1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
		
			
				
	
	
		
			96 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			96 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* This sample demonstrates the way you can perform independent tasks
 | 
						|
   on the different GPUs */
 | 
						|
 | 
						|
// Disable some warnings which are caused with CUDA headers
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#pragma warning(disable: 4201 4408 4100)
 | 
						|
#endif
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
#include "opencv2/core.hpp"
 | 
						|
#include "opencv2/cudaarithm.hpp"
 | 
						|
 | 
						|
#if !defined(HAVE_CUDA)
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
    std::cout << "CUDA support is required (OpenCV CMake parameter 'WITH_CUDA' must be true)." << std::endl;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace cv;
 | 
						|
using namespace cv::cuda;
 | 
						|
 | 
						|
struct Worker : public cv::ParallelLoopBody
 | 
						|
{
 | 
						|
    void operator()(const Range& r) const CV_OVERRIDE
 | 
						|
    {
 | 
						|
        for (int i = r.start; i < r.end; ++i) { this->operator()(i); }
 | 
						|
    }
 | 
						|
    void operator()(int device_id) const;
 | 
						|
};
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
    int num_devices = getCudaEnabledDeviceCount();
 | 
						|
    if (num_devices < 2)
 | 
						|
    {
 | 
						|
        std::cout << "Two or more GPUs are required\n";
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    for (int i = 0; i < num_devices; ++i)
 | 
						|
    {
 | 
						|
        cv::cuda::printShortCudaDeviceInfo(i);
 | 
						|
 | 
						|
        DeviceInfo dev_info(i);
 | 
						|
        if (!dev_info.isCompatible())
 | 
						|
        {
 | 
						|
            std::cout << "CUDA module isn't built for GPU #" << i << " ("
 | 
						|
                 << dev_info.name() << ", CC " << dev_info.majorVersion()
 | 
						|
                 << dev_info.minorVersion() << "\n";
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Execute calculation in two threads using two GPUs
 | 
						|
    cv::Range devices(0, 2);
 | 
						|
    cv::parallel_for_(devices, Worker(), devices.size());
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Worker::operator()(int device_id) const
 | 
						|
{
 | 
						|
    setDevice(device_id);
 | 
						|
 | 
						|
    Mat src(1000, 1000, CV_32F);
 | 
						|
    Mat dst;
 | 
						|
 | 
						|
    RNG rng(0);
 | 
						|
    rng.fill(src, RNG::UNIFORM, 0, 1);
 | 
						|
 | 
						|
    // CPU works
 | 
						|
    cv::transpose(src, dst);
 | 
						|
 | 
						|
    // GPU works
 | 
						|
    GpuMat d_src(src);
 | 
						|
    GpuMat d_dst;
 | 
						|
    cuda::transpose(d_src, d_dst);
 | 
						|
 | 
						|
    // Check results
 | 
						|
    bool passed = cv::norm(dst - Mat(d_dst), NORM_INF) < 1e-3;
 | 
						|
    std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): "
 | 
						|
        << (passed ? "passed" : "FAILED") << endl;
 | 
						|
 | 
						|
    // Deallocate data here, otherwise deallocation will be performed
 | 
						|
    // after context is extracted from the stack
 | 
						|
    d_src.release();
 | 
						|
    d_dst.release();
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |