juicysfplugin/modules/juce_dsp/processors/juce_Oversampling.cpp

718 lines
28 KiB
C++
Raw Normal View History

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2017 - ROLI Ltd.
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 5 End-User License
Agreement and JUCE 5 Privacy Policy (both updated and effective as of the
27th April 2017).
End User License Agreement: www.juce.com/juce-5-licence
Privacy Policy: www.juce.com/juce-5-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
/** Abstract class for the provided oversampling engines used internally in
the Oversampling class.
*/
template <typename SampleType>
class OversamplingEngine
{
public:
//===============================================================================
OversamplingEngine (size_t newNumChannels, size_t newFactor)
{
numChannels = newNumChannels;
factor = newFactor;
}
virtual ~OversamplingEngine() {}
//===============================================================================
virtual SampleType getLatencyInSamples() = 0;
size_t getFactor() { return factor; }
virtual void initProcessing (size_t maximumNumberOfSamplesBeforeOversampling)
{
buffer.setSize (static_cast<int> (numChannels), static_cast<int> (maximumNumberOfSamplesBeforeOversampling * factor), false, false, true);
}
virtual void reset()
{
buffer.clear();
}
dsp::AudioBlock<SampleType> getProcessedSamples (size_t numSamples)
{
return dsp::AudioBlock<SampleType> (buffer).getSubBlock (0, numSamples);
}
virtual void processSamplesUp (dsp::AudioBlock<SampleType> &inputBlock) = 0;
virtual void processSamplesDown (dsp::AudioBlock<SampleType> &outputBlock) = 0;
protected:
//===============================================================================
AudioBuffer<SampleType> buffer;
size_t factor;
size_t numChannels;
};
//===============================================================================
/** Dummy oversampling engine class which simply copies and pastes the input
signal, which could be equivalent to a "one time" oversampling processing.
*/
template <typename SampleType>
class OversamplingDummy : public OversamplingEngine<SampleType>
{
public:
//===============================================================================
OversamplingDummy (size_t numChannels) : OversamplingEngine<SampleType> (numChannels, 1) {}
~OversamplingDummy() {}
//===============================================================================
SampleType getLatencyInSamples() override
{
return 0.f;
}
void processSamplesUp (dsp::AudioBlock<SampleType> &inputBlock) override
{
jassert (inputBlock.getNumChannels() <= static_cast<size_t> (OversamplingEngine<SampleType>::buffer.getNumChannels()));
jassert (inputBlock.getNumSamples() * OversamplingEngine<SampleType>::factor <= static_cast<size_t> (OversamplingEngine<SampleType>::buffer.getNumSamples()));
for (size_t channel = 0; channel < inputBlock.getNumChannels(); channel++)
OversamplingEngine<SampleType>::buffer.copyFrom (static_cast<int> (channel), 0,
inputBlock.getChannelPointer (channel), static_cast<int> (inputBlock.getNumSamples()));
}
void processSamplesDown (dsp::AudioBlock<SampleType> &outputBlock) override
{
jassert (outputBlock.getNumChannels() <= static_cast<size_t> (OversamplingEngine<SampleType>::buffer.getNumChannels()));
jassert (outputBlock.getNumSamples() * OversamplingEngine<SampleType>::factor <= static_cast<size_t> (OversamplingEngine<SampleType>::buffer.getNumSamples()));
outputBlock.copy (OversamplingEngine<SampleType>::getProcessedSamples (outputBlock.getNumSamples()));
}
private:
//===============================================================================
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (OversamplingDummy)
};
//===============================================================================
/** Oversampling engine class performing 2 times oversampling using the Filter
Design FIR Equiripple method. The resulting filter is linear phase,
symmetric, and has every two samples but the middle one equal to zero,
leading to specific processing optimizations.
*/
template <typename SampleType>
class Oversampling2TimesEquirippleFIR : public OversamplingEngine<SampleType>
{
public:
//===============================================================================
Oversampling2TimesEquirippleFIR (size_t numChannels,
SampleType normalizedTransitionWidthUp,
SampleType stopbandAttenuationdBUp,
SampleType normalizedTransitionWidthDown,
SampleType stopbandAttenuationdBDown) : OversamplingEngine<SampleType> (numChannels, 2)
{
coefficientsUp = *dsp::FilterDesign<SampleType>::designFIRLowpassHalfBandEquirippleMethod (normalizedTransitionWidthUp, stopbandAttenuationdBUp);
coefficientsDown = *dsp::FilterDesign<SampleType>::designFIRLowpassHalfBandEquirippleMethod (normalizedTransitionWidthDown, stopbandAttenuationdBDown);
auto N = coefficientsUp.getFilterOrder() + 1;
stateUp.setSize (static_cast<int> (numChannels), static_cast<int> (N));
N = coefficientsDown.getFilterOrder() + 1;
auto Ndiv2 = N / 2;
auto Ndiv4 = Ndiv2 / 2;
stateDown.setSize (static_cast<int> (numChannels), static_cast<int> (N));
stateDown2.setSize (static_cast<int> (numChannels), static_cast<int> (Ndiv4 + 1));
position.resize (static_cast<int> (numChannels));
}
~Oversampling2TimesEquirippleFIR() {}
//===============================================================================
SampleType getLatencyInSamples() override
{
return static_cast<SampleType> (coefficientsUp.getFilterOrder() + coefficientsDown.getFilterOrder()) * 0.5f;
}
void reset() override
{
OversamplingEngine<SampleType>::reset();
stateUp.clear();
stateDown.clear();
stateDown2.clear();
position.fill (0);
}
void processSamplesUp (dsp::AudioBlock<SampleType> &inputBlock) override
{
jassert (inputBlock.getNumChannels() <= static_cast<size_t> (OversamplingEngine<SampleType>::buffer.getNumChannels()));
jassert (inputBlock.getNumSamples() * OversamplingEngine<SampleType>::factor <= static_cast<size_t> (OversamplingEngine<SampleType>::buffer.getNumSamples()));
// Initialization
auto fir = coefficientsUp.getRawCoefficients();
auto N = coefficientsUp.getFilterOrder() + 1;
auto Ndiv2 = N / 2;
auto numSamples = inputBlock.getNumSamples();
// Processing
for (size_t channel = 0; channel < inputBlock.getNumChannels(); channel++)
{
auto bufferSamples = OversamplingEngine<SampleType>::buffer.getWritePointer (static_cast<int> (channel));
auto buf = stateUp.getWritePointer (static_cast<int> (channel));
auto samples = inputBlock.getChannelPointer (channel);
for (size_t i = 0; i < numSamples; i++)
{
// Input
buf[N - 1] = 2 * samples[i];
// Convolution
auto out = static_cast<SampleType> (0.0);
for (size_t k = 0; k < Ndiv2; k += 2)
out += (buf[k] + buf[N - k - 1]) * fir[k];
// Outputs
bufferSamples[i << 1] = out;
bufferSamples[(i << 1) + 1] = buf[Ndiv2 + 1] * fir[Ndiv2];
// Shift data
for (size_t k = 0; k < N - 2; k += 2)
buf[k] = buf[k + 2];
}
}
}
void processSamplesDown (dsp::AudioBlock<SampleType> &outputBlock) override
{
jassert (outputBlock.getNumChannels() <= static_cast<size_t> (OversamplingEngine<SampleType>::buffer.getNumChannels()));
jassert (outputBlock.getNumSamples() * OversamplingEngine<SampleType>::factor <= static_cast<size_t> (OversamplingEngine<SampleType>::buffer.getNumSamples()));
// Initialization
auto fir = coefficientsDown.getRawCoefficients();
auto N = coefficientsDown.getFilterOrder() + 1;
auto Ndiv2 = N / 2;
auto Ndiv4 = Ndiv2 / 2;
auto numSamples = outputBlock.getNumSamples();
// Processing
for (size_t channel = 0; channel < outputBlock.getNumChannels(); channel++)
{
auto bufferSamples = OversamplingEngine<SampleType>::buffer.getWritePointer (static_cast<int> (channel));
auto buf = stateDown.getWritePointer (static_cast<int> (channel));
auto buf2 = stateDown2.getWritePointer (static_cast<int> (channel));
auto samples = outputBlock.getChannelPointer (channel);
auto pos = position.getUnchecked (static_cast<int> (channel));
for (size_t i = 0; i < numSamples; i++)
{
// Input
buf[N - 1] = bufferSamples[i << 1];
// Convolution
auto out = static_cast<SampleType> (0.0);
for (size_t k = 0; k < Ndiv2; k += 2)
out += (buf[k] + buf[N - k - 1]) * fir[k];
// Output
out += buf2[pos] * fir[Ndiv2];
buf2[pos] = bufferSamples[(i << 1) + 1];
samples[i] = out;
// Shift data
for (size_t k = 0; k < N - 2; k++)
buf[k] = buf[k + 2];
// Circular buffer
pos = (pos == 0 ? Ndiv4 : pos - 1);
}
position.setUnchecked (static_cast<int> (channel), pos);
}
}
private:
//===============================================================================
dsp::FIR::Coefficients<SampleType> coefficientsUp, coefficientsDown;
AudioBuffer<SampleType> stateUp, stateDown, stateDown2;
Array<size_t> position;
//===============================================================================
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (Oversampling2TimesEquirippleFIR)
};
//===============================================================================
/** Oversampling engine class performing 2 times oversampling using the Filter
Design IIR Polyphase Allpass Cascaded method. The resulting filter is minimum
phase, and provided with a method to get the exact resulting latency.
*/
template <typename SampleType>
class Oversampling2TimesPolyphaseIIR : public OversamplingEngine<SampleType>
{
public:
//===============================================================================
Oversampling2TimesPolyphaseIIR (size_t numChannels,
SampleType normalizedTransitionWidthUp,
SampleType stopbandAttenuationdBUp,
SampleType normalizedTransitionWidthDown,
SampleType stopbandAttenuationdBDown) : OversamplingEngine<SampleType> (numChannels, 2)
{
auto structureUp = dsp::FilterDesign<SampleType>::designIIRLowpassHalfBandPolyphaseAllpassMethod (normalizedTransitionWidthUp, stopbandAttenuationdBUp);
dsp::IIR::Coefficients<SampleType> coeffsUp = getCoefficients (structureUp);
latency = static_cast<SampleType> (-(coeffsUp.getPhaseForFrequency (0.0001, 1.0)) / (0.0001 * MathConstants<double>::twoPi));
auto structureDown = dsp::FilterDesign<SampleType>::designIIRLowpassHalfBandPolyphaseAllpassMethod (normalizedTransitionWidthDown, stopbandAttenuationdBDown);
dsp::IIR::Coefficients<SampleType> coeffsDown = getCoefficients (structureDown);
latency += static_cast<SampleType> (-(coeffsDown.getPhaseForFrequency (0.0001, 1.0)) / (0.0001 * MathConstants<double>::twoPi));
for (auto i = 0; i < structureUp.directPath.size(); i++)
coefficientsUp.add (structureUp.directPath[i].coefficients[0]);
for (auto i = 1; i < structureUp.delayedPath.size(); i++)
coefficientsUp.add (structureUp.delayedPath[i].coefficients[0]);
for (auto i = 0; i < structureDown.directPath.size(); i++)
coefficientsDown.add (structureDown.directPath[i].coefficients[0]);
for (auto i = 1; i < structureDown.delayedPath.size(); i++)
coefficientsDown.add (structureDown.delayedPath[i].coefficients[0]);
v1Up.setSize (static_cast<int> (numChannels), coefficientsUp.size());
v1Down.setSize (static_cast<int> (numChannels), coefficientsDown.size());
delayDown.resize (static_cast<int> (numChannels));
}
~Oversampling2TimesPolyphaseIIR() {}
//===============================================================================
SampleType getLatencyInSamples() override
{
return latency;
}
void reset() override
{
OversamplingEngine<SampleType>::reset();
v1Up.clear();
v1Down.clear();
delayDown.fill (0);
}
void processSamplesUp (dsp::AudioBlock<SampleType> &inputBlock) override
{
jassert (inputBlock.getNumChannels() <= static_cast<size_t> (OversamplingEngine<SampleType>::buffer.getNumChannels()));
jassert (inputBlock.getNumSamples() * OversamplingEngine<SampleType>::factor <= static_cast<size_t> (OversamplingEngine<SampleType>::buffer.getNumSamples()));
// Initialization
auto coeffs = coefficientsUp.getRawDataPointer();
auto numStages = coefficientsUp.size();
auto delayedStages = numStages / 2;
auto directStages = numStages - delayedStages;
auto numSamples = inputBlock.getNumSamples();
// Processing
for (size_t channel = 0; channel < inputBlock.getNumChannels(); channel++)
{
auto bufferSamples = OversamplingEngine<SampleType>::buffer.getWritePointer (static_cast<int> (channel));
auto lv1 = v1Up.getWritePointer (static_cast<int> (channel));
auto samples = inputBlock.getChannelPointer (channel);
for (size_t i = 0; i < numSamples; i++)
{
// Direct path cascaded allpass filters
auto input = samples[i];
for (auto n = 0; n < directStages; n++)
{
auto alpha = coeffs[n];
auto output = alpha * input + lv1[n];
lv1[n] = input - alpha * output;
input = output;
}
// Output
bufferSamples[i << 1] = input;
// Delayed path cascaded allpass filters
input = samples[i];
for (auto n = directStages; n < numStages; n++)
{
auto alpha = coeffs[n];
auto output = alpha * input + lv1[n];
lv1[n] = input - alpha * output;
input = output;
}
// Output
bufferSamples[(i << 1) + 1] = input;
}
}
// Snap To Zero
snapToZero (true);
}
void processSamplesDown (dsp::AudioBlock<SampleType> &outputBlock) override
{
jassert (outputBlock.getNumChannels() <= static_cast<size_t> (OversamplingEngine<SampleType>::buffer.getNumChannels()));
jassert (outputBlock.getNumSamples() * OversamplingEngine<SampleType>::factor <= static_cast<size_t> (OversamplingEngine<SampleType>::buffer.getNumSamples()));
// Initialization
auto coeffs = coefficientsDown.getRawDataPointer();
auto numStages = coefficientsDown.size();
auto delayedStages = numStages / 2;
auto directStages = numStages - delayedStages;
auto numSamples = outputBlock.getNumSamples();
// Processing
for (size_t channel = 0; channel < outputBlock.getNumChannels(); channel++)
{
auto bufferSamples = OversamplingEngine<SampleType>::buffer.getWritePointer (static_cast<int> (channel));
auto lv1 = v1Down.getWritePointer (static_cast<int> (channel));
auto samples = outputBlock.getChannelPointer (channel);
auto delay = delayDown.getUnchecked (static_cast<int> (channel));
for (size_t i = 0; i < numSamples; i++)
{
// Direct path cascaded allpass filters
auto input = bufferSamples[i << 1];
for (auto n = 0; n < directStages; n++)
{
auto alpha = coeffs[n];
auto output = alpha * input + lv1[n];
lv1[n] = input - alpha * output;
input = output;
}
auto directOut = input;
// Delayed path cascaded allpass filters
input = bufferSamples[(i << 1) + 1];
for (auto n = directStages; n < numStages; n++)
{
auto alpha = coeffs[n];
auto output = alpha * input + lv1[n];
lv1[n] = input - alpha * output;
input = output;
}
// Output
samples[i] = (delay + directOut) * static_cast<SampleType> (0.5);
delay = input;
}
delayDown.setUnchecked (static_cast<int> (channel), delay);
}
// Snap To Zero
snapToZero (false);
}
void snapToZero (bool snapUpProcessing)
{
if (snapUpProcessing)
{
for (auto channel = 0; channel < OversamplingEngine<SampleType>::buffer.getNumChannels(); channel++)
{
auto lv1 = v1Up.getWritePointer (channel);
auto numStages = coefficientsUp.size();
for (auto n = 0; n < numStages; n++)
util::snapToZero (lv1[n]);
}
}
else
{
for (auto channel = 0; channel < OversamplingEngine<SampleType>::buffer.getNumChannels(); channel++)
{
auto lv1 = v1Down.getWritePointer (channel);
auto numStages = coefficientsDown.size();
for (auto n = 0; n < numStages; n++)
util::snapToZero (lv1[n]);
}
}
}
private:
//===============================================================================
/** This function calculates the equivalent high order IIR filter of a given
polyphase cascaded allpass filters structure.
*/
const dsp::IIR::Coefficients<SampleType> getCoefficients (typename dsp::FilterDesign<SampleType>::IIRPolyphaseAllpassStructure& structure) const
{
dsp::Polynomial<SampleType> numerator1 ({ static_cast<SampleType> (1.0) });
dsp::Polynomial<SampleType> denominator1 ({ static_cast<SampleType> (1.0) });
dsp::Polynomial<SampleType> numerator2 ({ static_cast<SampleType> (1.0) });
dsp::Polynomial<SampleType> denominator2 ({ static_cast<SampleType> (1.0) });
dsp::Polynomial<SampleType> temp;
for (auto n = 0; n < structure.directPath.size(); n++)
{
auto* coeffs = structure.directPath.getReference (n).getRawCoefficients();
if (structure.directPath[n].getFilterOrder() == 1)
{
temp = dsp::Polynomial<SampleType> ({ coeffs[0], coeffs[1] });
numerator1 = numerator1.getProductWith (temp);
temp = dsp::Polynomial<SampleType> ({ static_cast<SampleType> (1.0), coeffs[2] });
denominator1 = denominator1.getProductWith (temp);
}
else
{
temp = dsp::Polynomial<SampleType> ({ coeffs[0], coeffs[1], coeffs[2] });
numerator1 = numerator1.getProductWith (temp);
temp = dsp::Polynomial<SampleType> ({ static_cast<SampleType> (1.0), coeffs[3], coeffs[4] });
denominator1 = denominator1.getProductWith (temp);
}
}
for (auto n = 0; n < structure.delayedPath.size(); n++)
{
auto* coeffs = structure.delayedPath.getReference (n).getRawCoefficients();
if (structure.delayedPath[n].getFilterOrder() == 1)
{
temp = dsp::Polynomial<SampleType> ({ coeffs[0], coeffs[1] });
numerator2 = numerator2.getProductWith (temp);
temp = dsp::Polynomial<SampleType> ({ static_cast<SampleType> (1.0), coeffs[2] });
denominator2 = denominator2.getProductWith (temp);
}
else
{
temp = dsp::Polynomial<SampleType> ({ coeffs[0], coeffs[1], coeffs[2] });
numerator2 = numerator2.getProductWith (temp);
temp = dsp::Polynomial<SampleType> ({ static_cast<SampleType> (1.0), coeffs[3], coeffs[4] });
denominator2 = denominator2.getProductWith (temp);
}
}
dsp::Polynomial<SampleType> numeratorf1 = numerator1.getProductWith (denominator2);
dsp::Polynomial<SampleType> numeratorf2 = numerator2.getProductWith (denominator1);
dsp::Polynomial<SampleType> numerator = numeratorf1.getSumWith (numeratorf2);
dsp::Polynomial<SampleType> denominator = denominator1.getProductWith (denominator2);
dsp::IIR::Coefficients<SampleType> coeffs;
coeffs.coefficients.clear();
auto inversion = static_cast<SampleType> (1.0) / denominator[0];
for (auto i = 0; i <= numerator.getOrder(); i++)
coeffs.coefficients.add (numerator[i] * inversion);
for (auto i = 1; i <= denominator.getOrder(); i++)
coeffs.coefficients.add (denominator[i] * inversion);
return coeffs;
}
//===============================================================================
Array<SampleType> coefficientsUp, coefficientsDown;
SampleType latency;
AudioBuffer<SampleType> v1Up, v1Down;
Array<SampleType> delayDown;
//===============================================================================
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (Oversampling2TimesPolyphaseIIR)
};
//===============================================================================
template <typename SampleType>
Oversampling<SampleType>::Oversampling (size_t newNumChannels, size_t newFactor, FilterType newType, bool newMaxQuality)
{
jassert (newFactor >= 0 && newFactor <= 4 && newNumChannels > 0);
factorOversampling = static_cast<size_t> (1) << newFactor;
isMaximumQuality = newMaxQuality;
type = newType;
numChannels = newNumChannels;
if (newFactor == 0)
{
numStages = 1;
engines.add (new OversamplingDummy<SampleType> (numChannels));
}
else if (type == FilterType::filterHalfBandPolyphaseIIR)
{
numStages = newFactor;
for (size_t n = 0; n < numStages; n++)
{
auto twUp = (isMaximumQuality ? 0.10f : 0.12f) * (n == 0 ? 0.5f : 1.f);
auto twDown = (isMaximumQuality ? 0.12f : 0.15f) * (n == 0 ? 0.5f : 1.f);
auto gaindBStartUp = (isMaximumQuality ? -75.f : -65.f);
auto gaindBStartDown = (isMaximumQuality ? -70.f : -60.f);
auto gaindBFactorUp = (isMaximumQuality ? 10.f : 8.f);
auto gaindBFactorDown = (isMaximumQuality ? 10.f : 8.f);
engines.add (new Oversampling2TimesPolyphaseIIR<SampleType> (numChannels,
twUp, gaindBStartUp + gaindBFactorUp * n,
twDown, gaindBStartDown + gaindBFactorDown * n));
}
}
else if (type == FilterType::filterHalfBandFIREquiripple)
{
numStages = newFactor;
for (size_t n = 0; n < numStages; n++)
{
auto twUp = (isMaximumQuality ? 0.10f : 0.12f) * (n == 0 ? 0.5f : 1.f);
auto twDown = (isMaximumQuality ? 0.12f : 0.15f) * (n == 0 ? 0.5f : 1.f);
auto gaindBStartUp = (isMaximumQuality ? -90.f : -70.f);
auto gaindBStartDown = (isMaximumQuality ? -70.f : -60.f);
auto gaindBFactorUp = (isMaximumQuality ? 10.f : 8.f);
auto gaindBFactorDown = (isMaximumQuality ? 10.f : 8.f);
engines.add (new Oversampling2TimesEquirippleFIR<SampleType> (numChannels,
twUp, gaindBStartUp + gaindBFactorUp * n,
twDown, gaindBStartDown + gaindBFactorDown * n));
}
}
}
template <typename SampleType>
Oversampling<SampleType>::~Oversampling()
{
engines.clear();
}
//===============================================================================
template <typename SampleType>
SampleType Oversampling<SampleType>::getLatencyInSamples() noexcept
{
auto latency = static_cast<SampleType> (0);
size_t order = 1;
for (size_t n = 0; n < numStages; n++)
{
auto& engine = *engines[static_cast<int> (n)];
order *= engine.getFactor();
latency += engine.getLatencyInSamples() / static_cast<SampleType> (order);
}
return latency;
}
template <typename SampleType>
size_t Oversampling<SampleType>::getOversamplingFactor() noexcept
{
return factorOversampling;
}
//===============================================================================
template <typename SampleType>
void Oversampling<SampleType>::initProcessing (size_t maximumNumberOfSamplesBeforeOversampling)
{
jassert (! engines.isEmpty());
auto currentNumSamples = maximumNumberOfSamplesBeforeOversampling;
for (size_t n = 0; n < numStages; n++)
{
auto& engine = *engines[static_cast<int> (n)];
engine.initProcessing (currentNumSamples);
currentNumSamples *= engine.getFactor();
}
isReady = true;
reset();
}
template <typename SampleType>
void Oversampling<SampleType>::reset() noexcept
{
jassert (! engines.isEmpty());
if (isReady)
for (auto n = 0; n < engines.size(); n++)
engines[n]->reset();
}
template <typename SampleType>
typename dsp::AudioBlock<SampleType> Oversampling<SampleType>::processSamplesUp (const dsp::AudioBlock<SampleType> &inputBlock) noexcept
{
jassert (! engines.isEmpty());
if (! isReady)
return dsp::AudioBlock<SampleType>();
dsp::AudioBlock<SampleType> audioBlock = inputBlock;
for (size_t n = 0; n < numStages; n++)
{
auto& engine = *engines[static_cast<int> (n)];
engine.processSamplesUp (audioBlock);
audioBlock = engine.getProcessedSamples (audioBlock.getNumSamples() * engine.getFactor());
}
return audioBlock;
}
template <typename SampleType>
void Oversampling<SampleType>::processSamplesDown (dsp::AudioBlock<SampleType> &outputBlock) noexcept
{
jassert (! engines.isEmpty());
if (! isReady)
return;
auto currentNumSamples = outputBlock.getNumSamples();
for (size_t n = 0; n < numStages - 1; n++)
currentNumSamples *= engines[static_cast<int> (n)]->getFactor();
for (size_t n = numStages - 1; n > 0; n--)
{
auto& engine = *engines[static_cast<int> (n)];
auto audioBlock = engines[static_cast<int> (n - 1)]->getProcessedSamples (currentNumSamples);
engine.processSamplesDown (audioBlock);
currentNumSamples /= engine.getFactor();
}
engines[static_cast<int> (0)]->processSamplesDown (outputBlock);
}
template class Oversampling<float>;
template class Oversampling<double>;
} // namespace dsp
} // namespace juce