 3 && perm[3] == 4 && perm[4] == 1)
fprintf(pp, " 0=3"); // c wx h
else if (perm[1] == 3 && perm[2] == 4 && perm[3] == 1 && perm[4] == 2)
fprintf(pp, " 0=4"); // h c wx
else if (perm[1] == 3 && perm[2] == 4 && perm[3] == 2 && perm[4] == 1)
fprintf(pp, " 0=5"); // c h wx
else
fprintf(stderr, "Unsupported transpose type !\n");
}
}
else if (op == "Upsample")
{
std::string mode = get_node_attr_s(node, "mode");
std::string align = get_node_attr_s(node, "coordinate_transformation_mode");
std::vector<float> scales;
if (node.input_size() == 1)
{
scales = get_node_attr_af(node, "scales");
}
else
{
scales = get_node_attr_from_input_af(weights[node.input(1)]);
}
int resize_type = 1;
if (mode == "nearest")
{
resize_type = 1;
}
else if (mode == "bilinear" || mode == "linear")
{
resize_type = 2;
}
else if (mode == "trilinear")
{
fprintf(stderr, "Unsupported Upsample mode !\n");
}
float h_scale = 1.f;
float w_scale = 1.f;
if (scales.size() == 2)
{
w_scale = scales[1];
}
else if (scales.size() == 3)
{
h_scale = scales[1];
w_scale = scales[2];
}
else if (scales.size() == 4)
{
h_scale = scales[2];
w_scale = scales[3];
if (scales[1] != 1.f)
fprintf(stderr, "Unsupported Upsample scales !\n");
}
else
{
fprintf(stderr, "Unsupported Upsample scales !\n");
}
int align_corner = 0;
if (align == "align_corners")
{
align_corner = 1;
}
fprintf(pp, " 0=%d", resize_type);
fprintf(pp, " 1=%e", h_scale);
fprintf(pp, " 2=%e", w_scale);
fprintf(pp, " 6=%d", align_corner);
}
else if (op == "Unsqueeze")
{
std::vector<int> axes = get_node_attr_ai(node, "axes");
fprintf(pp, " -23303=%zu", axes.size());
for (int i = 0; i < (int)axes.size(); i++)
{
if (axes[i] == 0 || axes[i] > 4 || axes[i] < -4)
fprintf(stderr, "Unsupported unsqueeze axes !\n");
fprintf(pp, ",%d", axes[i] > 0 ? axes[i] - 1 : axes[i]);
}
}
else
{
// TODO op specific param
for (int j = 0; j < node.attribute_size(); j++)
{
const onnx::AttributeProto& attr = node.attribute(j);
if (attr.type() == 1)
{
fprintf(stderr, " # %s=%g\n", attr.name().c_str(), attr.f());
}
else if (attr.type() == 2)
{
fprintf(stderr, " # %s=%lld\n", attr.name().c_str(), (long long)attr.i());
}
else if (attr.type() == 3)
{
fprintf(stderr, " # %s=%s\n", attr.name().c_str(), attr.s().c_str());
}
else
{
fprintf(stderr, " # %s %d\n", attr.name().c_str(), attr.type());
}
}
}
fprintf(pp, "\n");
for (int j = 0; j < output_size; j++)
{
const std::string& output_name = node.output(j);
if (node_reference.find(output_name) != node_reference.end())
{
int refcount = node_reference[output_name];
if (refcount > 1)
{
char splitname[256];
sprintf(splitname, "splitncnn_%d", internal_split);
fprintf(pp, "%-16s %-24s %d %d", "Split", splitname, 1, refcount);
fprintf(pp, " %s", output_name.c_str());
for (int k = 0; k < refcount; k++)
{
fprintf(pp, " %s_splitncnn_%d", output_name.c_str(), k);
}
fprintf(pp, "\n");
internal_split++;
}
}
}
}
fclose(pp);
fclose(bp);
return 0;
}