juicysfplugin/modules/juce_dsp/frequency/juce_Convolution.cpp

1230 lines
47 KiB
C++

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2017 - ROLI Ltd.
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 5 End-User License
Agreement and JUCE 5 Privacy Policy (both updated and effective as of the
27th April 2017).
End User License Agreement: www.juce.com/juce-5-licence
Privacy Policy: www.juce.com/juce-5-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
/** This class is the convolution engine itself, processing only one channel at
a time of input signal.
*/
struct ConvolutionEngine
{
ConvolutionEngine() = default;
//==============================================================================
struct ProcessingInformation
{
enum class SourceType
{
sourceBinaryData,
sourceAudioFile,
sourceAudioBuffer,
sourceNone
};
SourceType sourceType = SourceType::sourceNone;
const void* sourceData;
int sourceDataSize;
File fileImpulseResponse;
double originalSampleRate;
int originalSize = 0;
int originalNumChannels = 1;
AudioBuffer<float>* buffer;
bool wantsStereo = true;
bool wantsTrimming = true;
bool wantsNormalization = true;
int64 wantedSize = 0;
int finalSize = 0;
double sampleRate = 0;
size_t maximumBufferSize = 0;
};
//==============================================================================
void reset()
{
bufferInput.clear();
bufferOverlap.clear();
bufferTempOutput.clear();
for (auto i = 0; i < buffersInputSegments.size(); ++i)
buffersInputSegments.getReference (i).clear();
currentSegment = 0;
inputDataPos = 0;
}
/** Initalize all the states and objects to perform the convolution. */
void initializeConvolutionEngine (ProcessingInformation& info, int channel)
{
blockSize = (size_t) nextPowerOfTwo ((int) info.maximumBufferSize);
FFTSize = blockSize > 128 ? 2 * blockSize
: 4 * blockSize;
numSegments = ((size_t) info.finalSize) / (FFTSize - blockSize) + 1u;
numInputSegments = (blockSize > 128 ? numSegments : 3 * numSegments);
FFTobject.reset (new FFT (roundToInt (std::log2 (FFTSize))));
bufferInput.setSize (1, static_cast<int> (FFTSize));
bufferOutput.setSize (1, static_cast<int> (FFTSize * 2));
bufferTempOutput.setSize (1, static_cast<int> (FFTSize * 2));
bufferOverlap.setSize (1, static_cast<int> (FFTSize));
buffersInputSegments.clear();
buffersImpulseSegments.clear();
for (size_t i = 0; i < numInputSegments; ++i)
{
AudioBuffer<float> newInputSegment;
newInputSegment.setSize (1, static_cast<int> (FFTSize * 2));
buffersInputSegments.add (newInputSegment);
}
for (auto i = 0u; i < numSegments; ++i)
{
AudioBuffer<float> newImpulseSegment;
newImpulseSegment.setSize (1, static_cast<int> (FFTSize * 2));
buffersImpulseSegments.add (newImpulseSegment);
}
std::unique_ptr<FFT> FFTTempObject (new FFT (roundToInt (std::log2 (FFTSize))));
auto* channelData = info.buffer->getWritePointer (channel);
for (size_t n = 0; n < numSegments; ++n)
{
buffersImpulseSegments.getReference (static_cast<int> (n)).clear();
auto* impulseResponse = buffersImpulseSegments.getReference (static_cast<int> (n)).getWritePointer (0);
if (n == 0)
impulseResponse[0] = 1.0f;
for (size_t i = 0; i < FFTSize - blockSize; ++i)
if (i + n * (FFTSize - blockSize) < (size_t) info.finalSize)
impulseResponse[i] = channelData[i + n * (FFTSize - blockSize)];
FFTTempObject->performRealOnlyForwardTransform (impulseResponse);
prepareForConvolution (impulseResponse);
}
reset();
isReady = true;
}
/** Copy the states of another engine. */
void copyStateFromOtherEngine (const ConvolutionEngine& other)
{
if (FFTSize != other.FFTSize)
{
FFTobject.reset (new FFT (roundToInt (std::log2 (other.FFTSize))));
FFTSize = other.FFTSize;
}
currentSegment = other.currentSegment;
numInputSegments = other.numInputSegments;
numSegments = other.numSegments;
blockSize = other.blockSize;
inputDataPos = other.inputDataPos;
bufferInput = other.bufferInput;
bufferTempOutput = other.bufferTempOutput;
bufferOutput = other.bufferOutput;
buffersInputSegments = other.buffersInputSegments;
buffersImpulseSegments = other.buffersImpulseSegments;
bufferOverlap = other.bufferOverlap;
isReady = true;
}
/** Performs the uniform partitioned convolution using FFT. */
void processSamples (const float* input, float* output, size_t numSamples)
{
if (! isReady)
return;
// Overlap-add, zero latency convolution algorithm with uniform partitioning
size_t numSamplesProcessed = 0;
auto indexStep = numInputSegments / numSegments;
auto* inputData = bufferInput.getWritePointer (0);
auto* outputTempData = bufferTempOutput.getWritePointer (0);
auto* outputData = bufferOutput.getWritePointer (0);
auto* overlapData = bufferOverlap.getWritePointer (0);
while (numSamplesProcessed < numSamples)
{
const bool inputDataWasEmpty = (inputDataPos == 0);
auto numSamplesToProcess = jmin (numSamples - numSamplesProcessed, blockSize - inputDataPos);
// copy the input samples
FloatVectorOperations::copy (inputData + inputDataPos, input + numSamplesProcessed, static_cast<int> (numSamplesToProcess));
auto* inputSegmentData = buffersInputSegments.getReference (static_cast<int> (currentSegment)).getWritePointer (0);
FloatVectorOperations::copy (inputSegmentData, inputData, static_cast<int> (FFTSize));
// Forward FFT
FFTobject->performRealOnlyForwardTransform (inputSegmentData);
prepareForConvolution (inputSegmentData);
// Complex multiplication
if (inputDataWasEmpty)
{
FloatVectorOperations::fill (outputTempData, 0, static_cast<int> (FFTSize + 1));
auto index = currentSegment;
for (size_t i = 1; i < numSegments; ++i)
{
index += indexStep;
if (index >= numInputSegments)
index -= numInputSegments;
convolutionProcessingAndAccumulate (buffersInputSegments.getReference (static_cast<int> (index)).getWritePointer (0),
buffersImpulseSegments.getReference (static_cast<int> (i)).getWritePointer (0),
outputTempData);
}
}
FloatVectorOperations::copy (outputData, outputTempData, static_cast<int> (FFTSize + 1));
convolutionProcessingAndAccumulate (buffersInputSegments.getReference (static_cast<int> (currentSegment)).getWritePointer (0),
buffersImpulseSegments.getReference (0).getWritePointer (0),
outputData);
// Inverse FFT
updateSymmetricFrequencyDomainData (outputData);
FFTobject->performRealOnlyInverseTransform (outputData);
// Add overlap
for (size_t i = 0; i < numSamplesToProcess; ++i)
output[i + numSamplesProcessed] = outputData[inputDataPos + i] + overlapData[inputDataPos + i];
// Input buffer full => Next block
inputDataPos += numSamplesToProcess;
if (inputDataPos == blockSize)
{
// Input buffer is empty again now
FloatVectorOperations::fill (inputData, 0.0f, static_cast<int> (FFTSize));
inputDataPos = 0;
// Extra step for segSize > blockSize
FloatVectorOperations::add (&(outputData[blockSize]), &(overlapData[blockSize]), static_cast<int> (FFTSize - 2 * blockSize));
// Save the overlap
FloatVectorOperations::copy (overlapData, &(outputData[blockSize]), static_cast<int> (FFTSize - blockSize));
// Update current segment
currentSegment = (currentSegment > 0) ? (currentSegment - 1) : (numInputSegments - 1);
}
numSamplesProcessed += numSamplesToProcess;
}
}
/** After each FFT, this function is called to allow convolution to be performed with only 4 SIMD functions calls. */
void prepareForConvolution (float *samples) noexcept
{
auto FFTSizeDiv2 = FFTSize / 2;
for (size_t i = 0; i < FFTSizeDiv2; i++)
samples[i] = samples[2 * i];
samples[FFTSizeDiv2] = 0;
for (size_t i = 1; i < FFTSizeDiv2; i++)
samples[i + FFTSizeDiv2] = -samples[2 * (FFTSize - i) + 1];
}
/** Does the convolution operation itself only on half of the frequency domain samples. */
void convolutionProcessingAndAccumulate (const float *input, const float *impulse, float *output)
{
auto FFTSizeDiv2 = FFTSize / 2;
FloatVectorOperations::addWithMultiply (output, input, impulse, static_cast<int> (FFTSizeDiv2));
FloatVectorOperations::subtractWithMultiply (output, &(input[FFTSizeDiv2]), &(impulse[FFTSizeDiv2]), static_cast<int> (FFTSizeDiv2));
FloatVectorOperations::addWithMultiply (&(output[FFTSizeDiv2]), input, &(impulse[FFTSizeDiv2]), static_cast<int> (FFTSizeDiv2));
FloatVectorOperations::addWithMultiply (&(output[FFTSizeDiv2]), &(input[FFTSizeDiv2]), impulse, static_cast<int> (FFTSizeDiv2));
output[FFTSize] += input[FFTSize] * impulse[FFTSize];
}
/** Undo the re-organization of samples from the function prepareForConvolution.
Then, takes the conjugate of the frequency domain first half of samples, to fill the
second half, so that the inverse transform will return real samples in the time domain.
*/
void updateSymmetricFrequencyDomainData (float* samples) noexcept
{
auto FFTSizeDiv2 = FFTSize / 2;
for (size_t i = 1; i < FFTSizeDiv2; i++)
{
samples[2 * (FFTSize - i)] = samples[i];
samples[2 * (FFTSize - i) + 1] = -samples[FFTSizeDiv2 + i];
}
samples[1] = 0.f;
for (size_t i = 1; i < FFTSizeDiv2; i++)
{
samples[2 * i] = samples[2 * (FFTSize - i)];
samples[2 * i + 1] = -samples[2 * (FFTSize - i) + 1];
}
}
//==============================================================================
std::unique_ptr<FFT> FFTobject;
size_t FFTSize = 0;
size_t currentSegment = 0, numInputSegments = 0, numSegments = 0, blockSize = 0, inputDataPos = 0;
AudioBuffer<float> bufferInput, bufferOutput, bufferTempOutput, bufferOverlap;
Array<AudioBuffer<float>> buffersInputSegments, buffersImpulseSegments;
bool isReady = false;
//==============================================================================
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (ConvolutionEngine)
};
//==============================================================================
/** Manages all the changes requested by the main convolution engine, to minimize
the number of calls of the convolution engine initialization, and the potential
consequences of multiple quick calls to the function Convolution::loadImpulseResponse.
*/
struct Convolution::Pimpl : private Thread
{
enum class ChangeRequest
{
changeEngine = 0,
changeSampleRate,
changeMaximumBufferSize,
changeSource,
changeImpulseResponseSize,
changeStereo,
changeTrimming,
changeNormalization,
changeIgnore,
numChangeRequestTypes
};
using SourceType = ConvolutionEngine::ProcessingInformation::SourceType;
//==============================================================================
Pimpl() : Thread ("Convolution"), abstractFifo (fifoSize)
{
abstractFifo.reset();
fifoRequestsType.resize (fifoSize);
fifoRequestsParameter.resize (fifoSize);
requestsType.resize (fifoSize);
requestsParameter.resize (fifoSize);
for (auto i = 0; i < 4; ++i)
engines.add (new ConvolutionEngine());
currentInfo.maximumBufferSize = 0;
currentInfo.buffer = &impulseResponse;
temporaryBuffer.setSize (2, static_cast<int> (maximumTimeInSamples), false, false, true);
impulseResponseOriginal.setSize (2, static_cast<int> (maximumTimeInSamples), false, false, true);
impulseResponse.setSize (2, static_cast<int> (maximumTimeInSamples), false, false, true);
}
~Pimpl()
{
stopThread (10000);
}
//==============================================================================
/** Adds a new change request. */
void addToFifo (ChangeRequest type, juce::var parameter)
{
int start1, size1, start2, size2;
abstractFifo.prepareToWrite (1, start1, size1, start2, size2);
if (size1 > 0)
{
fifoRequestsType.setUnchecked (start1, type);
fifoRequestsParameter.setUnchecked (start1, parameter);
}
if (size2 > 0)
{
fifoRequestsType.setUnchecked (start2, type);
fifoRequestsParameter.setUnchecked (start2, parameter);
}
abstractFifo.finishedWrite (size1 + size2);
}
/** Adds a new array of change requests. */
void addToFifo (ChangeRequest* types, juce::var* parameters, int numEntries)
{
int start1, size1, start2, size2;
abstractFifo.prepareToWrite (numEntries, start1, size1, start2, size2);
if (size1 > 0)
{
for (auto i = 0; i < size1; ++i)
{
fifoRequestsType.setUnchecked (start1 + i, types[i]);
fifoRequestsParameter.setUnchecked (start1 + i, parameters[i]);
}
}
if (size2 > 0)
{
for (auto i = 0; i < size2; ++i)
{
fifoRequestsType.setUnchecked (start2 + i, types[i + size1]);
fifoRequestsParameter.setUnchecked (start2 + i, parameters[i + size1]);
}
}
abstractFifo.finishedWrite (size1 + size2);
}
/** Reads requests from the fifo */
void readFromFifo (ChangeRequest& type, juce::var& parameter)
{
int start1, size1, start2, size2;
abstractFifo.prepareToRead (1, start1, size1, start2, size2);
if (size1 > 0)
{
type = fifoRequestsType[start1];
parameter = fifoRequestsParameter[start1];
}
if (size2 > 0)
{
type = fifoRequestsType[start2];
parameter = fifoRequestsParameter[start2];
}
abstractFifo.finishedRead (size1 + size2);
}
/** Returns the number of requests that still need to be processed */
int getNumRemainingEntries() const noexcept
{
return abstractFifo.getNumReady();
}
//==============================================================================
/** This function processes all the change requests to remove all the the
redundant ones, and to tell what kind of initialization must be done.
Depending on the results, the convolution engines might be reset, or
simply updated, or they might not need any change at all.
*/
void processFifo()
{
if (getNumRemainingEntries() == 0 || isThreadRunning() || mustInterpolate)
return;
auto numRequests = 0;
// retrieve the information from the FIFO for processing
while (getNumRemainingEntries() > 0)
{
ChangeRequest type = ChangeRequest::changeEngine;
juce::var parameter;
readFromFifo (type, parameter);
requestsType.setUnchecked (numRequests, type);
requestsParameter.setUnchecked (numRequests, parameter);
numRequests++;
}
// remove any useless messages
for (auto i = 0; i < (int) ChangeRequest::numChangeRequestTypes; ++i)
{
bool exists = false;
for (auto n = numRequests; --n >= 0;)
{
if (requestsType[n] == (ChangeRequest) i)
{
if (! exists)
exists = true;
else
requestsType.setUnchecked (n, ChangeRequest::changeIgnore);
}
}
}
changeLevel = 0;
for (auto n = 0; n < numRequests; ++n)
{
switch (requestsType[n])
{
case ChangeRequest::changeEngine:
changeLevel = 3;
break;
case ChangeRequest::changeSampleRate:
{
double newSampleRate = requestsParameter[n];
if (currentInfo.sampleRate != newSampleRate)
changeLevel = 3;
currentInfo.sampleRate = newSampleRate;
}
break;
case ChangeRequest::changeMaximumBufferSize:
{
int newMaximumBufferSize = requestsParameter[n];
if (currentInfo.maximumBufferSize != (size_t) newMaximumBufferSize)
changeLevel = 3;
currentInfo.maximumBufferSize = (size_t) newMaximumBufferSize;
}
break;
case ChangeRequest::changeSource:
{
auto* arrayParameters = requestsParameter[n].getArray();
auto newSourceType = static_cast<SourceType> (static_cast<int> (arrayParameters->getUnchecked (0)));
if (currentInfo.sourceType != newSourceType)
changeLevel = jmax (2, changeLevel);
if (newSourceType == SourceType::sourceBinaryData)
{
auto& prm = arrayParameters->getRawDataPointer()[1];
auto* newMemoryBlock = prm.getBinaryData();
auto* newPtr = newMemoryBlock->getData();
auto newSize = (int) newMemoryBlock->getSize();
if (currentInfo.sourceData != newPtr || currentInfo.sourceDataSize != newSize)
changeLevel = jmax (2, changeLevel);
currentInfo.sourceType = SourceType::sourceBinaryData;
currentInfo.sourceData = newPtr;
currentInfo.sourceDataSize = newSize;
currentInfo.fileImpulseResponse = File();
}
else if (newSourceType == SourceType::sourceAudioFile)
{
File newFile (arrayParameters->getUnchecked (1).toString());
if (currentInfo.fileImpulseResponse != newFile)
changeLevel = jmax (2, changeLevel);
currentInfo.sourceType = SourceType::sourceAudioFile;
currentInfo.fileImpulseResponse = newFile;
currentInfo.sourceData = nullptr;
currentInfo.sourceDataSize = 0;
}
else if (newSourceType == SourceType::sourceAudioBuffer)
{
double originalSampleRate (arrayParameters->getUnchecked (1));
changeLevel = jmax (2, changeLevel);
currentInfo.sourceType = SourceType::sourceAudioBuffer;
currentInfo.originalSampleRate = originalSampleRate;
currentInfo.fileImpulseResponse = File();
currentInfo.sourceData = nullptr;
currentInfo.sourceDataSize = 0;
}
}
break;
case ChangeRequest::changeImpulseResponseSize:
{
int64 newSize = requestsParameter[n];
if (currentInfo.wantedSize != newSize)
changeLevel = jmax (1, changeLevel);
currentInfo.wantedSize = newSize;
}
break;
case ChangeRequest::changeStereo:
{
bool newWantsStereo = requestsParameter[n];
if (currentInfo.wantsStereo != newWantsStereo)
changeLevel = jmax (0, changeLevel);
currentInfo.wantsStereo = newWantsStereo;
}
break;
case ChangeRequest::changeTrimming:
{
bool newWantsTrimming = requestsParameter[n];
if (currentInfo.wantsTrimming != newWantsTrimming)
changeLevel = jmax (1, changeLevel);
currentInfo.wantsTrimming = newWantsTrimming;
}
break;
case ChangeRequest::changeNormalization:
{
bool newWantsNormalization = requestsParameter[n];
if (currentInfo.wantsNormalization != newWantsNormalization)
changeLevel = jmax (1, changeLevel);
currentInfo.wantsNormalization = newWantsNormalization;
}
break;
case ChangeRequest::changeIgnore:
break;
default:
jassertfalse;
break;
}
}
if (currentInfo.sourceType == SourceType::sourceNone)
{
currentInfo.sourceType = SourceType::sourceAudioBuffer;
if (currentInfo.sampleRate == 0)
currentInfo.sampleRate = 44100;
if (currentInfo.maximumBufferSize == 0)
currentInfo.maximumBufferSize = 128;
currentInfo.originalSampleRate = currentInfo.sampleRate;
currentInfo.wantedSize = 1;
currentInfo.fileImpulseResponse = File();
currentInfo.sourceData = nullptr;
currentInfo.sourceDataSize = 0;
AudioBuffer<float> newBuffer;
newBuffer.setSize (1, 1);
newBuffer.setSample (0, 0, 1.f);
copyBufferToTemporaryLocation (newBuffer);
}
// action depending on the change level
if (changeLevel == 3)
{
interpolationBuffer.setSize (2, static_cast<int> (currentInfo.maximumBufferSize), false, false, true);
loadImpulseResponse();
processImpulseResponse();
initializeConvolutionEngines();
}
else if (changeLevel > 0)
{
startThread();
}
}
//==============================================================================
/** This function copies a buffer to a temporary location, so that any external
audio source can be processed then in the dedicated thread.
*/
void copyBufferToTemporaryLocation (dsp::AudioBlock<float> block)
{
const SpinLock::ScopedLockType sl (processLock);
currentInfo.originalNumChannels = (block.getNumChannels() > 1 ? 2 : 1);
currentInfo.originalSize = (int) jmin ((size_t) maximumTimeInSamples, block.getNumSamples());
for (auto channel = 0; channel < currentInfo.originalNumChannels; ++channel)
temporaryBuffer.copyFrom (channel, 0, block.getChannelPointer ((size_t) channel), (int) currentInfo.originalSize);
}
//==============================================================================
/** Resets the convolution engines states. */
void reset()
{
for (auto* e : engines)
e->reset();
}
/** Convolution processing handling interpolation between previous and new states
of the convolution engines.
*/
void processSamples (const AudioBlock<float>& input, AudioBlock<float>& output)
{
processFifo();
size_t numChannels = jmin (input.getNumChannels(), (size_t) (currentInfo.wantsStereo ? 2 : 1));
size_t numSamples = jmin (input.getNumSamples(), output.getNumSamples());
if (mustInterpolate == false)
{
for (size_t channel = 0; channel < numChannels; ++channel)
engines[(int) channel]->processSamples (input.getChannelPointer (channel), output.getChannelPointer (channel), numSamples);
}
else
{
auto interpolated = dsp::AudioBlock<float> (interpolationBuffer).getSubBlock (0, numSamples);
for (size_t channel = 0; channel < numChannels; ++channel)
{
auto&& buffer = output.getSingleChannelBlock (channel);
interpolationBuffer.copyFrom ((int) channel, 0, input.getChannelPointer (channel), (int) numSamples);
engines[(int) channel]->processSamples (input.getChannelPointer (channel), buffer.getChannelPointer (0), numSamples);
changeVolumes[channel].applyGain (buffer.getChannelPointer (0), (int) numSamples);
auto* interPtr = interpolationBuffer.getWritePointer ((int) channel);
engines[(int) channel + 2]->processSamples (interPtr, interPtr, numSamples);
changeVolumes[channel + 2].applyGain (interPtr, (int) numSamples);
buffer += interpolated.getSingleChannelBlock (channel);
}
if (input.getNumChannels() > 1 && currentInfo.wantsStereo == false)
{
auto&& buffer = output.getSingleChannelBlock (1);
changeVolumes[1].applyGain (buffer.getChannelPointer (0), (int) numSamples);
changeVolumes[3].applyGain (buffer.getChannelPointer (0), (int) numSamples);
}
if (changeVolumes[0].isSmoothing() == false)
{
mustInterpolate = false;
for (auto channel = 0; channel < 2; ++channel)
engines[channel]->copyStateFromOtherEngine (*engines[channel + 2]);
}
}
if (input.getNumChannels() > 1 && currentInfo.wantsStereo == false)
output.getSingleChannelBlock (1).copy (output.getSingleChannelBlock (0));
}
//==============================================================================
const int64 maximumTimeInSamples = 10 * 96000;
private:
//==============================================================================
/** This the thread run function which does the preparation of data depending
on the requested change level.
*/
void run() override
{
if (changeLevel == 2)
{
loadImpulseResponse();
if (isThreadRunning() && threadShouldExit())
return;
}
processImpulseResponse();
if (isThreadRunning() && threadShouldExit())
return;
initializeConvolutionEngines();
}
/** Loads the impulse response from the requested audio source. */
void loadImpulseResponse()
{
if (currentInfo.sourceType == SourceType::sourceBinaryData)
{
if (! (copyAudioStreamInAudioBuffer (new MemoryInputStream (currentInfo.sourceData, (size_t) currentInfo.sourceDataSize, false))))
return;
}
else if (currentInfo.sourceType == SourceType::sourceAudioFile)
{
if (! (copyAudioStreamInAudioBuffer (new FileInputStream (currentInfo.fileImpulseResponse))))
return;
}
else if (currentInfo.sourceType == SourceType::sourceAudioBuffer)
{
copyBufferFromTemporaryLocation();
}
}
/** Processes the impulse response data with the requested treatments
and resampling if needed.
*/
void processImpulseResponse()
{
trimAndResampleImpulseResponse (currentInfo.originalNumChannels, currentInfo.originalSampleRate, currentInfo.wantsTrimming);
if (isThreadRunning() && threadShouldExit())
return;
if (currentInfo.wantsNormalization)
{
if (currentInfo.originalNumChannels > 1)
{
normalizeImpulseResponse (currentInfo.buffer->getWritePointer (0), (int) currentInfo.finalSize, 1.0);
normalizeImpulseResponse (currentInfo.buffer->getWritePointer (1), (int) currentInfo.finalSize, 1.0);
}
else
{
normalizeImpulseResponse (currentInfo.buffer->getWritePointer (0), (int) currentInfo.finalSize, 1.0);
}
}
if (currentInfo.originalNumChannels == 1)
currentInfo.buffer->copyFrom (1, 0, *currentInfo.buffer, 0, 0, (int) currentInfo.finalSize);
}
/** Converts the data from an audio file into a stereo audio buffer of floats, and
performs resampling if necessary.
*/
bool copyAudioStreamInAudioBuffer (InputStream* stream)
{
AudioFormatManager manager;
manager.registerBasicFormats();
std::unique_ptr<AudioFormatReader> formatReader (manager.createReaderFor (stream));
if (formatReader != nullptr)
{
currentInfo.originalNumChannels = formatReader->numChannels > 1 ? 2 : 1;
currentInfo.originalSampleRate = formatReader->sampleRate;
currentInfo.originalSize = static_cast<int> (jmin (maximumTimeInSamples, formatReader->lengthInSamples));
impulseResponseOriginal.clear();
formatReader->read (&(impulseResponseOriginal), 0, (int) currentInfo.originalSize, 0, true, currentInfo.originalNumChannels > 1);
return true;
}
return false;
}
/** Copies a buffer from a temporary location to the impulseResponseOriginal
buffer for the sourceAudioBuffer.
*/
void copyBufferFromTemporaryLocation()
{
const SpinLock::ScopedLockType sl (processLock);
for (auto channel = 0; channel < currentInfo.originalNumChannels; ++channel)
impulseResponseOriginal.copyFrom (channel, 0, temporaryBuffer, channel, 0, (int) currentInfo.originalSize);
}
/** Trim and resample the impulse response if needed. */
void trimAndResampleImpulseResponse (int numChannels, double srcSampleRate, bool mustTrim)
{
auto thresholdTrim = Decibels::decibelsToGain (-80.0f);
auto indexStart = 0;
auto indexEnd = currentInfo.originalSize - 1;
if (mustTrim)
{
indexStart = currentInfo.originalSize - 1;
indexEnd = 0;
for (auto channel = 0; channel < numChannels; ++channel)
{
auto localIndexStart = 0;
auto localIndexEnd = currentInfo.originalSize - 1;
auto* channelData = impulseResponseOriginal.getReadPointer (channel);
while (localIndexStart < currentInfo.originalSize - 1
&& channelData[localIndexStart] <= thresholdTrim
&& channelData[localIndexStart] >= -thresholdTrim)
++localIndexStart;
while (localIndexEnd >= 0
&& channelData[localIndexEnd] <= thresholdTrim
&& channelData[localIndexEnd] >= -thresholdTrim)
--localIndexEnd;
indexStart = jmin (indexStart, localIndexStart);
indexEnd = jmax (indexEnd, localIndexEnd);
}
if (indexStart > 0)
{
for (auto channel = 0; channel < numChannels; ++channel)
{
auto* channelData = impulseResponseOriginal.getWritePointer (channel);
for (auto i = 0; i < indexEnd - indexStart + 1; ++i)
channelData[i] = channelData[i + indexStart];
for (auto i = indexEnd - indexStart + 1; i < currentInfo.originalSize - 1; ++i)
channelData[i] = 0.0f;
}
}
}
if (currentInfo.sampleRate == srcSampleRate)
{
// No resampling
currentInfo.finalSize = jmin (static_cast<int> (currentInfo.wantedSize), indexEnd - indexStart + 1);
impulseResponse.clear();
for (auto channel = 0; channel < numChannels; ++channel)
impulseResponse.copyFrom (channel, 0, impulseResponseOriginal, channel, 0, (int) currentInfo.finalSize);
}
else
{
// Resampling
auto factorReading = srcSampleRate / currentInfo.sampleRate;
currentInfo.finalSize = jmin (static_cast<int> (currentInfo.wantedSize), roundToInt ((indexEnd - indexStart + 1) / factorReading));
impulseResponse.clear();
MemoryAudioSource memorySource (impulseResponseOriginal, false);
ResamplingAudioSource resamplingSource (&memorySource, false, (int) numChannels);
resamplingSource.setResamplingRatio (factorReading);
resamplingSource.prepareToPlay ((int) currentInfo.finalSize, currentInfo.sampleRate);
AudioSourceChannelInfo info;
info.startSample = 0;
info.numSamples = (int) currentInfo.finalSize;
info.buffer = &impulseResponse;
resamplingSource.getNextAudioBlock (info);
}
// Filling the second channel with the first if necessary
if (numChannels == 1)
impulseResponse.copyFrom (1, 0, impulseResponse, 0, 0, (int) currentInfo.finalSize);
}
/** Normalization of the impulse response based on its energy. */
void normalizeImpulseResponse (float* samples, int numSamples, double factorResampling) const
{
auto magnitude = 0.0f;
for (auto i = 0; i < numSamples; ++i)
magnitude += samples[i] * samples[i];
auto magnitudeInv = 1.0f / (4.0f * std::sqrt (magnitude)) * 0.5f * static_cast <float> (factorResampling);
for (auto i = 0; i < numSamples; ++i)
samples[i] *= magnitudeInv;
}
// ================================================================================================================
/** Initializes the convolution engines depending on the provided sizes
and performs the FFT on the impulse responses.
*/
void initializeConvolutionEngines()
{
if (currentInfo.maximumBufferSize == 0)
return;
if (changeLevel == 3)
{
for (auto i = 0; i < 2; ++i)
engines[i]->initializeConvolutionEngine (currentInfo, i);
mustInterpolate = false;
}
else
{
for (auto i = 0; i < 2; ++i)
{
engines[i + 2]->initializeConvolutionEngine (currentInfo, i);
engines[i + 2]->reset();
if (isThreadRunning() && threadShouldExit())
return;
}
for (auto i = 0; i < 2; ++i)
{
changeVolumes[i].setValue (1.0f);
changeVolumes[i].reset (currentInfo.sampleRate, 0.05);
changeVolumes[i].setValue (0.0f);
changeVolumes[i + 2].setValue (0.0f);
changeVolumes[i + 2].reset (currentInfo.sampleRate, 0.05);
changeVolumes[i + 2].setValue (1.0f);
}
mustInterpolate = true;
}
}
//==============================================================================
static constexpr int fifoSize = 256; // the size of the fifo which handles all the change requests
AbstractFifo abstractFifo; // the abstract fifo
Array<ChangeRequest> fifoRequestsType; // an array of ChangeRequest
Array<juce::var> fifoRequestsParameter; // an array of change parameters
Array<ChangeRequest> requestsType; // an array of ChangeRequest
Array<juce::var> requestsParameter; // an array of change parameters
int changeLevel = 0; // the current level of requested change in the convolution engine
//==============================================================================
ConvolutionEngine::ProcessingInformation currentInfo; // the information about the impulse response to load
AudioBuffer<float> temporaryBuffer; // a temporary buffer that is used when the function copyAndLoadImpulseResponse is called in the main API
SpinLock processLock; // a necessary lock to use with this temporary buffer
AudioBuffer<float> impulseResponseOriginal; // a buffer with the original impulse response
AudioBuffer<float> impulseResponse; // a buffer with the impulse response trimmed, resampled, resized and normalized
//==============================================================================
OwnedArray<ConvolutionEngine> engines; // the 4 convolution engines being used
AudioBuffer<float> interpolationBuffer; // a buffer to do the interpolation between the convolution engines 0-1 and 2-3
LinearSmoothedValue<float> changeVolumes[4]; // the volumes for each convolution engine during interpolation
bool mustInterpolate = false; // tells if the convolution engines outputs must be currently interpolated
//==============================================================================
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (Pimpl)
};
//==============================================================================
Convolution::Convolution()
{
pimpl.reset (new Pimpl());
pimpl->addToFifo (Convolution::Pimpl::ChangeRequest::changeEngine, juce::var (0));
}
Convolution::~Convolution()
{
}
void Convolution::loadImpulseResponse (const void* sourceData, size_t sourceDataSize,
bool wantsStereo, bool wantsTrimming, size_t size,
bool wantsNormalization)
{
if (sourceData == nullptr)
return;
auto maximumSamples = (size_t) pimpl->maximumTimeInSamples;
auto wantedSize = (size == 0 ? maximumSamples : jmin (size, maximumSamples));
Pimpl::ChangeRequest types[] = { Pimpl::ChangeRequest::changeSource,
Pimpl::ChangeRequest::changeImpulseResponseSize,
Pimpl::ChangeRequest::changeStereo,
Pimpl::ChangeRequest::changeTrimming,
Pimpl::ChangeRequest::changeNormalization };
Array<juce::var> sourceParameter;
sourceParameter.add (juce::var ((int) ConvolutionEngine::ProcessingInformation::SourceType::sourceBinaryData));
sourceParameter.add (juce::var (sourceData, sourceDataSize));
juce::var parameters[] = { juce::var (sourceParameter),
juce::var (static_cast<int64> (wantedSize)),
juce::var (wantsStereo),
juce::var (wantsTrimming),
juce::var (wantsNormalization) };
pimpl->addToFifo (types, parameters, 5);
}
void Convolution::loadImpulseResponse (const File& fileImpulseResponse, bool wantsStereo,
bool wantsTrimming, size_t size, bool wantsNormalization)
{
if (! fileImpulseResponse.existsAsFile())
return;
auto maximumSamples = (size_t) pimpl->maximumTimeInSamples;
auto wantedSize = (size == 0 ? maximumSamples : jmin (size, maximumSamples));
Pimpl::ChangeRequest types[] = { Pimpl::ChangeRequest::changeSource,
Pimpl::ChangeRequest::changeImpulseResponseSize,
Pimpl::ChangeRequest::changeStereo,
Pimpl::ChangeRequest::changeTrimming,
Pimpl::ChangeRequest::changeNormalization };
Array<juce::var> sourceParameter;
sourceParameter.add (juce::var ((int) ConvolutionEngine::ProcessingInformation::SourceType::sourceAudioFile));
sourceParameter.add (juce::var (fileImpulseResponse.getFullPathName()));
juce::var parameters[] = { juce::var (sourceParameter),
juce::var (static_cast<int64> (wantedSize)),
juce::var (wantsStereo),
juce::var (wantsTrimming),
juce::var (wantsNormalization) };
pimpl->addToFifo (types, parameters, 5);
}
void Convolution::copyAndLoadImpulseResponseFromBuffer (AudioBuffer<float>& buffer,
double bufferSampleRate, bool wantsStereo, bool wantsTrimming, bool wantsNormalization, size_t size)
{
copyAndLoadImpulseResponseFromBlock (AudioBlock<float> (buffer), bufferSampleRate,
wantsStereo, wantsTrimming, wantsNormalization, size);
}
void Convolution::copyAndLoadImpulseResponseFromBlock (AudioBlock<float> block, double bufferSampleRate,
bool wantsStereo, bool wantsTrimming, bool wantsNormalization, size_t size)
{
jassert (bufferSampleRate > 0);
if (block.getNumSamples() == 0)
return;
auto maximumSamples = (size_t) pimpl->maximumTimeInSamples;
auto wantedSize = (size == 0 ? maximumSamples : jmin (size, maximumSamples));
pimpl->copyBufferToTemporaryLocation (block);
Pimpl::ChangeRequest types[] = { Pimpl::ChangeRequest::changeSource,
Pimpl::ChangeRequest::changeImpulseResponseSize,
Pimpl::ChangeRequest::changeStereo,
Pimpl::ChangeRequest::changeTrimming,
Pimpl::ChangeRequest::changeNormalization };
Array<juce::var> sourceParameter;
sourceParameter.add (juce::var ((int) ConvolutionEngine::ProcessingInformation::SourceType::sourceAudioBuffer));
sourceParameter.add (juce::var (bufferSampleRate));
juce::var parameters[] = { juce::var (sourceParameter),
juce::var (static_cast<int64> (wantedSize)),
juce::var (wantsStereo),
juce::var (wantsTrimming),
juce::var (wantsNormalization) };
pimpl->addToFifo (types, parameters, 5);
}
void Convolution::prepare (const ProcessSpec& spec)
{
jassert (isPositiveAndBelow (spec.numChannels, static_cast<uint32> (3))); // only mono and stereo is supported
Pimpl::ChangeRequest types[] = { Pimpl::ChangeRequest::changeSampleRate,
Pimpl::ChangeRequest::changeMaximumBufferSize };
juce::var parameters[] = { juce::var (spec.sampleRate),
juce::var (static_cast<int> (spec.maximumBlockSize)) };
pimpl->addToFifo (types, parameters, 2);
for (size_t channel = 0; channel < spec.numChannels; ++channel)
{
volumeDry[channel].reset (spec.sampleRate, 0.05);
volumeWet[channel].reset (spec.sampleRate, 0.05);
}
sampleRate = spec.sampleRate;
dryBuffer = AudioBlock<float> (dryBufferStorage,
jmin (spec.numChannels, 2u),
spec.maximumBlockSize);
isActive = true;
}
void Convolution::reset() noexcept
{
dryBuffer.clear();
pimpl->reset();
}
void Convolution::processSamples (const AudioBlock<float>& input, AudioBlock<float>& output, bool isBypassed) noexcept
{
if (! isActive)
return;
jassert (input.getNumChannels() == output.getNumChannels());
jassert (isPositiveAndBelow (input.getNumChannels(), static_cast<size_t> (3))); // only mono and stereo is supported
auto numChannels = jmin (input.getNumChannels(), (size_t) 2);
auto numSamples = jmin (input.getNumSamples(), output.getNumSamples());
auto dry = dryBuffer.getSubsetChannelBlock (0, numChannels);
if (volumeDry[0].isSmoothing())
{
dry.copy (input);
for (size_t channel = 0; channel < numChannels; ++channel)
volumeDry[channel].applyGain (dry.getChannelPointer (channel), (int) numSamples);
pimpl->processSamples (input, output);
for (size_t channel = 0; channel < numChannels; ++channel)
volumeWet[channel].applyGain (output.getChannelPointer (channel), (int) numSamples);
output += dry;
}
else
{
if (! currentIsBypassed)
pimpl->processSamples (input, output);
if (isBypassed != currentIsBypassed)
{
currentIsBypassed = isBypassed;
for (size_t channel = 0; channel < numChannels; ++channel)
{
volumeDry[channel].setValue (isBypassed ? 0.0f : 1.0f);
volumeDry[channel].reset (sampleRate, 0.05);
volumeDry[channel].setValue (isBypassed ? 1.0f : 0.0f);
volumeWet[channel].setValue (isBypassed ? 1.0f : 0.0f);
volumeWet[channel].reset (sampleRate, 0.05);
volumeWet[channel].setValue (isBypassed ? 0.0f : 1.0f);
}
}
}
}
} // namespace dsp
} // namespace juce