/* ============================================================================== This file is part of the JUCE library. Copyright (c) 2017 - ROLI Ltd. JUCE is an open source library subject to commercial or open-source licensing. By using JUCE, you agree to the terms of both the JUCE 5 End-User License Agreement and JUCE 5 Privacy Policy (both updated and effective as of the 27th April 2017). End User License Agreement: www.juce.com/juce-5-licence Privacy Policy: www.juce.com/juce-5-privacy-policy Or: You may also use this code under the terms of the GPL v3 (see www.gnu.org/licenses). JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE DISCLAIMED. ============================================================================== */ namespace juce { RSAKey::RSAKey() { } RSAKey::RSAKey (const String& s) { if (s.containsChar (',')) { part1.parseString (s.upToFirstOccurrenceOf (",", false, false), 16); part2.parseString (s.fromFirstOccurrenceOf (",", false, false), 16); } else { // the string needs to be two hex numbers, comma-separated.. jassertfalse; } } RSAKey::~RSAKey() { } bool RSAKey::operator== (const RSAKey& other) const noexcept { return part1 == other.part1 && part2 == other.part2; } bool RSAKey::operator!= (const RSAKey& other) const noexcept { return ! operator== (other); } bool RSAKey::isValid() const noexcept { return operator!= (RSAKey()); } String RSAKey::toString() const { return part1.toString (16) + "," + part2.toString (16); } bool RSAKey::applyToValue (BigInteger& value) const { if (part1.isZero() || part2.isZero() || value <= 0) { jassertfalse; // using an uninitialised key value.clear(); return false; } BigInteger result; while (! value.isZero()) { result *= part2; BigInteger remainder; value.divideBy (part2, remainder); remainder.exponentModulo (part1, part2); result += remainder; } value.swapWith (result); return true; } BigInteger RSAKey::findBestCommonDivisor (const BigInteger& p, const BigInteger& q) { // try 3, 5, 9, 17, etc first because these only contain 2 bits and so // are fast to divide + multiply for (int i = 2; i <= 65536; i *= 2) { const BigInteger e (1 + i); if (e.findGreatestCommonDivisor (p).isOne() && e.findGreatestCommonDivisor (q).isOne()) return e; } BigInteger e (4); while (! (e.findGreatestCommonDivisor (p).isOne() && e.findGreatestCommonDivisor (q).isOne())) ++e; return e; } void RSAKey::createKeyPair (RSAKey& publicKey, RSAKey& privateKey, const int numBits, const int* randomSeeds, const int numRandomSeeds) { jassert (numBits > 16); // not much point using less than this.. jassert (numRandomSeeds == 0 || numRandomSeeds >= 2); // you need to provide plenty of seeds here! BigInteger p (Primes::createProbablePrime (numBits / 2, 30, randomSeeds, numRandomSeeds / 2)); BigInteger q (Primes::createProbablePrime (numBits - numBits / 2, 30, randomSeeds == nullptr ? 0 : (randomSeeds + numRandomSeeds / 2), numRandomSeeds - numRandomSeeds / 2)); const BigInteger n (p * q); const BigInteger m (--p * --q); const BigInteger e (findBestCommonDivisor (p, q)); BigInteger d (e); d.inverseModulo (m); publicKey.part1 = e; publicKey.part2 = n; privateKey.part1 = d; privateKey.part2 = n; } } // namespace juce