juicysfplugin/modules/juce_graphics/geometry/juce_Path.cpp

1541 lines
45 KiB
C++
Raw Normal View History

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2017 - ROLI Ltd.
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 5 End-User License
Agreement and JUCE 5 Privacy Policy (both updated and effective as of the
27th April 2017).
End User License Agreement: www.juce.com/juce-5-licence
Privacy Policy: www.juce.com/juce-5-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
// tests that some coordinates aren't NaNs
#define JUCE_CHECK_COORDS_ARE_VALID(x, y) \
jassert (x == x && y == y);
//==============================================================================
namespace PathHelpers
{
const float ellipseAngularIncrement = 0.05f;
static String nextToken (String::CharPointerType& t)
{
t = t.findEndOfWhitespace();
auto start = t;
size_t numChars = 0;
while (! (t.isEmpty() || t.isWhitespace()))
{
++t;
++numChars;
}
return { start, numChars };
}
inline double lengthOf (float x1, float y1, float x2, float y2) noexcept
{
return juce_hypot ((double) (x1 - x2), (double) (y1 - y2));
}
}
//==============================================================================
const float Path::lineMarker = 100001.0f;
const float Path::moveMarker = 100002.0f;
const float Path::quadMarker = 100003.0f;
const float Path::cubicMarker = 100004.0f;
const float Path::closeSubPathMarker = 100005.0f;
const float Path::defaultToleranceForTesting = 1.0f;
const float Path::defaultToleranceForMeasurement = 0.6f;
static inline bool isMarker (float value, float marker) noexcept
{
return value == marker;
}
//==============================================================================
Path::PathBounds::PathBounds() noexcept
{
}
Rectangle<float> Path::PathBounds::getRectangle() const noexcept
{
return { pathXMin, pathYMin, pathXMax - pathXMin, pathYMax - pathYMin };
}
void Path::PathBounds::reset() noexcept
{
pathXMin = pathYMin = pathYMax = pathXMax = 0;
}
void Path::PathBounds::reset (float x, float y) noexcept
{
pathXMin = pathXMax = x;
pathYMin = pathYMax = y;
}
void Path::PathBounds::extend (float x, float y) noexcept
{
if (x < pathXMin) pathXMin = x;
else if (x > pathXMax) pathXMax = x;
if (y < pathYMin) pathYMin = y;
else if (y > pathYMax) pathYMax = y;
}
//==============================================================================
Path::Path()
{
}
Path::~Path()
{
}
Path::Path (const Path& other)
: data (other.data),
bounds (other.bounds),
useNonZeroWinding (other.useNonZeroWinding)
{
}
Path& Path::operator= (const Path& other)
{
if (this != &other)
{
data = other.data;
bounds = other.bounds;
useNonZeroWinding = other.useNonZeroWinding;
}
return *this;
}
Path::Path (Path&& other) noexcept
: data (static_cast<Array<float>&&> (other.data)),
bounds (other.bounds),
useNonZeroWinding (other.useNonZeroWinding)
{
}
Path& Path::operator= (Path&& other) noexcept
{
data = static_cast<Array<float>&&> (other.data);
bounds = other.bounds;
useNonZeroWinding = other.useNonZeroWinding;
return *this;
}
bool Path::operator== (const Path& other) const noexcept { return useNonZeroWinding == other.useNonZeroWinding && data == other.data; }
bool Path::operator!= (const Path& other) const noexcept { return ! operator== (other); }
void Path::clear() noexcept
{
data.clearQuick();
bounds.reset();
}
void Path::swapWithPath (Path& other) noexcept
{
data.swapWith (other.data);
std::swap (bounds.pathXMin, other.bounds.pathXMin);
std::swap (bounds.pathXMax, other.bounds.pathXMax);
std::swap (bounds.pathYMin, other.bounds.pathYMin);
std::swap (bounds.pathYMax, other.bounds.pathYMax);
std::swap (useNonZeroWinding, other.useNonZeroWinding);
}
//==============================================================================
void Path::setUsingNonZeroWinding (const bool isNonZero) noexcept
{
useNonZeroWinding = isNonZero;
}
void Path::scaleToFit (float x, float y, float w, float h, bool preserveProportions) noexcept
{
applyTransform (getTransformToScaleToFit (x, y, w, h, preserveProportions));
}
//==============================================================================
bool Path::isEmpty() const noexcept
{
for (auto i = data.begin(), e = data.end(); i != e; ++i)
{
auto type = *i;
if (isMarker (type, moveMarker))
{
i += 2;
}
else if (isMarker (type, lineMarker)
|| isMarker (type, quadMarker)
|| isMarker (type, cubicMarker))
{
return false;
}
}
return true;
}
Rectangle<float> Path::getBounds() const noexcept
{
return bounds.getRectangle();
}
Rectangle<float> Path::getBoundsTransformed (const AffineTransform& transform) const noexcept
{
return getBounds().transformedBy (transform);
}
//==============================================================================
void Path::preallocateSpace (int numExtraCoordsToMakeSpaceFor)
{
data.ensureStorageAllocated (data.size() + numExtraCoordsToMakeSpaceFor);
}
void Path::startNewSubPath (const float x, const float y)
{
JUCE_CHECK_COORDS_ARE_VALID (x, y)
if (data.isEmpty())
bounds.reset (x, y);
else
bounds.extend (x, y);
data.add (moveMarker, x, y);
}
void Path::startNewSubPath (Point<float> start)
{
startNewSubPath (start.x, start.y);
}
void Path::lineTo (const float x, const float y)
{
JUCE_CHECK_COORDS_ARE_VALID (x, y)
if (data.isEmpty())
startNewSubPath (0, 0);
data.add (lineMarker, x, y);
bounds.extend (x, y);
}
void Path::lineTo (Point<float> end)
{
lineTo (end.x, end.y);
}
void Path::quadraticTo (const float x1, const float y1,
const float x2, const float y2)
{
JUCE_CHECK_COORDS_ARE_VALID (x1, y1)
JUCE_CHECK_COORDS_ARE_VALID (x2, y2)
if (data.isEmpty())
startNewSubPath (0, 0);
data.add (quadMarker, x1, y1, x2, y2);
bounds.extend (x1, y1, x2, y2);
}
void Path::quadraticTo (Point<float> controlPoint, Point<float> endPoint)
{
quadraticTo (controlPoint.x, controlPoint.y,
endPoint.x, endPoint.y);
}
void Path::cubicTo (const float x1, const float y1,
const float x2, const float y2,
const float x3, const float y3)
{
JUCE_CHECK_COORDS_ARE_VALID (x1, y1)
JUCE_CHECK_COORDS_ARE_VALID (x2, y2)
JUCE_CHECK_COORDS_ARE_VALID (x3, y3)
if (data.isEmpty())
startNewSubPath (0, 0);
data.add (cubicMarker, x1, y1, x2, y2, x3, y3);
bounds.extend (x1, y1, x2, y2, x3, y3);
}
void Path::cubicTo (Point<float> controlPoint1,
Point<float> controlPoint2,
Point<float> endPoint)
{
cubicTo (controlPoint1.x, controlPoint1.y,
controlPoint2.x, controlPoint2.y,
endPoint.x, endPoint.y);
}
void Path::closeSubPath()
{
if (! (data.isEmpty() || isMarker (data.getLast(), closeSubPathMarker)))
data.add (closeSubPathMarker);
}
Point<float> Path::getCurrentPosition() const
{
if (data.isEmpty())
return {};
auto* i = data.end() - 1;
if (isMarker (*i, closeSubPathMarker))
{
while (i != data.begin())
{
if (isMarker (*--i, moveMarker))
{
i += 2;
break;
}
}
}
if (i != data.begin())
return { *(i - 1), *i };
return {};
}
void Path::addRectangle (float x, float y, float w, float h)
{
auto x1 = x, y1 = y, x2 = x + w, y2 = y + h;
if (w < 0) std::swap (x1, x2);
if (h < 0) std::swap (y1, y2);
if (data.isEmpty())
{
bounds.pathXMin = x1;
bounds.pathXMax = x2;
bounds.pathYMin = y1;
bounds.pathYMax = y2;
}
else
{
bounds.pathXMin = jmin (bounds.pathXMin, x1);
bounds.pathXMax = jmax (bounds.pathXMax, x2);
bounds.pathYMin = jmin (bounds.pathYMin, y1);
bounds.pathYMax = jmax (bounds.pathYMax, y2);
}
data.add (moveMarker, x1, y2,
lineMarker, x1, y1,
lineMarker, x2, y1,
lineMarker, x2, y2,
closeSubPathMarker);
}
void Path::addRoundedRectangle (float x, float y, float w, float h, float csx, float csy)
{
addRoundedRectangle (x, y, w, h, csx, csy, true, true, true, true);
}
void Path::addRoundedRectangle (const float x, const float y, const float w, const float h,
float csx, float csy,
const bool curveTopLeft, const bool curveTopRight,
const bool curveBottomLeft, const bool curveBottomRight)
{
csx = jmin (csx, w * 0.5f);
csy = jmin (csy, h * 0.5f);
auto cs45x = csx * 0.45f;
auto cs45y = csy * 0.45f;
auto x2 = x + w;
auto y2 = y + h;
if (curveTopLeft)
{
startNewSubPath (x, y + csy);
cubicTo (x, y + cs45y, x + cs45x, y, x + csx, y);
}
else
{
startNewSubPath (x, y);
}
if (curveTopRight)
{
lineTo (x2 - csx, y);
cubicTo (x2 - cs45x, y, x2, y + cs45y, x2, y + csy);
}
else
{
lineTo (x2, y);
}
if (curveBottomRight)
{
lineTo (x2, y2 - csy);
cubicTo (x2, y2 - cs45y, x2 - cs45x, y2, x2 - csx, y2);
}
else
{
lineTo (x2, y2);
}
if (curveBottomLeft)
{
lineTo (x + csx, y2);
cubicTo (x + cs45x, y2, x, y2 - cs45y, x, y2 - csy);
}
else
{
lineTo (x, y2);
}
closeSubPath();
}
void Path::addRoundedRectangle (float x, float y, float w, float h, float cs)
{
addRoundedRectangle (x, y, w, h, cs, cs);
}
void Path::addTriangle (float x1, float y1,
float x2, float y2,
float x3, float y3)
{
addTriangle ({ x1, y1 },
{ x2, y2 },
{ x3, y3 });
}
void Path::addTriangle (Point<float> p1, Point<float> p2, Point<float> p3)
{
startNewSubPath (p1);
lineTo (p2);
lineTo (p3);
closeSubPath();
}
void Path::addQuadrilateral (float x1, float y1,
float x2, float y2,
float x3, float y3,
float x4, float y4)
{
startNewSubPath (x1, y1);
lineTo (x2, y2);
lineTo (x3, y3);
lineTo (x4, y4);
closeSubPath();
}
void Path::addEllipse (float x, float y, float w, float h)
{
addEllipse ({ x, y, w, h });
}
void Path::addEllipse (Rectangle<float> area)
{
auto hw = area.getWidth() * 0.5f;
auto hw55 = hw * 0.55f;
auto hh = area.getHeight() * 0.5f;
auto hh55 = hh * 0.55f;
auto cx = area.getX() + hw;
auto cy = area.getY() + hh;
startNewSubPath (cx, cy - hh);
cubicTo (cx + hw55, cy - hh, cx + hw, cy - hh55, cx + hw, cy);
cubicTo (cx + hw, cy + hh55, cx + hw55, cy + hh, cx, cy + hh);
cubicTo (cx - hw55, cy + hh, cx - hw, cy + hh55, cx - hw, cy);
cubicTo (cx - hw, cy - hh55, cx - hw55, cy - hh, cx, cy - hh);
closeSubPath();
}
void Path::addArc (float x, float y, float w, float h,
float fromRadians, float toRadians,
bool startAsNewSubPath)
{
auto radiusX = w / 2.0f;
auto radiusY = h / 2.0f;
addCentredArc (x + radiusX,
y + radiusY,
radiusX, radiusY,
0.0f,
fromRadians, toRadians,
startAsNewSubPath);
}
void Path::addCentredArc (float centreX, float centreY,
float radiusX, float radiusY,
float rotationOfEllipse,
float fromRadians, float toRadians,
bool startAsNewSubPath)
{
if (radiusX > 0.0f && radiusY > 0.0f)
{
Point<float> centre (centreX, centreY);
auto rotation = AffineTransform::rotation (rotationOfEllipse, centreX, centreY);
auto angle = fromRadians;
if (startAsNewSubPath)
startNewSubPath (centre.getPointOnCircumference (radiusX, radiusY, angle).transformedBy (rotation));
if (fromRadians < toRadians)
{
if (startAsNewSubPath)
angle += PathHelpers::ellipseAngularIncrement;
while (angle < toRadians)
{
lineTo (centre.getPointOnCircumference (radiusX, radiusY, angle).transformedBy (rotation));
angle += PathHelpers::ellipseAngularIncrement;
}
}
else
{
if (startAsNewSubPath)
angle -= PathHelpers::ellipseAngularIncrement;
while (angle > toRadians)
{
lineTo (centre.getPointOnCircumference (radiusX, radiusY, angle).transformedBy (rotation));
angle -= PathHelpers::ellipseAngularIncrement;
}
}
lineTo (centre.getPointOnCircumference (radiusX, radiusY, toRadians).transformedBy (rotation));
}
}
void Path::addPieSegment (float x, float y, float width, float height,
float fromRadians, float toRadians,
float innerCircleProportionalSize)
{
auto radiusX = width * 0.5f;
auto radiusY = height * 0.5f;
Point<float> centre (x + radiusX, y + radiusY);
startNewSubPath (centre.getPointOnCircumference (radiusX, radiusY, fromRadians));
addArc (x, y, width, height, fromRadians, toRadians);
if (std::abs (fromRadians - toRadians) > MathConstants<float>::pi * 1.999f)
{
closeSubPath();
if (innerCircleProportionalSize > 0)
{
radiusX *= innerCircleProportionalSize;
radiusY *= innerCircleProportionalSize;
startNewSubPath (centre.getPointOnCircumference (radiusX, radiusY, toRadians));
addArc (centre.x - radiusX, centre.y - radiusY, radiusX * 2.0f, radiusY * 2.0f, toRadians, fromRadians);
}
}
else
{
if (innerCircleProportionalSize > 0)
{
radiusX *= innerCircleProportionalSize;
radiusY *= innerCircleProportionalSize;
addArc (centre.x - radiusX, centre.y - radiusY, radiusX * 2.0f, radiusY * 2.0f, toRadians, fromRadians);
}
else
{
lineTo (centre);
}
}
closeSubPath();
}
void Path::addPieSegment (Rectangle<float> segmentBounds,
float fromRadians, float toRadians,
float innerCircleProportionalSize)
{
addPieSegment (segmentBounds.getX(),
segmentBounds.getY(),
segmentBounds.getWidth(),
segmentBounds.getHeight(),
fromRadians,
toRadians,
innerCircleProportionalSize);
}
//==============================================================================
void Path::addLineSegment (Line<float> line, float lineThickness)
{
auto reversed = line.reversed();
lineThickness *= 0.5f;
startNewSubPath (line.getPointAlongLine (0, lineThickness));
lineTo (line.getPointAlongLine (0, -lineThickness));
lineTo (reversed.getPointAlongLine (0, lineThickness));
lineTo (reversed.getPointAlongLine (0, -lineThickness));
closeSubPath();
}
void Path::addArrow (Line<float> line, float lineThickness,
float arrowheadWidth, float arrowheadLength)
{
auto reversed = line.reversed();
lineThickness *= 0.5f;
arrowheadWidth *= 0.5f;
arrowheadLength = jmin (arrowheadLength, 0.8f * line.getLength());
startNewSubPath (line.getPointAlongLine (0, lineThickness));
lineTo (line.getPointAlongLine (0, -lineThickness));
lineTo (reversed.getPointAlongLine (arrowheadLength, lineThickness));
lineTo (reversed.getPointAlongLine (arrowheadLength, arrowheadWidth));
lineTo (line.getEnd());
lineTo (reversed.getPointAlongLine (arrowheadLength, -arrowheadWidth));
lineTo (reversed.getPointAlongLine (arrowheadLength, -lineThickness));
closeSubPath();
}
void Path::addPolygon (Point<float> centre, int numberOfSides,
float radius, float startAngle)
{
jassert (numberOfSides > 1); // this would be silly.
if (numberOfSides > 1)
{
auto angleBetweenPoints = MathConstants<float>::twoPi / numberOfSides;
for (int i = 0; i < numberOfSides; ++i)
{
auto angle = startAngle + i * angleBetweenPoints;
auto p = centre.getPointOnCircumference (radius, angle);
if (i == 0)
startNewSubPath (p);
else
lineTo (p);
}
closeSubPath();
}
}
void Path::addStar (Point<float> centre, int numberOfPoints, float innerRadius,
float outerRadius, float startAngle)
{
jassert (numberOfPoints > 1); // this would be silly.
if (numberOfPoints > 1)
{
auto angleBetweenPoints = MathConstants<float>::twoPi / numberOfPoints;
for (int i = 0; i < numberOfPoints; ++i)
{
auto angle = startAngle + i * angleBetweenPoints;
auto p = centre.getPointOnCircumference (outerRadius, angle);
if (i == 0)
startNewSubPath (p);
else
lineTo (p);
lineTo (centre.getPointOnCircumference (innerRadius, angle + angleBetweenPoints * 0.5f));
}
closeSubPath();
}
}
void Path::addBubble (Rectangle<float> bodyArea,
Rectangle<float> maximumArea,
Point<float> arrowTip,
float cornerSize,
float arrowBaseWidth)
{
auto halfW = bodyArea.getWidth() / 2.0f;
auto halfH = bodyArea.getHeight() / 2.0f;
auto cornerSizeW = jmin (cornerSize, halfW);
auto cornerSizeH = jmin (cornerSize, halfH);
auto cornerSizeW2 = 2.0f * cornerSizeW;
auto cornerSizeH2 = 2.0f * cornerSizeH;
startNewSubPath (bodyArea.getX() + cornerSizeW, bodyArea.getY());
const Rectangle<float> targetLimit (bodyArea.reduced (jmin (halfW - 1.0f, cornerSizeW + arrowBaseWidth),
jmin (halfH - 1.0f, cornerSizeH + arrowBaseWidth)));
if (Rectangle<float> (targetLimit.getX(), maximumArea.getY(),
targetLimit.getWidth(), bodyArea.getY() - maximumArea.getY()).contains (arrowTip))
{
lineTo (arrowTip.x - arrowBaseWidth, bodyArea.getY());
lineTo (arrowTip.x, arrowTip.y);
lineTo (arrowTip.x + arrowBaseWidth, bodyArea.getY());
}
lineTo (bodyArea.getRight() - cornerSizeW, bodyArea.getY());
addArc (bodyArea.getRight() - cornerSizeW2, bodyArea.getY(), cornerSizeW2, cornerSizeH2, 0, MathConstants<float>::halfPi);
if (Rectangle<float> (bodyArea.getRight(), targetLimit.getY(),
maximumArea.getRight() - bodyArea.getRight(), targetLimit.getHeight()).contains (arrowTip))
{
lineTo (bodyArea.getRight(), arrowTip.y - arrowBaseWidth);
lineTo (arrowTip.x, arrowTip.y);
lineTo (bodyArea.getRight(), arrowTip.y + arrowBaseWidth);
}
lineTo (bodyArea.getRight(), bodyArea.getBottom() - cornerSizeH);
addArc (bodyArea.getRight() - cornerSizeW2, bodyArea.getBottom() - cornerSizeH2, cornerSizeW2, cornerSizeH2, MathConstants<float>::halfPi, MathConstants<float>::pi);
if (Rectangle<float> (targetLimit.getX(), bodyArea.getBottom(),
targetLimit.getWidth(), maximumArea.getBottom() - bodyArea.getBottom()).contains (arrowTip))
{
lineTo (arrowTip.x + arrowBaseWidth, bodyArea.getBottom());
lineTo (arrowTip.x, arrowTip.y);
lineTo (arrowTip.x - arrowBaseWidth, bodyArea.getBottom());
}
lineTo (bodyArea.getX() + cornerSizeW, bodyArea.getBottom());
addArc (bodyArea.getX(), bodyArea.getBottom() - cornerSizeH2, cornerSizeW2, cornerSizeH2, MathConstants<float>::pi, MathConstants<float>::pi * 1.5f);
if (Rectangle<float> (maximumArea.getX(), targetLimit.getY(),
bodyArea.getX() - maximumArea.getX(), targetLimit.getHeight()).contains (arrowTip))
{
lineTo (bodyArea.getX(), arrowTip.y + arrowBaseWidth);
lineTo (arrowTip.x, arrowTip.y);
lineTo (bodyArea.getX(), arrowTip.y - arrowBaseWidth);
}
lineTo (bodyArea.getX(), bodyArea.getY() + cornerSizeH);
addArc (bodyArea.getX(), bodyArea.getY(), cornerSizeW2, cornerSizeH2, MathConstants<float>::pi * 1.5f, MathConstants<float>::twoPi - 0.05f);
closeSubPath();
}
void Path::addPath (const Path& other)
{
const auto* d = other.data.begin();
for (int i = 0; i < other.data.size();)
{
auto type = d[i++];
if (isMarker (type, moveMarker))
{
startNewSubPath (d[i], d[i + 1]);
i += 2;
}
else if (isMarker (type, lineMarker))
{
lineTo (d[i], d[i + 1]);
i += 2;
}
else if (isMarker (type, quadMarker))
{
quadraticTo (d[i], d[i + 1], d[i + 2], d[i + 3]);
i += 4;
}
else if (isMarker (type, cubicMarker))
{
cubicTo (d[i], d[i + 1], d[i + 2], d[i + 3], d[i + 4], d[i + 5]);
i += 6;
}
else if (isMarker (type, closeSubPathMarker))
{
closeSubPath();
}
else
{
// something's gone wrong with the element list!
jassertfalse;
}
}
}
void Path::addPath (const Path& other,
const AffineTransform& transformToApply)
{
const auto* d = other.data.begin();
for (int i = 0; i < other.data.size();)
{
auto type = d[i++];
if (isMarker (type, closeSubPathMarker))
{
closeSubPath();
}
else
{
auto x = d[i++];
auto y = d[i++];
transformToApply.transformPoint (x, y);
if (isMarker (type, moveMarker))
{
startNewSubPath (x, y);
}
else if (isMarker (type, lineMarker))
{
lineTo (x, y);
}
else if (isMarker (type, quadMarker))
{
auto x2 = d[i++];
auto y2 = d[i++];
transformToApply.transformPoint (x2, y2);
quadraticTo (x, y, x2, y2);
}
else if (isMarker (type, cubicMarker))
{
auto x2 = d[i++];
auto y2 = d[i++];
auto x3 = d[i++];
auto y3 = d[i++];
transformToApply.transformPoints (x2, y2, x3, y3);
cubicTo (x, y, x2, y2, x3, y3);
}
else
{
// something's gone wrong with the element list!
jassertfalse;
}
}
}
}
//==============================================================================
void Path::applyTransform (const AffineTransform& transform) noexcept
{
bounds.reset();
bool firstPoint = true;
float* d = data.begin();
auto* end = data.end();
while (d < end)
{
auto type = *d++;
if (isMarker (type, moveMarker))
{
transform.transformPoint (d[0], d[1]);
JUCE_CHECK_COORDS_ARE_VALID (d[0], d[1])
if (firstPoint)
{
firstPoint = false;
bounds.reset (d[0], d[1]);
}
else
{
bounds.extend (d[0], d[1]);
}
d += 2;
}
else if (isMarker (type, lineMarker))
{
transform.transformPoint (d[0], d[1]);
JUCE_CHECK_COORDS_ARE_VALID (d[0], d[1])
bounds.extend (d[0], d[1]);
d += 2;
}
else if (isMarker (type, quadMarker))
{
transform.transformPoints (d[0], d[1], d[2], d[3]);
JUCE_CHECK_COORDS_ARE_VALID (d[0], d[1])
JUCE_CHECK_COORDS_ARE_VALID (d[2], d[3])
bounds.extend (d[0], d[1], d[2], d[3]);
d += 4;
}
else if (isMarker (type, cubicMarker))
{
transform.transformPoints (d[0], d[1], d[2], d[3], d[4], d[5]);
JUCE_CHECK_COORDS_ARE_VALID (d[0], d[1])
JUCE_CHECK_COORDS_ARE_VALID (d[2], d[3])
JUCE_CHECK_COORDS_ARE_VALID (d[4], d[5])
bounds.extend (d[0], d[1], d[2], d[3], d[4], d[5]);
d += 6;
}
}
}
//==============================================================================
AffineTransform Path::getTransformToScaleToFit (Rectangle<float> area, bool preserveProportions,
Justification justification) const
{
return getTransformToScaleToFit (area.getX(), area.getY(), area.getWidth(), area.getHeight(),
preserveProportions, justification);
}
AffineTransform Path::getTransformToScaleToFit (float x, float y, float w, float h,
bool preserveProportions,
Justification justification) const
{
auto boundsRect = getBounds();
if (preserveProportions)
{
if (w <= 0 || h <= 0 || boundsRect.isEmpty())
return AffineTransform();
float newW, newH;
auto srcRatio = boundsRect.getHeight() / boundsRect.getWidth();
if (srcRatio > h / w)
{
newW = h / srcRatio;
newH = h;
}
else
{
newW = w;
newH = w * srcRatio;
}
auto newXCentre = x;
auto newYCentre = y;
if (justification.testFlags (Justification::left)) newXCentre += newW * 0.5f;
else if (justification.testFlags (Justification::right)) newXCentre += w - newW * 0.5f;
else newXCentre += w * 0.5f;
if (justification.testFlags (Justification::top)) newYCentre += newH * 0.5f;
else if (justification.testFlags (Justification::bottom)) newYCentre += h - newH * 0.5f;
else newYCentre += h * 0.5f;
return AffineTransform::translation (boundsRect.getWidth() * -0.5f - boundsRect.getX(),
boundsRect.getHeight() * -0.5f - boundsRect.getY())
.scaled (newW / boundsRect.getWidth(),
newH / boundsRect.getHeight())
.translated (newXCentre, newYCentre);
}
else
{
return AffineTransform::translation (-boundsRect.getX(), -boundsRect.getY())
.scaled (w / boundsRect.getWidth(),
h / boundsRect.getHeight())
.translated (x, y);
}
}
//==============================================================================
bool Path::contains (float x, float y, float tolerance) const
{
if (x <= bounds.pathXMin || x >= bounds.pathXMax
|| y <= bounds.pathYMin || y >= bounds.pathYMax)
return false;
PathFlatteningIterator i (*this, AffineTransform(), tolerance);
int positiveCrossings = 0;
int negativeCrossings = 0;
while (i.next())
{
if ((i.y1 <= y && i.y2 > y) || (i.y2 <= y && i.y1 > y))
{
auto intersectX = i.x1 + (i.x2 - i.x1) * (y - i.y1) / (i.y2 - i.y1);
if (intersectX <= x)
{
if (i.y1 < i.y2)
++positiveCrossings;
else
++negativeCrossings;
}
}
}
return useNonZeroWinding ? (negativeCrossings != positiveCrossings)
: ((negativeCrossings + positiveCrossings) & 1) != 0;
}
bool Path::contains (Point<float> point, float tolerance) const
{
return contains (point.x, point.y, tolerance);
}
bool Path::intersectsLine (Line<float> line, float tolerance)
{
PathFlatteningIterator i (*this, AffineTransform(), tolerance);
Point<float> intersection;
while (i.next())
if (line.intersects (Line<float> (i.x1, i.y1, i.x2, i.y2), intersection))
return true;
return false;
}
Line<float> Path::getClippedLine (Line<float> line, bool keepSectionOutsidePath) const
{
Line<float> result (line);
const bool startInside = contains (line.getStart());
const bool endInside = contains (line.getEnd());
if (startInside == endInside)
{
if (keepSectionOutsidePath == startInside)
result = Line<float>();
}
else
{
PathFlatteningIterator i (*this, AffineTransform());
Point<float> intersection;
while (i.next())
{
if (line.intersects ({ i.x1, i.y1, i.x2, i.y2 }, intersection))
{
if ((startInside && keepSectionOutsidePath) || (endInside && ! keepSectionOutsidePath))
result.setStart (intersection);
else
result.setEnd (intersection);
}
}
}
return result;
}
float Path::getLength (const AffineTransform& transform, float tolerance) const
{
float length = 0;
PathFlatteningIterator i (*this, transform, tolerance);
while (i.next())
length += Line<float> (i.x1, i.y1, i.x2, i.y2).getLength();
return length;
}
Point<float> Path::getPointAlongPath (float distanceFromStart,
const AffineTransform& transform,
float tolerance) const
{
PathFlatteningIterator i (*this, transform, tolerance);
while (i.next())
{
const Line<float> line (i.x1, i.y1, i.x2, i.y2);
auto lineLength = line.getLength();
if (distanceFromStart <= lineLength)
return line.getPointAlongLine (distanceFromStart);
distanceFromStart -= lineLength;
}
return { i.x2, i.y2 };
}
float Path::getNearestPoint (Point<float> targetPoint, Point<float>& pointOnPath,
const AffineTransform& transform,
float tolerance) const
{
PathFlatteningIterator i (*this, transform, tolerance);
float bestPosition = 0, bestDistance = std::numeric_limits<float>::max();
float length = 0;
Point<float> pointOnLine;
while (i.next())
{
const Line<float> line (i.x1, i.y1, i.x2, i.y2);
auto distance = line.getDistanceFromPoint (targetPoint, pointOnLine);
if (distance < bestDistance)
{
bestDistance = distance;
bestPosition = length + pointOnLine.getDistanceFrom (line.getStart());
pointOnPath = pointOnLine;
}
length += line.getLength();
}
return bestPosition;
}
//==============================================================================
Path Path::createPathWithRoundedCorners (const float cornerRadius) const
{
if (cornerRadius <= 0.01f)
return *this;
Path p;
int n = 0, indexOfPathStart = 0, indexOfPathStartThis = 0;
auto* elements = data.begin();
bool lastWasLine = false, firstWasLine = false;
while (n < data.size())
{
auto type = elements[n++];
if (isMarker (type, moveMarker))
{
indexOfPathStart = p.data.size();
indexOfPathStartThis = n - 1;
auto x = elements[n++];
auto y = elements[n++];
p.startNewSubPath (x, y);
lastWasLine = false;
firstWasLine = (isMarker (elements[n], lineMarker));
}
else if (isMarker (type, lineMarker) || isMarker (type, closeSubPathMarker))
{
float startX = 0, startY = 0, joinX = 0, joinY = 0, endX, endY;
if (isMarker (type, lineMarker))
{
endX = elements[n++];
endY = elements[n++];
if (n > 8)
{
startX = elements[n - 8];
startY = elements[n - 7];
joinX = elements[n - 5];
joinY = elements[n - 4];
}
}
else
{
endX = elements[indexOfPathStartThis + 1];
endY = elements[indexOfPathStartThis + 2];
if (n > 6)
{
startX = elements[n - 6];
startY = elements[n - 5];
joinX = elements[n - 3];
joinY = elements[n - 2];
}
}
if (lastWasLine)
{
auto len1 = PathHelpers::lengthOf (startX, startY, joinX, joinY);
if (len1 > 0)
{
auto propNeeded = jmin (0.5, cornerRadius / len1);
*(p.data.end() - 2) = (float) (joinX - (joinX - startX) * propNeeded);
*(p.data.end() - 1) = (float) (joinY - (joinY - startY) * propNeeded);
}
auto len2 = PathHelpers::lengthOf (endX, endY, joinX, joinY);
if (len2 > 0)
{
auto propNeeded = jmin (0.5, cornerRadius / len2);
p.quadraticTo (joinX, joinY,
(float) (joinX + (endX - joinX) * propNeeded),
(float) (joinY + (endY - joinY) * propNeeded));
}
p.lineTo (endX, endY);
}
else if (isMarker (type, lineMarker))
{
p.lineTo (endX, endY);
lastWasLine = true;
}
if (isMarker (type, closeSubPathMarker))
{
if (firstWasLine)
{
startX = elements[n - 3];
startY = elements[n - 2];
joinX = endX;
joinY = endY;
endX = elements[indexOfPathStartThis + 4];
endY = elements[indexOfPathStartThis + 5];
auto len1 = PathHelpers::lengthOf (startX, startY, joinX, joinY);
if (len1 > 0)
{
auto propNeeded = jmin (0.5, cornerRadius / len1);
*(p.data.end() - 2) = (float) (joinX - (joinX - startX) * propNeeded);
*(p.data.end() - 1) = (float) (joinY - (joinY - startY) * propNeeded);
}
auto len2 = PathHelpers::lengthOf (endX, endY, joinX, joinY);
if (len2 > 0)
{
auto propNeeded = jmin (0.5, cornerRadius / len2);
endX = (float) (joinX + (endX - joinX) * propNeeded);
endY = (float) (joinY + (endY - joinY) * propNeeded);
p.quadraticTo (joinX, joinY, endX, endY);
p.data.begin()[indexOfPathStart + 1] = endX;
p.data.begin()[indexOfPathStart + 2] = endY;
}
}
p.closeSubPath();
}
}
else if (isMarker (type, quadMarker))
{
lastWasLine = false;
auto x1 = elements[n++];
auto y1 = elements[n++];
auto x2 = elements[n++];
auto y2 = elements[n++];
p.quadraticTo (x1, y1, x2, y2);
}
else if (isMarker (type, cubicMarker))
{
lastWasLine = false;
auto x1 = elements[n++];
auto y1 = elements[n++];
auto x2 = elements[n++];
auto y2 = elements[n++];
auto x3 = elements[n++];
auto y3 = elements[n++];
p.cubicTo (x1, y1, x2, y2, x3, y3);
}
}
return p;
}
//==============================================================================
void Path::loadPathFromStream (InputStream& source)
{
while (! source.isExhausted())
{
switch (source.readByte())
{
case 'm':
{
auto x = source.readFloat();
auto y = source.readFloat();
startNewSubPath (x, y);
break;
}
case 'l':
{
auto x = source.readFloat();
auto y = source.readFloat();
lineTo (x, y);
break;
}
case 'q':
{
auto x1 = source.readFloat();
auto y1 = source.readFloat();
auto x2 = source.readFloat();
auto y2 = source.readFloat();
quadraticTo (x1, y1, x2, y2);
break;
}
case 'b':
{
auto x1 = source.readFloat();
auto y1 = source.readFloat();
auto x2 = source.readFloat();
auto y2 = source.readFloat();
auto x3 = source.readFloat();
auto y3 = source.readFloat();
cubicTo (x1, y1, x2, y2, x3, y3);
break;
}
case 'c':
closeSubPath();
break;
case 'n':
useNonZeroWinding = true;
break;
case 'z':
useNonZeroWinding = false;
break;
case 'e':
return; // end of path marker
default:
jassertfalse; // illegal char in the stream
break;
}
}
}
void Path::loadPathFromData (const void* const pathData, const size_t numberOfBytes)
{
MemoryInputStream in (pathData, numberOfBytes, false);
loadPathFromStream (in);
}
void Path::writePathToStream (OutputStream& dest) const
{
dest.writeByte (useNonZeroWinding ? 'n' : 'z');
for (auto* i = data.begin(); i != data.end();)
{
auto type = *i++;
if (isMarker (type, moveMarker))
{
dest.writeByte ('m');
dest.writeFloat (*i++);
dest.writeFloat (*i++);
}
else if (isMarker (type, lineMarker))
{
dest.writeByte ('l');
dest.writeFloat (*i++);
dest.writeFloat (*i++);
}
else if (isMarker (type, quadMarker))
{
dest.writeByte ('q');
dest.writeFloat (*i++);
dest.writeFloat (*i++);
dest.writeFloat (*i++);
dest.writeFloat (*i++);
}
else if (isMarker (type, cubicMarker))
{
dest.writeByte ('b');
dest.writeFloat (*i++);
dest.writeFloat (*i++);
dest.writeFloat (*i++);
dest.writeFloat (*i++);
dest.writeFloat (*i++);
dest.writeFloat (*i++);
}
else if (isMarker (type, closeSubPathMarker))
{
dest.writeByte ('c');
}
}
dest.writeByte ('e'); // marks the end-of-path
}
String Path::toString() const
{
MemoryOutputStream s (2048);
if (! useNonZeroWinding)
s << 'a';
float lastMarker = 0.0f;
for (int i = 0; i < data.size();)
{
auto type = data.begin()[i++];
char markerChar = 0;
int numCoords = 0;
if (isMarker (type, moveMarker))
{
markerChar = 'm';
numCoords = 2;
}
else if (isMarker (type, lineMarker))
{
markerChar = 'l';
numCoords = 2;
}
else if (isMarker (type, quadMarker))
{
markerChar = 'q';
numCoords = 4;
}
else if (isMarker (type, cubicMarker))
{
markerChar = 'c';
numCoords = 6;
}
else
{
jassert (isMarker (type, closeSubPathMarker));
markerChar = 'z';
}
if (! isMarker (type, lastMarker))
{
if (s.getDataSize() != 0)
s << ' ';
s << markerChar;
lastMarker = type;
}
while (--numCoords >= 0 && i < data.size())
{
String coord (data.begin()[i++], 3);
while (coord.endsWithChar ('0') && coord != "0")
coord = coord.dropLastCharacters (1);
if (coord.endsWithChar ('.'))
coord = coord.dropLastCharacters (1);
if (s.getDataSize() != 0)
s << ' ';
s << coord;
}
}
return s.toUTF8();
}
void Path::restoreFromString (StringRef stringVersion)
{
clear();
setUsingNonZeroWinding (true);
auto t = stringVersion.text;
juce_wchar marker = 'm';
int numValues = 2;
float values[6];
for (;;)
{
auto token = PathHelpers::nextToken (t);
auto firstChar = token[0];
int startNum = 0;
if (firstChar == 0)
break;
if (firstChar == 'm' || firstChar == 'l')
{
marker = firstChar;
numValues = 2;
}
else if (firstChar == 'q')
{
marker = firstChar;
numValues = 4;
}
else if (firstChar == 'c')
{
marker = firstChar;
numValues = 6;
}
else if (firstChar == 'z')
{
marker = firstChar;
numValues = 0;
}
else if (firstChar == 'a')
{
setUsingNonZeroWinding (false);
continue;
}
else
{
++startNum;
values [0] = token.getFloatValue();
}
for (int i = startNum; i < numValues; ++i)
values [i] = PathHelpers::nextToken (t).getFloatValue();
switch (marker)
{
case 'm': startNewSubPath (values[0], values[1]); break;
case 'l': lineTo (values[0], values[1]); break;
case 'q': quadraticTo (values[0], values[1], values[2], values[3]); break;
case 'c': cubicTo (values[0], values[1], values[2], values[3], values[4], values[5]); break;
case 'z': closeSubPath(); break;
default: jassertfalse; break; // illegal string format?
}
}
}
//==============================================================================
Path::Iterator::Iterator (const Path& p) noexcept
: elementType (startNewSubPath), path (p), index (path.data.begin())
{
}
Path::Iterator::~Iterator() noexcept
{
}
bool Path::Iterator::next() noexcept
{
if (index != path.data.end())
{
auto type = *index++;
if (isMarker (type, moveMarker))
{
elementType = startNewSubPath;
x1 = *index++;
y1 = *index++;
}
else if (isMarker (type, lineMarker))
{
elementType = lineTo;
x1 = *index++;
y1 = *index++;
}
else if (isMarker (type, quadMarker))
{
elementType = quadraticTo;
x1 = *index++;
y1 = *index++;
x2 = *index++;
y2 = *index++;
}
else if (isMarker (type, cubicMarker))
{
elementType = cubicTo;
x1 = *index++;
y1 = *index++;
x2 = *index++;
y2 = *index++;
x3 = *index++;
y3 = *index++;
}
else if (isMarker (type, closeSubPathMarker))
{
elementType = closePath;
}
return true;
}
return false;
}
#undef JUCE_CHECK_COORDS_ARE_VALID
} // namespace juce