juicysfplugin/modules/juce_box2d/box2d/Collision/b2CollideEdge.cpp

699 lines
16 KiB
C++

/*
* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "b2Collision.h"
#include "Shapes/b2CircleShape.h"
#include "Shapes/b2EdgeShape.h"
#include "Shapes/b2PolygonShape.h"
// Compute contact points for edge versus circle.
// This accounts for edge connectivity.
void b2CollideEdgeAndCircle(b2Manifold* manifold,
const b2EdgeShape* edgeA, const b2Transform& xfA,
const b2CircleShape* circleB, const b2Transform& xfB)
{
manifold->pointCount = 0;
// Compute circle in frame of edge
b2Vec2 Q = b2MulT(xfA, b2Mul(xfB, circleB->m_p));
b2Vec2 A = edgeA->m_vertex1, B = edgeA->m_vertex2;
b2Vec2 e = B - A;
// Barycentric coordinates
float32 u = b2Dot(e, B - Q);
float32 v = b2Dot(e, Q - A);
float32 radius = edgeA->m_radius + circleB->m_radius;
b2ContactFeature cf;
cf.indexB = 0;
cf.typeB = b2ContactFeature::e_vertex;
// Region A
if (v <= 0.0f)
{
b2Vec2 P = A;
b2Vec2 d = Q - P;
float32 dd = b2Dot(d, d);
if (dd > radius * radius)
{
return;
}
// Is there an edge connected to A?
if (edgeA->m_hasVertex0)
{
b2Vec2 A1 = edgeA->m_vertex0;
b2Vec2 B1 = A;
b2Vec2 e1 = B1 - A1;
float32 u1 = b2Dot(e1, B1 - Q);
// Is the circle in Region AB of the previous edge?
if (u1 > 0.0f)
{
return;
}
}
cf.indexA = 0;
cf.typeA = b2ContactFeature::e_vertex;
manifold->pointCount = 1;
manifold->type = b2Manifold::e_circles;
manifold->localNormal.SetZero();
manifold->localPoint = P;
manifold->points[0].id.key = 0;
manifold->points[0].id.cf = cf;
manifold->points[0].localPoint = circleB->m_p;
return;
}
// Region B
if (u <= 0.0f)
{
b2Vec2 P = B;
b2Vec2 d = Q - P;
float32 dd = b2Dot(d, d);
if (dd > radius * radius)
{
return;
}
// Is there an edge connected to B?
if (edgeA->m_hasVertex3)
{
b2Vec2 B2 = edgeA->m_vertex3;
b2Vec2 A2 = B;
b2Vec2 e2 = B2 - A2;
float32 v2 = b2Dot(e2, Q - A2);
// Is the circle in Region AB of the next edge?
if (v2 > 0.0f)
{
return;
}
}
cf.indexA = 1;
cf.typeA = b2ContactFeature::e_vertex;
manifold->pointCount = 1;
manifold->type = b2Manifold::e_circles;
manifold->localNormal.SetZero();
manifold->localPoint = P;
manifold->points[0].id.key = 0;
manifold->points[0].id.cf = cf;
manifold->points[0].localPoint = circleB->m_p;
return;
}
// Region AB
float32 den = b2Dot(e, e);
b2Assert(den > 0.0f);
b2Vec2 P = (1.0f / den) * (u * A + v * B);
b2Vec2 d = Q - P;
float32 dd = b2Dot(d, d);
if (dd > radius * radius)
{
return;
}
b2Vec2 n(-e.y, e.x);
if (b2Dot(n, Q - A) < 0.0f)
{
n.Set(-n.x, -n.y);
}
n.Normalize();
cf.indexA = 0;
cf.typeA = b2ContactFeature::e_face;
manifold->pointCount = 1;
manifold->type = b2Manifold::e_faceA;
manifold->localNormal = n;
manifold->localPoint = A;
manifold->points[0].id.key = 0;
manifold->points[0].id.cf = cf;
manifold->points[0].localPoint = circleB->m_p;
}
// This structure is used to keep track of the best separating axis.
struct b2EPAxis
{
enum Type
{
e_unknown,
e_edgeA,
e_edgeB
};
Type type;
int32 index;
float32 separation;
};
// This holds polygon B expressed in frame A.
struct b2TempPolygon
{
b2Vec2 vertices[b2_maxPolygonVertices];
b2Vec2 normals[b2_maxPolygonVertices];
int32 count;
};
// Reference face used for clipping
struct b2ReferenceFace
{
int32 i1, i2;
b2Vec2 v1, v2;
b2Vec2 normal;
b2Vec2 sideNormal1;
float32 sideOffset1;
b2Vec2 sideNormal2;
float32 sideOffset2;
};
// This class collides and edge and a polygon, taking into account edge adjacency.
struct b2EPCollider
{
void Collide(b2Manifold* manifold, const b2EdgeShape* edgeA, const b2Transform& xfA,
const b2PolygonShape* polygonB, const b2Transform& xfB);
b2EPAxis ComputeEdgeSeparation();
b2EPAxis ComputePolygonSeparation();
enum VertexType
{
e_isolated,
e_concave,
e_convex
};
b2TempPolygon m_polygonB;
b2Transform m_xf;
b2Vec2 m_centroidB;
b2Vec2 m_v0, m_v1, m_v2, m_v3;
b2Vec2 m_normal0, m_normal1, m_normal2;
b2Vec2 m_normal;
VertexType m_type1, m_type2;
b2Vec2 m_lowerLimit, m_upperLimit;
float32 m_radius;
bool m_front;
};
// Algorithm:
// 1. Classify v1 and v2
// 2. Classify polygon centroid as front or back
// 3. Flip normal if necessary
// 4. Initialize normal range to [-pi, pi] about face normal
// 5. Adjust normal range according to adjacent edges
// 6. Visit each separating axes, only accept axes within the range
// 7. Return if _any_ axis indicates separation
// 8. Clip
void b2EPCollider::Collide(b2Manifold* manifold, const b2EdgeShape* edgeA, const b2Transform& xfA,
const b2PolygonShape* polygonB, const b2Transform& xfB)
{
m_xf = b2MulT(xfA, xfB);
m_centroidB = b2Mul(m_xf, polygonB->m_centroid);
m_v0 = edgeA->m_vertex0;
m_v1 = edgeA->m_vertex1;
m_v2 = edgeA->m_vertex2;
m_v3 = edgeA->m_vertex3;
bool hasVertex0 = edgeA->m_hasVertex0;
bool hasVertex3 = edgeA->m_hasVertex3;
b2Vec2 edge1 = m_v2 - m_v1;
edge1.Normalize();
m_normal1.Set(edge1.y, -edge1.x);
float32 offset1 = b2Dot(m_normal1, m_centroidB - m_v1);
float32 offset0 = 0.0f, offset2 = 0.0f;
bool convex1 = false, convex2 = false;
// Is there a preceding edge?
if (hasVertex0)
{
b2Vec2 edge0 = m_v1 - m_v0;
edge0.Normalize();
m_normal0.Set(edge0.y, -edge0.x);
convex1 = b2Cross(edge0, edge1) >= 0.0f;
offset0 = b2Dot(m_normal0, m_centroidB - m_v0);
}
// Is there a following edge?
if (hasVertex3)
{
b2Vec2 edge2 = m_v3 - m_v2;
edge2.Normalize();
m_normal2.Set(edge2.y, -edge2.x);
convex2 = b2Cross(edge1, edge2) > 0.0f;
offset2 = b2Dot(m_normal2, m_centroidB - m_v2);
}
// Determine front or back collision. Determine collision normal limits.
if (hasVertex0 && hasVertex3)
{
if (convex1 && convex2)
{
m_front = offset0 >= 0.0f || offset1 >= 0.0f || offset2 >= 0.0f;
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = m_normal0;
m_upperLimit = m_normal2;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = -m_normal1;
m_upperLimit = -m_normal1;
}
}
else if (convex1)
{
m_front = offset0 >= 0.0f || (offset1 >= 0.0f && offset2 >= 0.0f);
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = m_normal0;
m_upperLimit = m_normal1;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = -m_normal2;
m_upperLimit = -m_normal1;
}
}
else if (convex2)
{
m_front = offset2 >= 0.0f || (offset0 >= 0.0f && offset1 >= 0.0f);
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = m_normal1;
m_upperLimit = m_normal2;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = -m_normal1;
m_upperLimit = -m_normal0;
}
}
else
{
m_front = offset0 >= 0.0f && offset1 >= 0.0f && offset2 >= 0.0f;
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = m_normal1;
m_upperLimit = m_normal1;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = -m_normal2;
m_upperLimit = -m_normal0;
}
}
}
else if (hasVertex0)
{
if (convex1)
{
m_front = offset0 >= 0.0f || offset1 >= 0.0f;
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = m_normal0;
m_upperLimit = -m_normal1;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = m_normal1;
m_upperLimit = -m_normal1;
}
}
else
{
m_front = offset0 >= 0.0f && offset1 >= 0.0f;
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = m_normal1;
m_upperLimit = -m_normal1;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = m_normal1;
m_upperLimit = -m_normal0;
}
}
}
else if (hasVertex3)
{
if (convex2)
{
m_front = offset1 >= 0.0f || offset2 >= 0.0f;
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = -m_normal1;
m_upperLimit = m_normal2;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = -m_normal1;
m_upperLimit = m_normal1;
}
}
else
{
m_front = offset1 >= 0.0f && offset2 >= 0.0f;
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = -m_normal1;
m_upperLimit = m_normal1;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = -m_normal2;
m_upperLimit = m_normal1;
}
}
}
else
{
m_front = offset1 >= 0.0f;
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = -m_normal1;
m_upperLimit = -m_normal1;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = m_normal1;
m_upperLimit = m_normal1;
}
}
// Get polygonB in frameA
m_polygonB.count = polygonB->m_vertexCount;
for (int32 i = 0; i < polygonB->m_vertexCount; ++i)
{
m_polygonB.vertices[i] = b2Mul(m_xf, polygonB->m_vertices[i]);
m_polygonB.normals[i] = b2Mul(m_xf.q, polygonB->m_normals[i]);
}
m_radius = 2.0f * b2_polygonRadius;
manifold->pointCount = 0;
b2EPAxis edgeAxis = ComputeEdgeSeparation();
// If no valid normal can be found than this edge should not collide.
if (edgeAxis.type == b2EPAxis::e_unknown)
{
return;
}
if (edgeAxis.separation > m_radius)
{
return;
}
b2EPAxis polygonAxis = ComputePolygonSeparation();
if (polygonAxis.type != b2EPAxis::e_unknown && polygonAxis.separation > m_radius)
{
return;
}
// Use hysteresis for jitter reduction.
const float32 k_relativeTol = 0.98f;
const float32 k_absoluteTol = 0.001f;
b2EPAxis primaryAxis;
if (polygonAxis.type == b2EPAxis::e_unknown)
{
primaryAxis = edgeAxis;
}
else if (polygonAxis.separation > k_relativeTol * edgeAxis.separation + k_absoluteTol)
{
primaryAxis = polygonAxis;
}
else
{
primaryAxis = edgeAxis;
}
b2ClipVertex ie[2];
b2ReferenceFace rf;
if (primaryAxis.type == b2EPAxis::e_edgeA)
{
manifold->type = b2Manifold::e_faceA;
// Search for the polygon normal that is most anti-parallel to the edge normal.
int32 bestIndex = 0;
float32 bestValue = b2Dot(m_normal, m_polygonB.normals[0]);
for (int32 i = 1; i < m_polygonB.count; ++i)
{
float32 value = b2Dot(m_normal, m_polygonB.normals[i]);
if (value < bestValue)
{
bestValue = value;
bestIndex = i;
}
}
int32 i1 = bestIndex;
int32 i2 = i1 + 1 < m_polygonB.count ? i1 + 1 : 0;
ie[0].v = m_polygonB.vertices[i1];
ie[0].id.cf.indexA = 0;
ie[0].id.cf.indexB = (uint8) i1;
ie[0].id.cf.typeA = b2ContactFeature::e_face;
ie[0].id.cf.typeB = b2ContactFeature::e_vertex;
ie[1].v = m_polygonB.vertices[i2];
ie[1].id.cf.indexA = 0;
ie[1].id.cf.indexB = (uint8) i2;
ie[1].id.cf.typeA = b2ContactFeature::e_face;
ie[1].id.cf.typeB = b2ContactFeature::e_vertex;
if (m_front)
{
rf.i1 = 0;
rf.i2 = 1;
rf.v1 = m_v1;
rf.v2 = m_v2;
rf.normal = m_normal1;
}
else
{
rf.i1 = 1;
rf.i2 = 0;
rf.v1 = m_v2;
rf.v2 = m_v1;
rf.normal = -m_normal1;
}
}
else
{
manifold->type = b2Manifold::e_faceB;
ie[0].v = m_v1;
ie[0].id.cf.indexA = 0;
ie[0].id.cf.indexB = (uint8) primaryAxis.index;
ie[0].id.cf.typeA = b2ContactFeature::e_vertex;
ie[0].id.cf.typeB = b2ContactFeature::e_face;
ie[1].v = m_v2;
ie[1].id.cf.indexA = 0;
ie[1].id.cf.indexB = (uint8) primaryAxis.index;
ie[1].id.cf.typeA = b2ContactFeature::e_vertex;
ie[1].id.cf.typeB = b2ContactFeature::e_face;
rf.i1 = primaryAxis.index;
rf.i2 = rf.i1 + 1 < m_polygonB.count ? rf.i1 + 1 : 0;
rf.v1 = m_polygonB.vertices[rf.i1];
rf.v2 = m_polygonB.vertices[rf.i2];
rf.normal = m_polygonB.normals[rf.i1];
}
rf.sideNormal1.Set(rf.normal.y, -rf.normal.x);
rf.sideNormal2 = -rf.sideNormal1;
rf.sideOffset1 = b2Dot(rf.sideNormal1, rf.v1);
rf.sideOffset2 = b2Dot(rf.sideNormal2, rf.v2);
// Clip incident edge against extruded edge1 side edges.
b2ClipVertex clipPoints1[2];
b2ClipVertex clipPoints2[2];
int32 np;
// Clip to box side 1
np = b2ClipSegmentToLine(clipPoints1, ie, rf.sideNormal1, rf.sideOffset1, rf.i1);
if (np < b2_maxManifoldPoints)
{
return;
}
// Clip to negative box side 1
np = b2ClipSegmentToLine(clipPoints2, clipPoints1, rf.sideNormal2, rf.sideOffset2, rf.i2);
if (np < b2_maxManifoldPoints)
{
return;
}
// Now clipPoints2 contains the clipped points.
if (primaryAxis.type == b2EPAxis::e_edgeA)
{
manifold->localNormal = rf.normal;
manifold->localPoint = rf.v1;
}
else
{
manifold->localNormal = polygonB->m_normals[rf.i1];
manifold->localPoint = polygonB->m_vertices[rf.i1];
}
int32 pointCount = 0;
for (int32 i = 0; i < b2_maxManifoldPoints; ++i)
{
float32 separation;
separation = b2Dot(rf.normal, clipPoints2[i].v - rf.v1);
if (separation <= m_radius)
{
b2ManifoldPoint* cp = manifold->points + pointCount;
if (primaryAxis.type == b2EPAxis::e_edgeA)
{
cp->localPoint = b2MulT(m_xf, clipPoints2[i].v);
cp->id = clipPoints2[i].id;
}
else
{
cp->localPoint = clipPoints2[i].v;
cp->id.cf.typeA = clipPoints2[i].id.cf.typeB;
cp->id.cf.typeB = clipPoints2[i].id.cf.typeA;
cp->id.cf.indexA = clipPoints2[i].id.cf.indexB;
cp->id.cf.indexB = clipPoints2[i].id.cf.indexA;
}
++pointCount;
}
}
manifold->pointCount = pointCount;
}
b2EPAxis b2EPCollider::ComputeEdgeSeparation()
{
b2EPAxis axis;
axis.type = b2EPAxis::e_edgeA;
axis.index = m_front ? 0 : 1;
axis.separation = FLT_MAX;
for (int32 i = 0; i < m_polygonB.count; ++i)
{
float32 s = b2Dot(m_normal, m_polygonB.vertices[i] - m_v1);
if (s < axis.separation)
{
axis.separation = s;
}
}
return axis;
}
b2EPAxis b2EPCollider::ComputePolygonSeparation()
{
b2EPAxis axis;
axis.type = b2EPAxis::e_unknown;
axis.index = -1;
axis.separation = -FLT_MAX;
b2Vec2 perp(-m_normal.y, m_normal.x);
for (int32 i = 0; i < m_polygonB.count; ++i)
{
b2Vec2 n = -m_polygonB.normals[i];
float32 s1 = b2Dot(n, m_polygonB.vertices[i] - m_v1);
float32 s2 = b2Dot(n, m_polygonB.vertices[i] - m_v2);
float32 s = b2Min(s1, s2);
if (s > m_radius)
{
// No collision
axis.type = b2EPAxis::e_edgeB;
axis.index = i;
axis.separation = s;
return axis;
}
// Adjacency
if (b2Dot(n, perp) >= 0.0f)
{
if (b2Dot(n - m_upperLimit, m_normal) < -b2_angularSlop)
{
continue;
}
}
else
{
if (b2Dot(n - m_lowerLimit, m_normal) < -b2_angularSlop)
{
continue;
}
}
if (s > axis.separation)
{
axis.type = b2EPAxis::e_edgeB;
axis.index = i;
axis.separation = s;
}
}
return axis;
}
void b2CollideEdgeAndPolygon( b2Manifold* manifold,
const b2EdgeShape* edgeA, const b2Transform& xfA,
const b2PolygonShape* polygonB, const b2Transform& xfB)
{
b2EPCollider collider;
collider.Collide(manifold, edgeA, xfA, polygonB, xfB);
}