/* * Copyright (c) 2009 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include "b2DynamicTree.h" #include #include using namespace std; b2DynamicTree::b2DynamicTree() { m_root = b2_nullNode; m_nodeCapacity = 16; m_nodeCount = 0; m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode)); memset(m_nodes, 0, m_nodeCapacity * sizeof(b2TreeNode)); // Build a linked list for the free list. for (int32 i = 0; i < m_nodeCapacity - 1; ++i) { m_nodes[i].next = i + 1; m_nodes[i].height = -1; } m_nodes[m_nodeCapacity-1].next = b2_nullNode; m_nodes[m_nodeCapacity-1].height = -1; m_freeList = 0; m_path = 0; m_insertionCount = 0; } b2DynamicTree::~b2DynamicTree() { // This frees the entire tree in one shot. b2Free(m_nodes); } // Allocate a node from the pool. Grow the pool if necessary. int32 b2DynamicTree::AllocateNode() { // Expand the node pool as needed. if (m_freeList == b2_nullNode) { b2Assert(m_nodeCount == m_nodeCapacity); // The free list is empty. Rebuild a bigger pool. b2TreeNode* oldNodes = m_nodes; m_nodeCapacity *= 2; m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode)); memcpy(m_nodes, oldNodes, m_nodeCount * sizeof(b2TreeNode)); b2Free(oldNodes); // Build a linked list for the free list. The parent // pointer becomes the "next" pointer. for (int32 i = m_nodeCount; i < m_nodeCapacity - 1; ++i) { m_nodes[i].next = i + 1; m_nodes[i].height = -1; } m_nodes[m_nodeCapacity-1].next = b2_nullNode; m_nodes[m_nodeCapacity-1].height = -1; m_freeList = m_nodeCount; } // Peel a node off the free list. int32 nodeId = m_freeList; m_freeList = m_nodes[nodeId].next; m_nodes[nodeId].parent = b2_nullNode; m_nodes[nodeId].child1 = b2_nullNode; m_nodes[nodeId].child2 = b2_nullNode; m_nodes[nodeId].height = 0; m_nodes[nodeId].userData = NULL; ++m_nodeCount; return nodeId; } // Return a node to the pool. void b2DynamicTree::FreeNode(int32 nodeId) { b2Assert(0 <= nodeId && nodeId < m_nodeCapacity); b2Assert(0 < m_nodeCount); m_nodes[nodeId].next = m_freeList; m_nodes[nodeId].height = -1; m_freeList = nodeId; --m_nodeCount; } // Create a proxy in the tree as a leaf node. We return the index // of the node instead of a pointer so that we can grow // the node pool. int32 b2DynamicTree::CreateProxy(const b2AABB& aabb, void* userData) { int32 proxyId = AllocateNode(); // Fatten the aabb. b2Vec2 r(b2_aabbExtension, b2_aabbExtension); m_nodes[proxyId].aabb.lowerBound = aabb.lowerBound - r; m_nodes[proxyId].aabb.upperBound = aabb.upperBound + r; m_nodes[proxyId].userData = userData; m_nodes[proxyId].height = 0; InsertLeaf(proxyId); return proxyId; } void b2DynamicTree::DestroyProxy(int32 proxyId) { b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); b2Assert(m_nodes[proxyId].IsLeaf()); RemoveLeaf(proxyId); FreeNode(proxyId); } bool b2DynamicTree::MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement) { b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); b2Assert(m_nodes[proxyId].IsLeaf()); if (m_nodes[proxyId].aabb.Contains(aabb)) { return false; } RemoveLeaf(proxyId); // Extend AABB. b2AABB b = aabb; b2Vec2 r(b2_aabbExtension, b2_aabbExtension); b.lowerBound = b.lowerBound - r; b.upperBound = b.upperBound + r; // Predict AABB displacement. b2Vec2 d = b2_aabbMultiplier * displacement; if (d.x < 0.0f) { b.lowerBound.x += d.x; } else { b.upperBound.x += d.x; } if (d.y < 0.0f) { b.lowerBound.y += d.y; } else { b.upperBound.y += d.y; } m_nodes[proxyId].aabb = b; InsertLeaf(proxyId); return true; } void b2DynamicTree::InsertLeaf(int32 leaf) { ++m_insertionCount; if (m_root == b2_nullNode) { m_root = leaf; m_nodes[m_root].parent = b2_nullNode; return; } // Find the best sibling for this node b2AABB leafAABB = m_nodes[leaf].aabb; int32 index = m_root; while (m_nodes[index].IsLeaf() == false) { int32 child1 = m_nodes[index].child1; int32 child2 = m_nodes[index].child2; float32 area = m_nodes[index].aabb.GetPerimeter(); b2AABB combinedAABB; combinedAABB.Combine(m_nodes[index].aabb, leafAABB); float32 combinedArea = combinedAABB.GetPerimeter(); // Cost of creating a new parent for this node and the new leaf float32 cost = 2.0f * combinedArea; // Minimum cost of pushing the leaf further down the tree float32 inheritanceCost = 2.0f * (combinedArea - area); // Cost of descending into child1 float32 cost1; if (m_nodes[child1].IsLeaf()) { b2AABB aabb; aabb.Combine(leafAABB, m_nodes[child1].aabb); cost1 = aabb.GetPerimeter() + inheritanceCost; } else { b2AABB aabb; aabb.Combine(leafAABB, m_nodes[child1].aabb); float32 oldArea = m_nodes[child1].aabb.GetPerimeter(); float32 newArea = aabb.GetPerimeter(); cost1 = (newArea - oldArea) + inheritanceCost; } // Cost of descending into child2 float32 cost2; if (m_nodes[child2].IsLeaf()) { b2AABB aabb; aabb.Combine(leafAABB, m_nodes[child2].aabb); cost2 = aabb.GetPerimeter() + inheritanceCost; } else { b2AABB aabb; aabb.Combine(leafAABB, m_nodes[child2].aabb); float32 oldArea = m_nodes[child2].aabb.GetPerimeter(); float32 newArea = aabb.GetPerimeter(); cost2 = newArea - oldArea + inheritanceCost; } // Descend according to the minimum cost. if (cost < cost1 && cost < cost2) { break; } // Descend if (cost1 < cost2) { index = child1; } else { index = child2; } } int32 sibling = index; // Create a new parent. int32 oldParent = m_nodes[sibling].parent; int32 newParent = AllocateNode(); m_nodes[newParent].parent = oldParent; m_nodes[newParent].userData = NULL; m_nodes[newParent].aabb.Combine(leafAABB, m_nodes[sibling].aabb); m_nodes[newParent].height = m_nodes[sibling].height + 1; if (oldParent != b2_nullNode) { // The sibling was not the root. if (m_nodes[oldParent].child1 == sibling) { m_nodes[oldParent].child1 = newParent; } else { m_nodes[oldParent].child2 = newParent; } m_nodes[newParent].child1 = sibling; m_nodes[newParent].child2 = leaf; m_nodes[sibling].parent = newParent; m_nodes[leaf].parent = newParent; } else { // The sibling was the root. m_nodes[newParent].child1 = sibling; m_nodes[newParent].child2 = leaf; m_nodes[sibling].parent = newParent; m_nodes[leaf].parent = newParent; m_root = newParent; } // Walk back up the tree fixing heights and AABBs index = m_nodes[leaf].parent; while (index != b2_nullNode) { index = Balance(index); int32 child1 = m_nodes[index].child1; int32 child2 = m_nodes[index].child2; b2Assert(child1 != b2_nullNode); b2Assert(child2 != b2_nullNode); m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height); m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); index = m_nodes[index].parent; } //Validate(); } void b2DynamicTree::RemoveLeaf(int32 leaf) { if (leaf == m_root) { m_root = b2_nullNode; return; } int32 parent = m_nodes[leaf].parent; int32 grandParent = m_nodes[parent].parent; int32 sibling; if (m_nodes[parent].child1 == leaf) { sibling = m_nodes[parent].child2; } else { sibling = m_nodes[parent].child1; } if (grandParent != b2_nullNode) { // Destroy parent and connect sibling to grandParent. if (m_nodes[grandParent].child1 == parent) { m_nodes[grandParent].child1 = sibling; } else { m_nodes[grandParent].child2 = sibling; } m_nodes[sibling].parent = grandParent; FreeNode(parent); // Adjust ancestor bounds. int32 index = grandParent; while (index != b2_nullNode) { index = Balance(index); int32 child1 = m_nodes[index].child1; int32 child2 = m_nodes[index].child2; m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height); index = m_nodes[index].parent; } } else { m_root = sibling; m_nodes[sibling].parent = b2_nullNode; FreeNode(parent); } //Validate(); } // Perform a left or right rotation if node A is imbalanced. // Returns the new root index. int32 b2DynamicTree::Balance(int32 iA) { b2Assert(iA != b2_nullNode); b2TreeNode* A = m_nodes + iA; if (A->IsLeaf() || A->height < 2) { return iA; } int32 iB = A->child1; int32 iC = A->child2; b2Assert(0 <= iB && iB < m_nodeCapacity); b2Assert(0 <= iC && iC < m_nodeCapacity); b2TreeNode* B = m_nodes + iB; b2TreeNode* C = m_nodes + iC; int32 balance = C->height - B->height; // Rotate C up if (balance > 1) { int32 iF = C->child1; int32 iG = C->child2; b2TreeNode* F = m_nodes + iF; b2TreeNode* G = m_nodes + iG; b2Assert(0 <= iF && iF < m_nodeCapacity); b2Assert(0 <= iG && iG < m_nodeCapacity); // Swap A and C C->child1 = iA; C->parent = A->parent; A->parent = iC; // A's old parent should point to C if (C->parent != b2_nullNode) { if (m_nodes[C->parent].child1 == iA) { m_nodes[C->parent].child1 = iC; } else { b2Assert(m_nodes[C->parent].child2 == iA); m_nodes[C->parent].child2 = iC; } } else { m_root = iC; } // Rotate if (F->height > G->height) { C->child2 = iF; A->child2 = iG; G->parent = iA; A->aabb.Combine(B->aabb, G->aabb); C->aabb.Combine(A->aabb, F->aabb); A->height = 1 + b2Max(B->height, G->height); C->height = 1 + b2Max(A->height, F->height); } else { C->child2 = iG; A->child2 = iF; F->parent = iA; A->aabb.Combine(B->aabb, F->aabb); C->aabb.Combine(A->aabb, G->aabb); A->height = 1 + b2Max(B->height, F->height); C->height = 1 + b2Max(A->height, G->height); } return iC; } // Rotate B up if (balance < -1) { int32 iD = B->child1; int32 iE = B->child2; b2TreeNode* D = m_nodes + iD; b2TreeNode* E = m_nodes + iE; b2Assert(0 <= iD && iD < m_nodeCapacity); b2Assert(0 <= iE && iE < m_nodeCapacity); // Swap A and B B->child1 = iA; B->parent = A->parent; A->parent = iB; // A's old parent should point to B if (B->parent != b2_nullNode) { if (m_nodes[B->parent].child1 == iA) { m_nodes[B->parent].child1 = iB; } else { b2Assert(m_nodes[B->parent].child2 == iA); m_nodes[B->parent].child2 = iB; } } else { m_root = iB; } // Rotate if (D->height > E->height) { B->child2 = iD; A->child1 = iE; E->parent = iA; A->aabb.Combine(C->aabb, E->aabb); B->aabb.Combine(A->aabb, D->aabb); A->height = 1 + b2Max(C->height, E->height); B->height = 1 + b2Max(A->height, D->height); } else { B->child2 = iE; A->child1 = iD; D->parent = iA; A->aabb.Combine(C->aabb, D->aabb); B->aabb.Combine(A->aabb, E->aabb); A->height = 1 + b2Max(C->height, D->height); B->height = 1 + b2Max(A->height, E->height); } return iB; } return iA; } int32 b2DynamicTree::GetHeight() const { if (m_root == b2_nullNode) { return 0; } return m_nodes[m_root].height; } // float32 b2DynamicTree::GetAreaRatio() const { if (m_root == b2_nullNode) { return 0.0f; } const b2TreeNode* root = m_nodes + m_root; float32 rootArea = root->aabb.GetPerimeter(); float32 totalArea = 0.0f; for (int32 i = 0; i < m_nodeCapacity; ++i) { const b2TreeNode* node = m_nodes + i; if (node->height < 0) { // Free node in pool continue; } totalArea += node->aabb.GetPerimeter(); } return totalArea / rootArea; } // Compute the height of a sub-tree. int32 b2DynamicTree::ComputeHeight(int32 nodeId) const { b2Assert(0 <= nodeId && nodeId < m_nodeCapacity); b2TreeNode* node = m_nodes + nodeId; if (node->IsLeaf()) { return 0; } int32 height1 = ComputeHeight(node->child1); int32 height2 = ComputeHeight(node->child2); return 1 + b2Max(height1, height2); } int32 b2DynamicTree::ComputeHeight() const { int32 height = ComputeHeight(m_root); return height; } void b2DynamicTree::ValidateStructure(int32 index) const { if (index == b2_nullNode) { return; } if (index == m_root) { b2Assert(m_nodes[index].parent == b2_nullNode); } const b2TreeNode* node = m_nodes + index; int32 child1 = node->child1; int32 child2 = node->child2; if (node->IsLeaf()) { b2Assert(child1 == b2_nullNode); b2Assert(child2 == b2_nullNode); b2Assert(node->height == 0); return; } b2Assert(0 <= child1 && child1 < m_nodeCapacity); b2Assert(0 <= child2 && child2 < m_nodeCapacity); b2Assert(m_nodes[child1].parent == index); b2Assert(m_nodes[child2].parent == index); ValidateStructure(child1); ValidateStructure(child2); } void b2DynamicTree::ValidateMetrics(int32 index) const { if (index == b2_nullNode) { return; } const b2TreeNode* node = m_nodes + index; int32 child1 = node->child1; int32 child2 = node->child2; if (node->IsLeaf()) { b2Assert(child1 == b2_nullNode); b2Assert(child2 == b2_nullNode); b2Assert(node->height == 0); return; } b2Assert(0 <= child1 && child1 < m_nodeCapacity); b2Assert(0 <= child2 && child2 < m_nodeCapacity); int32 height1 = m_nodes[child1].height; int32 height2 = m_nodes[child2].height; int32 height; height = 1 + b2Max(height1, height2); b2Assert(node->height == height); b2AABB aabb; aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); b2Assert(aabb.lowerBound == node->aabb.lowerBound); b2Assert(aabb.upperBound == node->aabb.upperBound); ValidateMetrics(child1); ValidateMetrics(child2); } void b2DynamicTree::Validate() const { ValidateStructure(m_root); ValidateMetrics(m_root); int32 freeCount = 0; int32 freeIndex = m_freeList; while (freeIndex != b2_nullNode) { b2Assert(0 <= freeIndex && freeIndex < m_nodeCapacity); freeIndex = m_nodes[freeIndex].next; ++freeCount; } b2Assert(GetHeight() == ComputeHeight()); b2Assert(m_nodeCount + freeCount == m_nodeCapacity); } int32 b2DynamicTree::GetMaxBalance() const { int32 maxBalance = 0; for (int32 i = 0; i < m_nodeCapacity; ++i) { const b2TreeNode* node = m_nodes + i; if (node->height <= 1) { continue; } b2Assert(node->IsLeaf() == false); int32 child1 = node->child1; int32 child2 = node->child2; int32 balance = b2Abs(m_nodes[child2].height - m_nodes[child1].height); maxBalance = b2Max(maxBalance, balance); } return maxBalance; } void b2DynamicTree::RebuildBottomUp() { int32* nodes = (int32*)b2Alloc(m_nodeCount * sizeof(int32)); int32 count = 0; // Build array of leaves. Free the rest. for (int32 i = 0; i < m_nodeCapacity; ++i) { if (m_nodes[i].height < 0) { // free node in pool continue; } if (m_nodes[i].IsLeaf()) { m_nodes[i].parent = b2_nullNode; nodes[count] = i; ++count; } else { FreeNode(i); } } while (count > 1) { float32 minCost = b2_maxFloat; int32 iMin = -1, jMin = -1; for (int32 i = 0; i < count; ++i) { b2AABB aabbi = m_nodes[nodes[i]].aabb; for (int32 j = i + 1; j < count; ++j) { b2AABB aabbj = m_nodes[nodes[j]].aabb; b2AABB b; b.Combine(aabbi, aabbj); float32 cost = b.GetPerimeter(); if (cost < minCost) { iMin = i; jMin = j; minCost = cost; } } } int32 index1 = nodes[iMin]; int32 index2 = nodes[jMin]; b2TreeNode* child1 = m_nodes + index1; b2TreeNode* child2 = m_nodes + index2; int32 parentIndex = AllocateNode(); b2TreeNode* parent = m_nodes + parentIndex; parent->child1 = index1; parent->child2 = index2; parent->height = 1 + b2Max(child1->height, child2->height); parent->aabb.Combine(child1->aabb, child2->aabb); parent->parent = b2_nullNode; child1->parent = parentIndex; child2->parent = parentIndex; nodes[jMin] = nodes[count-1]; nodes[iMin] = parentIndex; --count; } m_root = nodes[0]; b2Free(nodes); Validate(); }