fix macOS build (following Projucer changes made in Windows, which removed /Applications/JUCE/modules from its headers). move JUCE headers under source control, so that Windows and macOS can both build against same version of JUCE. remove AUv3 target (I think it's an iOS thing, so it will never work with this macOS fluidsynth dylib).

This commit is contained in:
Alex Birch
2018-06-17 13:34:53 +01:00
parent a2be47c887
commit dff4d13a1d
1563 changed files with 601601 additions and 3466 deletions

View File

@ -0,0 +1,726 @@
/*
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_MATH_H
#define B2_MATH_H
#include "b2Settings.h"
/// This function is used to ensure that a floating point number is
/// not a NaN or infinity.
inline bool b2IsValid(float32 x)
{
if (x != x)
{
// NaN.
return false;
}
float32 infinity = std::numeric_limits<float32>::infinity();
return -infinity < x && x < infinity;
}
/// This is a approximate yet fast inverse square-root.
inline float32 b2InvSqrt(float32 x)
{
union
{
float32 x;
juce::int32 i;
} convert;
convert.x = x;
float32 xhalf = 0.5f * x;
convert.i = 0x5f3759df - (convert.i >> 1);
x = convert.x;
x = x * (1.5f - xhalf * x * x);
return x;
}
#define b2Sqrt(x) std::sqrt(x)
#define b2Atan2(y, x) std::atan2(y, x)
/// A 2D column vector.
struct b2Vec2
{
/// Default constructor does nothing (for performance).
b2Vec2() {}
/// Construct using coordinates.
b2Vec2(float32 xCoord, float32 yCoord) : x(xCoord), y(yCoord) {}
/// Set this vector to all zeros.
void SetZero() { x = 0.0f; y = 0.0f; }
/// Set this vector to some specified coordinates.
void Set(float32 x_, float32 y_) { x = x_; y = y_; }
/// Negate this vector.
b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
/// Read from and indexed element.
float32 operator () (juce::int32 i) const
{
return (&x)[i];
}
/// Write to an indexed element.
float32& operator () (juce::int32 i)
{
return (&x)[i];
}
/// Add a vector to this vector.
void operator += (const b2Vec2& v)
{
x += v.x; y += v.y;
}
/// Subtract a vector from this vector.
void operator -= (const b2Vec2& v)
{
x -= v.x; y -= v.y;
}
/// Multiply this vector by a scalar.
void operator *= (float32 a)
{
x *= a; y *= a;
}
/// Get the length of this vector (the norm).
float32 Length() const
{
return b2Sqrt(x * x + y * y);
}
/// Get the length squared. For performance, use this instead of
/// b2Vec2::Length (if possible).
float32 LengthSquared() const
{
return x * x + y * y;
}
/// Convert this vector into a unit vector. Returns the length.
float32 Normalize()
{
float32 length = Length();
if (length < b2_epsilon)
{
return 0.0f;
}
float32 invLength = 1.0f / length;
x *= invLength;
y *= invLength;
return length;
}
/// Does this vector contain finite coordinates?
bool IsValid() const
{
return b2IsValid(x) && b2IsValid(y);
}
/// Get the skew vector such that dot(skew_vec, other) == cross(vec, other)
b2Vec2 Skew() const
{
return b2Vec2(-y, x);
}
float32 x, y;
};
/// A 2D column vector with 3 elements.
struct b2Vec3
{
/// Default constructor does nothing (for performance).
b2Vec3() {}
/// Construct using coordinates.
b2Vec3(float32 xCoord, float32 yCoord, float32 zCoord) : x(xCoord), y(yCoord), z(zCoord) {}
/// Set this vector to all zeros.
void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; }
/// Set this vector to some specified coordinates.
void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; }
/// Negate this vector.
b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; }
/// Add a vector to this vector.
void operator += (const b2Vec3& v)
{
x += v.x; y += v.y; z += v.z;
}
/// Subtract a vector from this vector.
void operator -= (const b2Vec3& v)
{
x -= v.x; y -= v.y; z -= v.z;
}
/// Multiply this vector by a scalar.
void operator *= (float32 s)
{
x *= s; y *= s; z *= s;
}
float32 x, y, z;
};
/// A 2-by-2 matrix. Stored in column-major order.
struct b2Mat22
{
/// The default constructor does nothing (for performance).
b2Mat22() {}
/// Construct this matrix using columns.
b2Mat22(const b2Vec2& c1, const b2Vec2& c2)
{
ex = c1;
ey = c2;
}
/// Construct this matrix using scalars.
b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22)
{
ex.x = a11; ex.y = a21;
ey.x = a12; ey.y = a22;
}
/// Initialize this matrix using columns.
void Set(const b2Vec2& c1, const b2Vec2& c2)
{
ex = c1;
ey = c2;
}
/// Set this to the identity matrix.
void SetIdentity()
{
ex.x = 1.0f; ey.x = 0.0f;
ex.y = 0.0f; ey.y = 1.0f;
}
/// Set this matrix to all zeros.
void SetZero()
{
ex.x = 0.0f; ey.x = 0.0f;
ex.y = 0.0f; ey.y = 0.0f;
}
b2Mat22 GetInverse() const
{
float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y;
b2Mat22 B;
float32 det = a * d - b * c;
if (det != 0.0f)
{
det = 1.0f / det;
}
B.ex.x = det * d; B.ey.x = -det * b;
B.ex.y = -det * c; B.ey.y = det * a;
return B;
}
/// Solve A * x = b, where b is a column vector. This is more efficient
/// than computing the inverse in one-shot cases.
b2Vec2 Solve(const b2Vec2& b) const
{
float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y;
float32 det = a11 * a22 - a12 * a21;
if (det != 0.0f)
{
det = 1.0f / det;
}
b2Vec2 x;
x.x = det * (a22 * b.x - a12 * b.y);
x.y = det * (a11 * b.y - a21 * b.x);
return x;
}
b2Vec2 ex, ey;
};
/// A 3-by-3 matrix. Stored in column-major order.
struct b2Mat33
{
/// The default constructor does nothing (for performance).
b2Mat33() {}
/// Construct this matrix using columns.
b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3)
{
ex = c1;
ey = c2;
ez = c3;
}
/// Set this matrix to all zeros.
void SetZero()
{
ex.SetZero();
ey.SetZero();
ez.SetZero();
}
/// Solve A * x = b, where b is a column vector. This is more efficient
/// than computing the inverse in one-shot cases.
b2Vec3 Solve33(const b2Vec3& b) const;
/// Solve A * x = b, where b is a column vector. This is more efficient
/// than computing the inverse in one-shot cases. Solve only the upper
/// 2-by-2 matrix equation.
b2Vec2 Solve22(const b2Vec2& b) const;
/// Get the inverse of this matrix as a 2-by-2.
/// Returns the zero matrix if singular.
void GetInverse22(b2Mat33* M) const;
/// Get the symmetric inverse of this matrix as a 3-by-3.
/// Returns the zero matrix if singular.
void GetSymInverse33(b2Mat33* M) const;
b2Vec3 ex, ey, ez;
};
/// Rotation
struct b2Rot
{
b2Rot() {}
/// Initialize from an angle in radians
explicit b2Rot(float32 angle)
{
/// TODO_ERIN optimize
s = sinf(angle);
c = cosf(angle);
}
/// Set using an angle in radians.
void Set(float32 angle)
{
/// TODO_ERIN optimize
s = sinf(angle);
c = cosf(angle);
}
/// Set to the identity rotation
void SetIdentity()
{
s = 0.0f;
c = 1.0f;
}
/// Get the angle in radians
float32 GetAngle() const
{
return b2Atan2(s, c);
}
/// Get the x-axis
b2Vec2 GetXAxis() const
{
return b2Vec2(c, s);
}
/// Get the u-axis
b2Vec2 GetYAxis() const
{
return b2Vec2(-s, c);
}
/// Sine and cosine
float32 s, c;
};
/// A transform contains translation and rotation. It is used to represent
/// the position and orientation of rigid frames.
struct b2Transform
{
/// The default constructor does nothing.
b2Transform() {}
/// Initialize using a position vector and a rotation.
b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {}
/// Set this to the identity transform.
void SetIdentity()
{
p.SetZero();
q.SetIdentity();
}
/// Set this based on the position and angle.
void Set(const b2Vec2& position, float32 angle)
{
p = position;
q.Set(angle);
}
b2Vec2 p;
b2Rot q;
};
/// This describes the motion of a body/shape for TOI computation.
/// Shapes are defined with respect to the body origin, which may
/// no coincide with the center of mass. However, to support dynamics
/// we must interpolate the center of mass position.
struct b2Sweep
{
/// Get the interpolated transform at a specific time.
/// @param beta is a factor in [0,1], where 0 indicates alpha0.
void GetTransform(b2Transform* xfb, float32 beta) const;
/// Advance the sweep forward, yielding a new initial state.
/// @param alpha the new initial time.
void Advance(float32 alpha);
/// Normalize the angles.
void Normalize();
b2Vec2 localCenter; ///< local center of mass position
b2Vec2 c0, c; ///< center world positions
float32 a0, a; ///< world angles
/// Fraction of the current time step in the range [0,1]
/// c0 and a0 are the positions at alpha0.
float32 alpha0;
};
/// Useful constant
extern const b2Vec2 b2Vec2_zero;
/// Perform the dot product on two vectors.
inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b)
{
return a.x * b.x + a.y * b.y;
}
/// Perform the cross product on two vectors. In 2D this produces a scalar.
inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b)
{
return a.x * b.y - a.y * b.x;
}
/// Perform the cross product on a vector and a scalar. In 2D this produces
/// a vector.
inline b2Vec2 b2Cross(const b2Vec2& a, float32 s)
{
return b2Vec2(s * a.y, -s * a.x);
}
/// Perform the cross product on a scalar and a vector. In 2D this produces
/// a vector.
inline b2Vec2 b2Cross(float32 s, const b2Vec2& a)
{
return b2Vec2(-s * a.y, s * a.x);
}
/// Multiply a matrix times a vector. If a rotation matrix is provided,
/// then this transforms the vector from one frame to another.
inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v)
{
return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
}
/// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
/// then this transforms the vector from one frame to another (inverse transform).
inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v)
{
return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey));
}
/// Add two vectors component-wise.
inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
{
return b2Vec2(a.x + b.x, a.y + b.y);
}
/// Subtract two vectors component-wise.
inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
{
return b2Vec2(a.x - b.x, a.y - b.y);
}
inline b2Vec2 operator * (float32 s, const b2Vec2& a)
{
return b2Vec2(s * a.x, s * a.y);
}
inline bool operator == (const b2Vec2& a, const b2Vec2& b)
{
return a.x == b.x && a.y == b.y;
}
inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b)
{
b2Vec2 c = a - b;
return c.Length();
}
inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b)
{
b2Vec2 c = a - b;
return b2Dot(c, c);
}
inline b2Vec3 operator * (float32 s, const b2Vec3& a)
{
return b2Vec3(s * a.x, s * a.y, s * a.z);
}
/// Add two vectors component-wise.
inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b)
{
return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z);
}
/// Subtract two vectors component-wise.
inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b)
{
return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
}
/// Perform the dot product on two vectors.
inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
/// Perform the cross product on two vectors.
inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b)
{
return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}
inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B)
{
return b2Mat22(A.ex + B.ex, A.ey + B.ey);
}
// A * B
inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B)
{
return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey));
}
// A^T * B
inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B)
{
b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex));
b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey));
return b2Mat22(c1, c2);
}
/// Multiply a matrix times a vector.
inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v)
{
return v.x * A.ex + v.y * A.ey + v.z * A.ez;
}
/// Multiply a matrix times a vector.
inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v)
{
return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
}
/// Multiply two rotations: q * r
inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r)
{
// [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
// [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc]
// s = qs * rc + qc * rs
// c = qc * rc - qs * rs
b2Rot qr;
qr.s = q.s * r.c + q.c * r.s;
qr.c = q.c * r.c - q.s * r.s;
return qr;
}
/// Transpose multiply two rotations: qT * r
inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r)
{
// [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
// [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc]
// s = qc * rs - qs * rc
// c = qc * rc + qs * rs
b2Rot qr;
qr.s = q.c * r.s - q.s * r.c;
qr.c = q.c * r.c + q.s * r.s;
return qr;
}
/// Rotate a vector
inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v)
{
return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y);
}
/// Inverse rotate a vector
inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v)
{
return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y);
}
inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v)
{
float32 x = (T.q.c * v.x - T.q.s * v.y) + T.p.x;
float32 y = (T.q.s * v.x + T.q.c * v.y) + T.p.y;
return b2Vec2(x, y);
}
inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v)
{
float32 px = v.x - T.p.x;
float32 py = v.y - T.p.y;
float32 x = (T.q.c * px + T.q.s * py);
float32 y = (-T.q.s * px + T.q.c * py);
return b2Vec2(x, y);
}
// v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
// = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B)
{
b2Transform C;
C.q = b2Mul(A.q, B.q);
C.p = b2Mul(A.q, B.p) + A.p;
return C;
}
// v2 = A.q' * (B.q * v1 + B.p - A.p)
// = A.q' * B.q * v1 + A.q' * (B.p - A.p)
inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B)
{
b2Transform C;
C.q = b2MulT(A.q, B.q);
C.p = b2MulT(A.q, B.p - A.p);
return C;
}
template <typename T>
inline T b2Abs(T a)
{
return a > T(0) ? a : -a;
}
inline b2Vec2 b2Abs(const b2Vec2& a)
{
return b2Vec2(b2Abs(a.x), b2Abs(a.y));
}
inline b2Mat22 b2Abs(const b2Mat22& A)
{
return b2Mat22(b2Abs(A.ex), b2Abs(A.ey));
}
template <typename T>
inline T b2Min(T a, T b)
{
return a < b ? a : b;
}
inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b)
{
return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));
}
template <typename T>
inline T b2Max(T a, T b)
{
return a > b ? a : b;
}
inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b)
{
return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));
}
template <typename T>
inline T b2Clamp(T a, T low, T high)
{
return b2Max(low, b2Min(a, high));
}
inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high)
{
return b2Max(low, b2Min(a, high));
}
template<typename T> inline void b2Swap(T& a, T& b)
{
T tmp = a;
a = b;
b = tmp;
}
/// "Next Largest Power of 2
/// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
/// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
/// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
/// largest power of 2. For a 32-bit value:"
inline juce::uint32 b2NextPowerOfTwo(juce::uint32 x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x + 1;
}
inline bool b2IsPowerOfTwo(juce::uint32 x)
{
bool result = x > 0 && (x & (x - 1)) == 0;
return result;
}
inline void b2Sweep::GetTransform(b2Transform* xf, float32 beta) const
{
xf->p = (1.0f - beta) * c0 + beta * c;
float32 angle = (1.0f - beta) * a0 + beta * a;
xf->q.Set(angle);
// Shift to origin
xf->p -= b2Mul(xf->q, localCenter);
}
inline void b2Sweep::Advance(float32 alpha)
{
b2Assert(alpha0 < 1.0f);
float32 beta = (alpha - alpha0) / (1.0f - alpha0);
c0 = (1.0f - beta) * c0 + beta * c;
a0 = (1.0f - beta) * a0 + beta * a;
alpha0 = alpha;
}
/// Normalize an angle in radians to be between -pi and pi
inline void b2Sweep::Normalize()
{
float32 twoPi = 2.0f * b2_pi;
float32 d = twoPi * floorf(a0 / twoPi);
a0 -= d;
a -= d;
}
#endif