juicysfplugin/modules/juce_core/containers/juce_Variant.h

367 lines
16 KiB
C
Raw Normal View History

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2017 - ROLI Ltd.
JUCE is an open source library subject to commercial or open-source
licensing.
The code included in this file is provided under the terms of the ISC license
http://www.isc.org/downloads/software-support-policy/isc-license. Permission
To use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted provided that the above copyright notice and
this permission notice appear in all copies.
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A variant class, that can be used to hold a range of primitive values.
A var object can hold a range of simple primitive values, strings, or
any kind of ReferenceCountedObject. The var class is intended to act like
the kind of values used in dynamic scripting languages.
You can save/load var objects either in a small, proprietary binary format
using writeToStream()/readFromStream(), or as JSON by using the JSON class.
@see JSON, DynamicObject
@tags{Core}
*/
class JUCE_API var
{
public:
//==============================================================================
/** This structure is passed to a NativeFunction callback, and contains invocation
details about the function's arguments and context.
*/
struct JUCE_API NativeFunctionArgs
{
NativeFunctionArgs (const var& thisObject, const var* args, int numArgs) noexcept;
// Suppress a VS2013 compiler warning
NativeFunctionArgs& operator= (const NativeFunctionArgs&) = delete;
const var& thisObject;
const var* arguments;
int numArguments;
};
using NativeFunction = std::function<var (const NativeFunctionArgs&)>;
//==============================================================================
/** Creates a void variant. */
var() noexcept;
/** Destructor. */
~var() noexcept;
var (const var& valueToCopy);
var (int value) noexcept;
var (int64 value) noexcept;
var (bool value) noexcept;
var (double value) noexcept;
var (const char* value);
var (const wchar_t* value);
var (const String& value);
var (const Array<var>& value);
var (const StringArray& value);
var (ReferenceCountedObject* object);
var (NativeFunction method) noexcept;
var (const void* binaryData, size_t dataSize);
var (const MemoryBlock& binaryData);
var& operator= (const var& valueToCopy);
var& operator= (int value);
var& operator= (int64 value);
var& operator= (bool value);
var& operator= (double value);
var& operator= (const char* value);
var& operator= (const wchar_t* value);
var& operator= (const String& value);
var& operator= (const MemoryBlock& value);
var& operator= (const Array<var>& value);
var& operator= (ReferenceCountedObject* object);
var& operator= (NativeFunction method);
var (var&&) noexcept;
var (String&&);
var (MemoryBlock&&);
var (Array<var>&&);
var& operator= (var&&) noexcept;
var& operator= (String&&);
void swapWith (var& other) noexcept;
/** Returns a var object that can be used where you need the javascript "undefined" value. */
static var undefined() noexcept;
//==============================================================================
operator int() const noexcept;
operator int64() const noexcept;
operator bool() const noexcept;
operator float() const noexcept;
operator double() const noexcept;
operator String() const;
String toString() const;
/** If this variant holds an array, this provides access to it.
NOTE: Beware when you use this - the array pointer is only valid for the lifetime
of the variant that returned it, so be very careful not to call this method on temporary
var objects that are the return-value of a function, and which may go out of scope before
you use the array!
*/
Array<var>* getArray() const noexcept;
/** If this variant holds a memory block, this provides access to it.
NOTE: Beware when you use this - the MemoryBlock pointer is only valid for the lifetime
of the variant that returned it, so be very careful not to call this method on temporary
var objects that are the return-value of a function, and which may go out of scope before
you use the MemoryBlock!
*/
MemoryBlock* getBinaryData() const noexcept;
ReferenceCountedObject* getObject() const noexcept;
DynamicObject* getDynamicObject() const noexcept;
//==============================================================================
bool isVoid() const noexcept;
bool isUndefined() const noexcept;
bool isInt() const noexcept;
bool isInt64() const noexcept;
bool isBool() const noexcept;
bool isDouble() const noexcept;
bool isString() const noexcept;
bool isObject() const noexcept;
bool isArray() const noexcept;
bool isBinaryData() const noexcept;
bool isMethod() const noexcept;
/** Returns true if this var has the same value as the one supplied.
Note that this ignores the type, so a string var "123" and an integer var with the
value 123 are considered to be equal.
@see equalsWithSameType
*/
bool equals (const var& other) const noexcept;
/** Returns true if this var has the same value and type as the one supplied.
This differs from equals() because e.g. "123" and 123 will be considered different.
@see equals
*/
bool equalsWithSameType (const var& other) const noexcept;
/** Returns true if this var has the same type as the one supplied. */
bool hasSameTypeAs (const var& other) const noexcept;
/** Returns a deep copy of this object.
For simple types this just returns a copy, but if the object contains any arrays
or DynamicObjects, they will be cloned (recursively).
*/
var clone() const noexcept;
//==============================================================================
/** If the var is an array, this returns the number of elements.
If the var isn't actually an array, this will return 0.
*/
int size() const;
/** If the var is an array, this can be used to return one of its elements.
To call this method, you must make sure that the var is actually an array, and
that the index is a valid number. If these conditions aren't met, behaviour is
undefined.
For more control over the array's contents, you can call getArray() and manipulate
it directly as an Array\<var\>.
*/
const var& operator[] (int arrayIndex) const;
/** If the var is an array, this can be used to return one of its elements.
To call this method, you must make sure that the var is actually an array, and
that the index is a valid number. If these conditions aren't met, behaviour is
undefined.
For more control over the array's contents, you can call getArray() and manipulate
it directly as an Array\<var\>.
*/
var& operator[] (int arrayIndex);
/** Appends an element to the var, converting it to an array if it isn't already one.
If the var isn't an array, it will be converted to one, and if its value was non-void,
this value will be kept as the first element of the new array. The parameter value
will then be appended to it.
For more control over the array's contents, you can call getArray() and manipulate
it directly as an Array\<var\>.
*/
void append (const var& valueToAppend);
/** Inserts an element to the var, converting it to an array if it isn't already one.
If the var isn't an array, it will be converted to one, and if its value was non-void,
this value will be kept as the first element of the new array. The parameter value
will then be inserted into it.
For more control over the array's contents, you can call getArray() and manipulate
it directly as an Array\<var\>.
*/
void insert (int index, const var& value);
/** If the var is an array, this removes one of its elements.
If the index is out-of-range or the var isn't an array, nothing will be done.
For more control over the array's contents, you can call getArray() and manipulate
it directly as an Array\<var\>.
*/
void remove (int index);
/** Treating the var as an array, this resizes it to contain the specified number of elements.
If the var isn't an array, it will be converted to one, and if its value was non-void,
this value will be kept as the first element of the new array before resizing.
For more control over the array's contents, you can call getArray() and manipulate
it directly as an Array\<var\>.
*/
void resize (int numArrayElementsWanted);
/** If the var is an array, this searches it for the first occurrence of the specified value,
and returns its index.
If the var isn't an array, or if the value isn't found, this returns -1.
*/
int indexOf (const var& value) const;
//==============================================================================
/** If this variant is an object, this returns one of its properties. */
const var& operator[] (const Identifier& propertyName) const;
/** If this variant is an object, this returns one of its properties. */
const var& operator[] (const char* propertyName) const;
/** If this variant is an object, this returns one of its properties, or a default
fallback value if the property is not set. */
var getProperty (const Identifier& propertyName, const var& defaultReturnValue) const;
/** Returns true if this variant is an object and if it has the given property. */
bool hasProperty (const Identifier& propertyName) const noexcept;
/** Invokes a named method call with no arguments. */
var call (const Identifier& method) const;
/** Invokes a named method call with one argument. */
var call (const Identifier& method, const var& arg1) const;
/** Invokes a named method call with 2 arguments. */
var call (const Identifier& method, const var& arg1, const var& arg2) const;
/** Invokes a named method call with 3 arguments. */
var call (const Identifier& method, const var& arg1, const var& arg2, const var& arg3);
/** Invokes a named method call with 4 arguments. */
var call (const Identifier& method, const var& arg1, const var& arg2, const var& arg3, const var& arg4) const;
/** Invokes a named method call with 5 arguments. */
var call (const Identifier& method, const var& arg1, const var& arg2, const var& arg3, const var& arg4, const var& arg5) const;
/** Invokes a named method call with a list of arguments. */
var invoke (const Identifier& method, const var* arguments, int numArguments) const;
/** If this object is a method, this returns the function pointer. */
NativeFunction getNativeFunction() const;
//==============================================================================
/** Writes a binary representation of this value to a stream.
The data can be read back later using readFromStream().
@see JSON
*/
void writeToStream (OutputStream& output) const;
/** Reads back a stored binary representation of a value.
The data in the stream must have been written using writeToStream(), or this
will have unpredictable results.
@see JSON
*/
static var readFromStream (InputStream& input);
/* This was a static empty var object, but is now deprecated as it's too easy to accidentally
use it indirectly during a static constructor, leading to hard-to-find order-of-initialisation
problems.
@deprecated If you need a default-constructed var, just use var() or {}.
The only time you might miss having var::null available might be if you need to return an
empty var from a function by reference, but if you need to do that, it's easy enough to use
a function-local static var and return that, avoiding any order-of-initialisation issues.
*/
JUCE_DEPRECATED_STATIC (static const var null;)
private:
//==============================================================================
class VariantType;
class VariantType_Void;
class VariantType_Undefined;
class VariantType_Int;
class VariantType_Int64;
class VariantType_Double;
class VariantType_Bool;
class VariantType_String;
class VariantType_Object;
class VariantType_Array;
class VariantType_Binary;
class VariantType_Method;
union ValueUnion
{
int intValue;
int64 int64Value;
bool boolValue;
double doubleValue;
char stringValue [sizeof (String)];
ReferenceCountedObject* objectValue;
MemoryBlock* binaryValue;
NativeFunction* methodValue;
};
friend bool canCompare (const var&, const var&);
const VariantType* type;
ValueUnion value;
Array<var>* convertToArray();
var (const VariantType&) noexcept;
// This is needed to prevent the wrong constructor/operator being called
var (const ReferenceCountedObject*) = delete;
var& operator= (const ReferenceCountedObject*) = delete;
};
/** Compares the values of two var objects, using the var::equals() comparison. */
JUCE_API bool operator== (const var&, const var&);
/** Compares the values of two var objects, using the var::equals() comparison. */
JUCE_API bool operator!= (const var&, const var&);
/** Compares the values of two var objects, using the var::equals() comparison. */
JUCE_API bool operator< (const var&, const var&);
/** Compares the values of two var objects, using the var::equals() comparison. */
JUCE_API bool operator<= (const var&, const var&);
/** Compares the values of two var objects, using the var::equals() comparison. */
JUCE_API bool operator> (const var&, const var&);
/** Compares the values of two var objects, using the var::equals() comparison. */
JUCE_API bool operator>= (const var&, const var&);
JUCE_API bool operator== (const var&, const String&);
JUCE_API bool operator!= (const var&, const String&);
JUCE_API bool operator== (const var&, const char*);
JUCE_API bool operator!= (const var&, const char*);
//==============================================================================
/** This template-overloaded class can be used to convert between var and custom types.
@tags{Core}
*/
template <typename Type>
struct VariantConverter
{
static Type fromVar (const var& v) { return static_cast<Type> (v); }
static var toVar (const Type& t) { return t; }
};
#ifndef DOXYGEN
template <>
struct VariantConverter<String>
{
static String fromVar (const var& v) { return v.toString(); }
static var toVar (const String& s) { return s; }
};
#endif
} // namespace juce