381 lines
14 KiB
C++
381 lines
14 KiB
C++
/*
|
|
==============================================================================
|
|
|
|
This file is part of the JUCE library.
|
|
Copyright (c) 2017 - ROLI Ltd.
|
|
|
|
JUCE is an open source library subject to commercial or open-source
|
|
licensing.
|
|
|
|
By using JUCE, you agree to the terms of both the JUCE 5 End-User License
|
|
Agreement and JUCE 5 Privacy Policy (both updated and effective as of the
|
|
27th April 2017).
|
|
|
|
End User License Agreement: www.juce.com/juce-5-licence
|
|
Privacy Policy: www.juce.com/juce-5-privacy-policy
|
|
|
|
Or: You may also use this code under the terms of the GPL v3 (see
|
|
www.gnu.org/licenses).
|
|
|
|
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
|
|
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
|
|
DISCLAIMED.
|
|
|
|
==============================================================================
|
|
*/
|
|
|
|
namespace juce
|
|
{
|
|
|
|
Displays::Displays (Desktop& desktop)
|
|
{
|
|
init (desktop);
|
|
}
|
|
|
|
void Displays::init (Desktop& desktop)
|
|
{
|
|
findDisplays (desktop.getGlobalScaleFactor());
|
|
}
|
|
|
|
const Displays::Display& Displays::findDisplayForRect (Rectangle<int> rect, bool isPhysical) const noexcept
|
|
{
|
|
int maxArea = -1;
|
|
Display* retVal = nullptr;
|
|
|
|
for (auto& display : displays)
|
|
{
|
|
auto displayArea = display.totalArea;
|
|
|
|
if (isPhysical)
|
|
displayArea = (displayArea.withZeroOrigin() * display.scale) + display.topLeftPhysical;
|
|
|
|
displayArea = displayArea.getIntersection (rect);
|
|
auto area = displayArea.getWidth() * displayArea.getHeight();
|
|
|
|
if (area >= maxArea)
|
|
{
|
|
maxArea = area;
|
|
retVal = &display;
|
|
}
|
|
}
|
|
|
|
return *retVal;
|
|
}
|
|
|
|
const Displays::Display& Displays::findDisplayForPoint (Point<int> point, bool isPhysical) const noexcept
|
|
{
|
|
auto minDistance = std::numeric_limits<int>::max();
|
|
Display* retVal = nullptr;
|
|
|
|
for (auto& display : displays)
|
|
{
|
|
auto displayArea = display.totalArea;
|
|
|
|
if (isPhysical)
|
|
displayArea = (displayArea.withZeroOrigin() * display.scale) + display.topLeftPhysical;
|
|
|
|
if (displayArea.contains (point))
|
|
return display;
|
|
|
|
auto distance = displayArea.getCentre().getDistanceFrom (point);
|
|
if (distance <= minDistance)
|
|
{
|
|
minDistance = distance;
|
|
retVal = &display;
|
|
}
|
|
}
|
|
|
|
return *retVal;
|
|
}
|
|
|
|
Rectangle<int> Displays::physicalToLogical (Rectangle<int> rect, const Display* useScaleFactorOfDisplay) const noexcept
|
|
{
|
|
auto& display = useScaleFactorOfDisplay != nullptr ? *useScaleFactorOfDisplay
|
|
: findDisplayForRect (rect, true);
|
|
|
|
auto globalScale = Desktop::getInstance().getGlobalScaleFactor();
|
|
|
|
return ((rect.toFloat() - display.topLeftPhysical.toFloat()) / (display.scale / globalScale)).toNearestInt() + (display.totalArea.getTopLeft() * globalScale);
|
|
}
|
|
|
|
Rectangle<int> Displays::logicalToPhysical (Rectangle<int> rect, const Display* useScaleFactorOfDisplay) const noexcept
|
|
{
|
|
auto& display = useScaleFactorOfDisplay != nullptr ? *useScaleFactorOfDisplay
|
|
: findDisplayForRect (rect, false);
|
|
|
|
auto globalScale = Desktop::getInstance().getGlobalScaleFactor();
|
|
|
|
return ((rect.toFloat() - (display.totalArea.getTopLeft().toFloat() * globalScale)) * (display.scale / globalScale)).toNearestInt() + display.topLeftPhysical;
|
|
}
|
|
|
|
template <typename ValueType>
|
|
Point<ValueType> Displays::physicalToLogical (Point<ValueType> point, const Display* useScaleFactorOfDisplay) const noexcept
|
|
{
|
|
auto& display = useScaleFactorOfDisplay != nullptr ? *useScaleFactorOfDisplay
|
|
: findDisplayForPoint (point.roundToInt(), true);
|
|
|
|
auto globalScale = Desktop::getInstance().getGlobalScaleFactor();
|
|
|
|
Point<ValueType> logicalTopLeft (display.totalArea.getX(), display.totalArea.getY());
|
|
Point<ValueType> physicalTopLeft (display.topLeftPhysical.getX(), display.topLeftPhysical.getY());
|
|
|
|
return ((point - physicalTopLeft) / (display.scale / globalScale)) + (logicalTopLeft * globalScale);
|
|
}
|
|
|
|
template <typename ValueType>
|
|
Point<ValueType> Displays::logicalToPhysical (Point<ValueType> point, const Display* useScaleFactorOfDisplay) const noexcept
|
|
{
|
|
auto& display = useScaleFactorOfDisplay != nullptr ? *useScaleFactorOfDisplay
|
|
: findDisplayForPoint (point.roundToInt(), false);
|
|
|
|
auto globalScale = Desktop::getInstance().getGlobalScaleFactor();
|
|
|
|
Point<ValueType> logicalTopLeft (display.totalArea.getX(), display.totalArea.getY());
|
|
Point<ValueType> physicalTopLeft (display.topLeftPhysical.getX(), display.topLeftPhysical.getY());
|
|
|
|
return ((point - (logicalTopLeft * globalScale)) * (display.scale / globalScale)) + physicalTopLeft;
|
|
}
|
|
|
|
const Displays::Display& Displays::getMainDisplay() const noexcept
|
|
{
|
|
JUCE_ASSERT_MESSAGE_MANAGER_IS_LOCKED
|
|
|
|
for (auto& d : displays)
|
|
if (d.isMain)
|
|
return d;
|
|
|
|
// no main display!
|
|
jassertfalse;
|
|
return displays.getReference (0);
|
|
}
|
|
|
|
RectangleList<int> Displays::getRectangleList (bool userAreasOnly) const
|
|
{
|
|
JUCE_ASSERT_MESSAGE_MANAGER_IS_LOCKED
|
|
RectangleList<int> rl;
|
|
|
|
for (auto& d : displays)
|
|
rl.addWithoutMerging (userAreasOnly ? d.userArea : d.totalArea);
|
|
|
|
return rl;
|
|
}
|
|
|
|
Rectangle<int> Displays::getTotalBounds (bool userAreasOnly) const
|
|
{
|
|
return getRectangleList (userAreasOnly).getBounds();
|
|
}
|
|
|
|
void Displays::refresh()
|
|
{
|
|
Array<Display> oldDisplays;
|
|
oldDisplays.swapWith (displays);
|
|
|
|
init (Desktop::getInstance());
|
|
|
|
if (oldDisplays != displays)
|
|
{
|
|
for (auto i = ComponentPeer::getNumPeers(); --i >= 0;)
|
|
if (auto* peer = ComponentPeer::getPeer (i))
|
|
peer->handleScreenSizeChange();
|
|
}
|
|
}
|
|
|
|
bool operator== (const Displays::Display& d1, const Displays::Display& d2) noexcept;
|
|
bool operator== (const Displays::Display& d1, const Displays::Display& d2) noexcept
|
|
{
|
|
return d1.isMain == d2.isMain
|
|
&& d1.totalArea == d2.totalArea
|
|
&& d1.userArea == d2.userArea
|
|
&& d1.topLeftPhysical == d2.topLeftPhysical
|
|
&& d1.scale == d2.scale
|
|
&& d1.dpi == d2.dpi;
|
|
}
|
|
|
|
bool operator!= (const Displays::Display& d1, const Displays::Display& d2) noexcept;
|
|
bool operator!= (const Displays::Display& d1, const Displays::Display& d2) noexcept { return ! (d1 == d2); }
|
|
|
|
// Deprecated method
|
|
const Displays::Display& Displays::getDisplayContaining (Point<int> position) const noexcept
|
|
{
|
|
JUCE_ASSERT_MESSAGE_MANAGER_IS_LOCKED
|
|
auto* best = &displays.getReference (0);
|
|
auto bestDistance = std::numeric_limits<int>::max();
|
|
|
|
for (auto& d : displays)
|
|
{
|
|
if (d.totalArea.contains (position))
|
|
{
|
|
best = &d;
|
|
break;
|
|
}
|
|
|
|
auto distance = d.totalArea.getCentre().getDistanceFrom (position);
|
|
|
|
if (distance < bestDistance)
|
|
{
|
|
bestDistance = distance;
|
|
best = &d;
|
|
}
|
|
}
|
|
|
|
return *best;
|
|
}
|
|
|
|
//==============================================================================
|
|
// These methods are used for converting the totalArea and userArea Rectangles in Display from physical to logical
|
|
// pixels. We do this by constructing a graph of connected displays where the root node has position (0, 0); this can be
|
|
// safely converted to logical pixels using its scale factor and we can then traverse the graph and work out the logical pixels
|
|
// for all the other connected displays. We need to do this as the logical bounds of a display depend not only on its scale
|
|
// factor but also the scale factor of the displays connected to it.
|
|
|
|
/**
|
|
Represents a node in our graph of displays.
|
|
*/
|
|
struct DisplayNode
|
|
{
|
|
/** The Display object that this represents. */
|
|
Displays::Display* display;
|
|
|
|
/** True if this represents the 'root' display with position (0, 0). */
|
|
bool isRoot = false;
|
|
|
|
/** The parent node of this node in our display graph. This will have a correct logicalArea. */
|
|
DisplayNode* parent = nullptr;
|
|
|
|
/** The logical area to be calculated. This will be valid after processDisplay() has
|
|
been called on this node.
|
|
*/
|
|
Rectangle<double> logicalArea;
|
|
};
|
|
|
|
/** Recursive - will calculate and set the logicalArea member of current. */
|
|
static void processDisplay (DisplayNode* currentNode, const Array<DisplayNode>& allNodes)
|
|
{
|
|
const auto physicalArea = currentNode->display->totalArea.toDouble();
|
|
const auto scale = currentNode->display->scale;
|
|
|
|
if (! currentNode->isRoot)
|
|
{
|
|
const auto logicalWidth = physicalArea.getWidth() / scale;
|
|
const auto logicalHeight = physicalArea.getHeight() / scale;
|
|
|
|
const auto physicalParentArea = currentNode->parent->display->totalArea.toDouble();
|
|
const auto logicalParentArea = currentNode->parent->logicalArea; // logical area of parent has already been calculated
|
|
const auto parentScale = currentNode->parent->display->scale;
|
|
|
|
Rectangle<double> logicalArea (0.0, 0.0, logicalWidth, logicalHeight);
|
|
|
|
if (physicalArea.getRight() == physicalParentArea.getX()) logicalArea.setPosition ({ logicalParentArea.getX() - logicalWidth, physicalArea.getY() / parentScale }); // on left
|
|
else if (physicalArea.getX() == physicalParentArea.getRight()) logicalArea.setPosition ({ logicalParentArea.getRight(), physicalArea.getY() / parentScale }); // on right
|
|
else if (physicalArea.getBottom() == physicalParentArea.getY()) logicalArea.setPosition ({ physicalArea.getX() / parentScale, logicalParentArea.getY() - logicalHeight }); // on top
|
|
else if (physicalArea.getY() == physicalParentArea.getBottom()) logicalArea.setPosition ({ physicalArea.getX() / parentScale, logicalParentArea.getBottom() }); // on bottom
|
|
else jassertfalse;
|
|
|
|
currentNode->logicalArea = logicalArea;
|
|
}
|
|
else
|
|
{
|
|
// If currentNode is the root (position (0, 0)) then we can just scale the physical area
|
|
currentNode->logicalArea = physicalArea / scale;
|
|
currentNode->parent = currentNode;
|
|
}
|
|
|
|
// Find child nodes
|
|
Array<DisplayNode*> children;
|
|
for (auto& node : allNodes)
|
|
{
|
|
// Already calculated
|
|
if (node.parent != nullptr)
|
|
continue;
|
|
|
|
const auto otherPhysicalArea = node.display->totalArea.toDouble();
|
|
|
|
// If the displays are touching on any side
|
|
if (otherPhysicalArea.getX() == physicalArea.getRight() || otherPhysicalArea.getRight() == physicalArea.getX()
|
|
|| otherPhysicalArea.getY() == physicalArea.getBottom() || otherPhysicalArea.getBottom() == physicalArea.getY())
|
|
{
|
|
node.parent = currentNode;
|
|
children.add (&node);
|
|
}
|
|
}
|
|
|
|
// Recursively process all child nodes
|
|
for (auto child : children)
|
|
processDisplay (child, allNodes);
|
|
}
|
|
|
|
/** This is called when the displays Array has been filled out with the info for all connected displays and the
|
|
totalArea and userArea Rectangles need to be converted from physical to logical coordinates.
|
|
*/
|
|
void Displays::updateToLogical()
|
|
{
|
|
if (displays.size() == 1)
|
|
{
|
|
auto& display = displays.getReference (0);
|
|
|
|
display.totalArea = (display.totalArea.toDouble() / display.scale).toNearestInt();
|
|
display.userArea = (display.userArea.toDouble() / display.scale).toNearestInt();
|
|
|
|
return;
|
|
}
|
|
|
|
Array<DisplayNode> displayNodes;
|
|
|
|
for (auto& d : displays)
|
|
{
|
|
DisplayNode node;
|
|
|
|
node.display = &d;
|
|
|
|
if (d.totalArea.getTopLeft() == Point<int>())
|
|
node.isRoot = true;
|
|
|
|
displayNodes.add (node);
|
|
}
|
|
|
|
auto* root = [&displayNodes]() -> DisplayNode*
|
|
{
|
|
for (auto& node : displayNodes)
|
|
if (node.isRoot)
|
|
return &node;
|
|
|
|
auto minDistance = std::numeric_limits<int>::max();
|
|
DisplayNode* retVal = nullptr;
|
|
|
|
for (auto& node : displayNodes)
|
|
{
|
|
auto distance = node.display->totalArea.getTopLeft().getDistanceFrom ({});
|
|
|
|
if (distance < minDistance)
|
|
{
|
|
minDistance = distance;
|
|
retVal = &node;
|
|
}
|
|
}
|
|
|
|
retVal->isRoot = true;
|
|
return retVal;
|
|
}();
|
|
|
|
// Must have a root node!
|
|
jassert (root != nullptr);
|
|
|
|
// Recursively traverse the display graph from the root and work out logical bounds
|
|
processDisplay (root, displayNodes);
|
|
|
|
for (auto& node : displayNodes)
|
|
{
|
|
// All of the nodes should have a parent
|
|
jassert (node.parent != nullptr);
|
|
|
|
auto relativeUserArea = (node.display->userArea.toDouble() - node.display->totalArea.toDouble().getTopLeft()) / node.display->scale;
|
|
|
|
// Now set Display::totalArea and ::userArea using the logical area that we have calculated
|
|
node.display->topLeftPhysical = node.display->totalArea.getTopLeft();
|
|
node.display->totalArea = node.logicalArea.toNearestInt();
|
|
node.display->userArea = (relativeUserArea + node.logicalArea.getTopLeft()).toNearestInt();
|
|
}
|
|
}
|
|
|
|
} // namespace juce
|