921 lines
33 KiB
C++
921 lines
33 KiB
C++
/*
|
|
==============================================================================
|
|
|
|
This file is part of the JUCE library.
|
|
Copyright (c) 2017 - ROLI Ltd.
|
|
|
|
JUCE is an open source library subject to commercial or open-source
|
|
licensing.
|
|
|
|
The code included in this file is provided under the terms of the ISC license
|
|
http://www.isc.org/downloads/software-support-policy/isc-license. Permission
|
|
To use, copy, modify, and/or distribute this software for any purpose with or
|
|
without fee is hereby granted provided that the above copyright notice and
|
|
this permission notice appear in all copies.
|
|
|
|
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
|
|
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
|
|
DISCLAIMED.
|
|
|
|
==============================================================================
|
|
*/
|
|
|
|
namespace juce
|
|
{
|
|
|
|
//==============================================================================
|
|
/** An array designed for holding objects.
|
|
|
|
This holds a list of pointers to objects, and will automatically
|
|
delete the objects when they are removed from the array, or when the
|
|
array is itself deleted.
|
|
|
|
Declare it in the form: OwnedArray<MyObjectClass>
|
|
|
|
..and then add new objects, e.g. myOwnedArray.add (new MyObjectClass());
|
|
|
|
After adding objects, they are 'owned' by the array and will be deleted when
|
|
removed or replaced.
|
|
|
|
To make all the array's methods thread-safe, pass in "CriticalSection" as the templated
|
|
TypeOfCriticalSectionToUse parameter, instead of the default DummyCriticalSection.
|
|
|
|
@see Array, ReferenceCountedArray, StringArray, CriticalSection
|
|
|
|
@tags{Core}
|
|
*/
|
|
template <class ObjectClass,
|
|
class TypeOfCriticalSectionToUse = DummyCriticalSection>
|
|
|
|
class OwnedArray
|
|
{
|
|
public:
|
|
//==============================================================================
|
|
/** Creates an empty array. */
|
|
OwnedArray() noexcept
|
|
{
|
|
}
|
|
|
|
/** Deletes the array and also deletes any objects inside it.
|
|
|
|
To get rid of the array without deleting its objects, use its
|
|
clear (false) method before deleting it.
|
|
*/
|
|
~OwnedArray()
|
|
{
|
|
deleteAllObjects();
|
|
}
|
|
|
|
/** Move constructor. */
|
|
OwnedArray (OwnedArray&& other) noexcept
|
|
: data (static_cast<ArrayAllocationBase <ObjectClass*, TypeOfCriticalSectionToUse>&&> (other.data)),
|
|
numUsed (other.numUsed)
|
|
{
|
|
other.numUsed = 0;
|
|
}
|
|
|
|
/** Creates an array from a list of objects. */
|
|
OwnedArray (const std::initializer_list<ObjectClass*>& items)
|
|
{
|
|
addArray (items);
|
|
}
|
|
|
|
/** Move assignment operator. */
|
|
OwnedArray& operator= (OwnedArray&& other) noexcept
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
deleteAllObjects();
|
|
|
|
data = static_cast<ArrayAllocationBase <ObjectClass*, TypeOfCriticalSectionToUse>&&> (other.data);
|
|
numUsed = other.numUsed;
|
|
other.numUsed = 0;
|
|
return *this;
|
|
}
|
|
|
|
//==============================================================================
|
|
/** Clears the array, optionally deleting the objects inside it first. */
|
|
void clear (bool deleteObjects = true)
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
|
|
if (deleteObjects)
|
|
deleteAllObjects();
|
|
|
|
data.setAllocatedSize (0);
|
|
numUsed = 0;
|
|
}
|
|
|
|
//==============================================================================
|
|
/** Clears the array, optionally deleting the objects inside it first. */
|
|
void clearQuick (bool deleteObjects)
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
|
|
if (deleteObjects)
|
|
deleteAllObjects();
|
|
|
|
numUsed = 0;
|
|
}
|
|
|
|
//==============================================================================
|
|
/** Returns the number of items currently in the array.
|
|
@see operator[]
|
|
*/
|
|
inline int size() const noexcept
|
|
{
|
|
return numUsed;
|
|
}
|
|
|
|
/** Returns true if the array is empty, false otherwise. */
|
|
inline bool isEmpty() const noexcept
|
|
{
|
|
return size() == 0;
|
|
}
|
|
|
|
/** Returns a pointer to the object at this index in the array.
|
|
|
|
If the index is out-of-range, this will return a null pointer, (and
|
|
it could be null anyway, because it's ok for the array to hold null
|
|
pointers as well as objects).
|
|
|
|
@see getUnchecked
|
|
*/
|
|
inline ObjectClass* operator[] (const int index) const noexcept
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
if (isPositiveAndBelow (index, numUsed))
|
|
{
|
|
jassert (data.elements != nullptr);
|
|
return data.elements[index];
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/** Returns a pointer to the object at this index in the array, without checking whether the index is in-range.
|
|
|
|
This is a faster and less safe version of operator[] which doesn't check the index passed in, so
|
|
it can be used when you're sure the index is always going to be legal.
|
|
*/
|
|
inline ObjectClass* getUnchecked (const int index) const noexcept
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
jassert (isPositiveAndBelow (index, numUsed) && data.elements != nullptr);
|
|
return data.elements[index];
|
|
}
|
|
|
|
/** Returns a pointer to the first object in the array.
|
|
|
|
This will return a null pointer if the array's empty.
|
|
@see getLast
|
|
*/
|
|
inline ObjectClass* getFirst() const noexcept
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
|
|
if (numUsed > 0)
|
|
{
|
|
jassert (data.elements != nullptr);
|
|
return data.elements[0];
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/** Returns a pointer to the last object in the array.
|
|
|
|
This will return a null pointer if the array's empty.
|
|
@see getFirst
|
|
*/
|
|
inline ObjectClass* getLast() const noexcept
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
|
|
if (numUsed > 0)
|
|
{
|
|
jassert (data.elements != nullptr);
|
|
return data.elements[numUsed - 1];
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/** Returns a pointer to the actual array data.
|
|
This pointer will only be valid until the next time a non-const method
|
|
is called on the array.
|
|
*/
|
|
inline ObjectClass** getRawDataPointer() noexcept
|
|
{
|
|
return data.elements;
|
|
}
|
|
|
|
//==============================================================================
|
|
/** Returns a pointer to the first element in the array.
|
|
This method is provided for compatibility with standard C++ iteration mechanisms.
|
|
*/
|
|
inline ObjectClass** begin() const noexcept
|
|
{
|
|
return data.elements;
|
|
}
|
|
|
|
/** Returns a pointer to the element which follows the last element in the array.
|
|
This method is provided for compatibility with standard C++ iteration mechanisms.
|
|
*/
|
|
inline ObjectClass** end() const noexcept
|
|
{
|
|
#if JUCE_DEBUG
|
|
if (data.elements == nullptr || numUsed <= 0) // (to keep static analysers happy)
|
|
return data.elements;
|
|
#endif
|
|
|
|
return data.elements + numUsed;
|
|
}
|
|
|
|
//==============================================================================
|
|
/** Finds the index of an object which might be in the array.
|
|
|
|
@param objectToLookFor the object to look for
|
|
@returns the index at which the object was found, or -1 if it's not found
|
|
*/
|
|
int indexOf (const ObjectClass* objectToLookFor) const noexcept
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
auto** e = data.elements.get();
|
|
auto** end_ = e + numUsed;
|
|
|
|
for (; e != end_; ++e)
|
|
if (objectToLookFor == *e)
|
|
return static_cast<int> (e - data.elements.get());
|
|
|
|
return -1;
|
|
}
|
|
|
|
/** Returns true if the array contains a specified object.
|
|
|
|
@param objectToLookFor the object to look for
|
|
@returns true if the object is in the array
|
|
*/
|
|
bool contains (const ObjectClass* objectToLookFor) const noexcept
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
auto** e = data.elements.get();
|
|
auto** end_ = e + numUsed;
|
|
|
|
for (; e != end_; ++e)
|
|
if (objectToLookFor == *e)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
//==============================================================================
|
|
/** Appends a new object to the end of the array.
|
|
|
|
Note that the this object will be deleted by the OwnedArray when it
|
|
is removed, so be careful not to delete it somewhere else.
|
|
|
|
Also be careful not to add the same object to the array more than once,
|
|
as this will obviously cause deletion of dangling pointers.
|
|
|
|
@param newObject the new object to add to the array
|
|
@returns the new object that was added
|
|
@see set, insert, addIfNotAlreadyThere, addSorted
|
|
*/
|
|
ObjectClass* add (ObjectClass* newObject) noexcept
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
data.ensureAllocatedSize (numUsed + 1);
|
|
jassert (data.elements != nullptr);
|
|
data.elements[numUsed++] = newObject;
|
|
return newObject;
|
|
}
|
|
|
|
/** Inserts a new object into the array at the given index.
|
|
|
|
Note that the this object will be deleted by the OwnedArray when it
|
|
is removed, so be careful not to delete it somewhere else.
|
|
|
|
If the index is less than 0 or greater than the size of the array, the
|
|
element will be added to the end of the array.
|
|
Otherwise, it will be inserted into the array, moving all the later elements
|
|
along to make room.
|
|
|
|
Be careful not to add the same object to the array more than once,
|
|
as this will obviously cause deletion of dangling pointers.
|
|
|
|
@param indexToInsertAt the index at which the new element should be inserted
|
|
@param newObject the new object to add to the array
|
|
@returns the new object that was added
|
|
@see add, addSorted, addIfNotAlreadyThere, set
|
|
*/
|
|
ObjectClass* insert (int indexToInsertAt, ObjectClass* newObject) noexcept
|
|
{
|
|
if (indexToInsertAt < 0)
|
|
return add (newObject);
|
|
|
|
const ScopedLockType lock (getLock());
|
|
|
|
if (indexToInsertAt > numUsed)
|
|
indexToInsertAt = numUsed;
|
|
|
|
data.ensureAllocatedSize (numUsed + 1);
|
|
jassert (data.elements != nullptr);
|
|
|
|
auto** e = data.elements + indexToInsertAt;
|
|
auto numToMove = numUsed - indexToInsertAt;
|
|
|
|
if (numToMove > 0)
|
|
memmove (e + 1, e, sizeof (ObjectClass*) * (size_t) numToMove);
|
|
|
|
*e = newObject;
|
|
++numUsed;
|
|
return newObject;
|
|
}
|
|
|
|
/** Inserts an array of values into this array at a given position.
|
|
|
|
If the index is less than 0 or greater than the size of the array, the
|
|
new elements will be added to the end of the array.
|
|
Otherwise, they will be inserted into the array, moving all the later elements
|
|
along to make room.
|
|
|
|
@param indexToInsertAt the index at which the first new element should be inserted
|
|
@param newObjects the new values to add to the array
|
|
@param numberOfElements how many items are in the array
|
|
@see insert, add, addSorted, set
|
|
*/
|
|
void insertArray (int indexToInsertAt,
|
|
ObjectClass* const* newObjects,
|
|
int numberOfElements)
|
|
{
|
|
if (numberOfElements > 0)
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
data.ensureAllocatedSize (numUsed + numberOfElements);
|
|
auto* insertPos = data.elements.get();
|
|
|
|
if (isPositiveAndBelow (indexToInsertAt, numUsed))
|
|
{
|
|
insertPos += indexToInsertAt;
|
|
auto numberToMove = (size_t) (numUsed - indexToInsertAt);
|
|
memmove (insertPos + numberOfElements, insertPos, numberToMove * sizeof (ObjectClass*));
|
|
}
|
|
else
|
|
{
|
|
insertPos += numUsed;
|
|
}
|
|
|
|
numUsed += numberOfElements;
|
|
|
|
while (--numberOfElements >= 0)
|
|
*insertPos++ = *newObjects++;
|
|
}
|
|
}
|
|
|
|
/** Appends a new object at the end of the array as long as the array doesn't
|
|
already contain it.
|
|
|
|
If the array already contains a matching object, nothing will be done.
|
|
|
|
@param newObject the new object to add to the array
|
|
@returns true if the new object was added, false otherwise
|
|
*/
|
|
bool addIfNotAlreadyThere (ObjectClass* newObject) noexcept
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
|
|
if (contains (newObject))
|
|
return false;
|
|
|
|
add (newObject);
|
|
return true;
|
|
}
|
|
|
|
/** Replaces an object in the array with a different one.
|
|
|
|
If the index is less than zero, this method does nothing.
|
|
If the index is beyond the end of the array, the new object is added to the end of the array.
|
|
|
|
Be careful not to add the same object to the array more than once,
|
|
as this will obviously cause deletion of dangling pointers.
|
|
|
|
@param indexToChange the index whose value you want to change
|
|
@param newObject the new value to set for this index.
|
|
@param deleteOldElement whether to delete the object that's being replaced with the new one
|
|
@see add, insert, remove
|
|
*/
|
|
ObjectClass* set (int indexToChange, ObjectClass* newObject, bool deleteOldElement = true)
|
|
{
|
|
if (indexToChange >= 0)
|
|
{
|
|
std::unique_ptr<ObjectClass> toDelete;
|
|
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
|
|
if (indexToChange < numUsed)
|
|
{
|
|
if (deleteOldElement)
|
|
{
|
|
toDelete.reset (data.elements[indexToChange]);
|
|
|
|
if (toDelete.get() == newObject)
|
|
toDelete.release();
|
|
}
|
|
|
|
data.elements[indexToChange] = newObject;
|
|
}
|
|
else
|
|
{
|
|
data.ensureAllocatedSize (numUsed + 1);
|
|
data.elements[numUsed++] = newObject;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
jassertfalse; // you're trying to set an object at a negative index, which doesn't have
|
|
// any effect - but since the object is not being added, it may be leaking..
|
|
}
|
|
|
|
return newObject;
|
|
}
|
|
|
|
/** Adds elements from another array to the end of this array.
|
|
|
|
@param arrayToAddFrom the array from which to copy the elements
|
|
@param startIndex the first element of the other array to start copying from
|
|
@param numElementsToAdd how many elements to add from the other array. If this
|
|
value is negative or greater than the number of available elements,
|
|
all available elements will be copied.
|
|
@see add
|
|
*/
|
|
template <class OtherArrayType>
|
|
void addArray (const OtherArrayType& arrayToAddFrom,
|
|
int startIndex = 0,
|
|
int numElementsToAdd = -1)
|
|
{
|
|
const typename OtherArrayType::ScopedLockType lock1 (arrayToAddFrom.getLock());
|
|
const ScopedLockType lock2 (getLock());
|
|
|
|
if (startIndex < 0)
|
|
{
|
|
jassertfalse;
|
|
startIndex = 0;
|
|
}
|
|
|
|
if (numElementsToAdd < 0 || startIndex + numElementsToAdd > arrayToAddFrom.size())
|
|
numElementsToAdd = arrayToAddFrom.size() - startIndex;
|
|
|
|
data.ensureAllocatedSize (numUsed + numElementsToAdd);
|
|
jassert (numElementsToAdd <= 0 || data.elements != nullptr);
|
|
|
|
while (--numElementsToAdd >= 0)
|
|
{
|
|
data.elements[numUsed] = arrayToAddFrom.getUnchecked (startIndex++);
|
|
++numUsed;
|
|
}
|
|
}
|
|
|
|
/** Adds elements from another array to the end of this array. */
|
|
template <typename OtherArrayType>
|
|
void addArray (const std::initializer_list<OtherArrayType>& items)
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
data.ensureAllocatedSize (numUsed + (int) items.size());
|
|
|
|
for (auto* item : items)
|
|
{
|
|
data.elements[numUsed] = item;
|
|
++numUsed;
|
|
}
|
|
}
|
|
|
|
/** Adds copies of the elements in another array to the end of this array.
|
|
|
|
The other array must be either an OwnedArray of a compatible type of object, or an Array
|
|
containing pointers to the same kind of object. The objects involved must provide
|
|
a copy constructor, and this will be used to create new copies of each element, and
|
|
add them to this array.
|
|
|
|
@param arrayToAddFrom the array from which to copy the elements
|
|
@param startIndex the first element of the other array to start copying from
|
|
@param numElementsToAdd how many elements to add from the other array. If this
|
|
value is negative or greater than the number of available elements,
|
|
all available elements will be copied.
|
|
@see add
|
|
*/
|
|
template <class OtherArrayType>
|
|
void addCopiesOf (const OtherArrayType& arrayToAddFrom,
|
|
int startIndex = 0,
|
|
int numElementsToAdd = -1)
|
|
{
|
|
const typename OtherArrayType::ScopedLockType lock1 (arrayToAddFrom.getLock());
|
|
const ScopedLockType lock2 (getLock());
|
|
|
|
if (startIndex < 0)
|
|
{
|
|
jassertfalse;
|
|
startIndex = 0;
|
|
}
|
|
|
|
if (numElementsToAdd < 0 || startIndex + numElementsToAdd > arrayToAddFrom.size())
|
|
numElementsToAdd = arrayToAddFrom.size() - startIndex;
|
|
|
|
data.ensureAllocatedSize (numUsed + numElementsToAdd);
|
|
jassert (numElementsToAdd <= 0 || data.elements != nullptr);
|
|
|
|
while (--numElementsToAdd >= 0)
|
|
data.elements[numUsed++] = createCopyIfNotNull (arrayToAddFrom.getUnchecked (startIndex++));
|
|
}
|
|
|
|
/** Inserts a new object into the array assuming that the array is sorted.
|
|
|
|
This will use a comparator to find the position at which the new object
|
|
should go. If the array isn't sorted, the behaviour of this
|
|
method will be unpredictable.
|
|
|
|
@param comparator the comparator to use to compare the elements - see the sort method
|
|
for details about this object's structure
|
|
@param newObject the new object to insert to the array
|
|
@returns the index at which the new object was added
|
|
@see add, sort, indexOfSorted
|
|
*/
|
|
template <class ElementComparator>
|
|
int addSorted (ElementComparator& comparator, ObjectClass* const newObject) noexcept
|
|
{
|
|
ignoreUnused (comparator); // if you pass in an object with a static compareElements() method, this
|
|
// avoids getting warning messages about the parameter being unused
|
|
const ScopedLockType lock (getLock());
|
|
const int index = findInsertIndexInSortedArray (comparator, data.elements.get(), newObject, 0, numUsed);
|
|
insert (index, newObject);
|
|
return index;
|
|
}
|
|
|
|
/** Finds the index of an object in the array, assuming that the array is sorted.
|
|
|
|
This will use a comparator to do a binary-chop to find the index of the given
|
|
element, if it exists. If the array isn't sorted, the behaviour of this
|
|
method will be unpredictable.
|
|
|
|
@param comparator the comparator to use to compare the elements - see the sort()
|
|
method for details about the form this object should take
|
|
@param objectToLookFor the object to search for
|
|
@returns the index of the element, or -1 if it's not found
|
|
@see addSorted, sort
|
|
*/
|
|
template <typename ElementComparator>
|
|
int indexOfSorted (ElementComparator& comparator, const ObjectClass* const objectToLookFor) const noexcept
|
|
{
|
|
ignoreUnused (comparator);
|
|
const ScopedLockType lock (getLock());
|
|
int s = 0, e = numUsed;
|
|
|
|
while (s < e)
|
|
{
|
|
if (comparator.compareElements (objectToLookFor, data.elements[s]) == 0)
|
|
return s;
|
|
|
|
auto halfway = (s + e) / 2;
|
|
|
|
if (halfway == s)
|
|
break;
|
|
|
|
if (comparator.compareElements (objectToLookFor, data.elements[halfway]) >= 0)
|
|
s = halfway;
|
|
else
|
|
e = halfway;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
//==============================================================================
|
|
/** Removes an object from the array.
|
|
|
|
This will remove the object at a given index (optionally also
|
|
deleting it) and move back all the subsequent objects to close the gap.
|
|
If the index passed in is out-of-range, nothing will happen.
|
|
|
|
@param indexToRemove the index of the element to remove
|
|
@param deleteObject whether to delete the object that is removed
|
|
@see removeObject, removeRange
|
|
*/
|
|
void remove (int indexToRemove, bool deleteObject = true)
|
|
{
|
|
std::unique_ptr<ObjectClass> toDelete;
|
|
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
|
|
if (isPositiveAndBelow (indexToRemove, numUsed))
|
|
{
|
|
auto** e = data.elements + indexToRemove;
|
|
|
|
if (deleteObject)
|
|
toDelete.reset (*e);
|
|
|
|
--numUsed;
|
|
auto numToShift = numUsed - indexToRemove;
|
|
|
|
if (numToShift > 0)
|
|
memmove (e, e + 1, sizeof (ObjectClass*) * (size_t) numToShift);
|
|
}
|
|
}
|
|
|
|
if ((numUsed << 1) < data.numAllocated)
|
|
minimiseStorageOverheads();
|
|
}
|
|
|
|
/** Removes and returns an object from the array without deleting it.
|
|
|
|
This will remove the object at a given index and return it, moving back all
|
|
the subsequent objects to close the gap. If the index passed in is out-of-range,
|
|
nothing will happen.
|
|
|
|
@param indexToRemove the index of the element to remove
|
|
@see remove, removeObject, removeRange
|
|
*/
|
|
ObjectClass* removeAndReturn (int indexToRemove)
|
|
{
|
|
ObjectClass* removedItem = nullptr;
|
|
const ScopedLockType lock (getLock());
|
|
|
|
if (isPositiveAndBelow (indexToRemove, numUsed))
|
|
{
|
|
auto** e = data.elements + indexToRemove;
|
|
removedItem = *e;
|
|
|
|
--numUsed;
|
|
const int numToShift = numUsed - indexToRemove;
|
|
|
|
if (numToShift > 0)
|
|
memmove (e, e + 1, sizeof (ObjectClass*) * (size_t) numToShift);
|
|
|
|
if ((numUsed << 1) < data.numAllocated)
|
|
minimiseStorageOverheads();
|
|
}
|
|
|
|
return removedItem;
|
|
}
|
|
|
|
/** Removes a specified object from the array.
|
|
|
|
If the item isn't found, no action is taken.
|
|
|
|
@param objectToRemove the object to try to remove
|
|
@param deleteObject whether to delete the object (if it's found)
|
|
@see remove, removeRange
|
|
*/
|
|
void removeObject (const ObjectClass* objectToRemove, bool deleteObject = true)
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
auto** e = data.elements.get();
|
|
|
|
for (int i = 0; i < numUsed; ++i)
|
|
{
|
|
if (objectToRemove == e[i])
|
|
{
|
|
remove (i, deleteObject);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Removes a range of objects from the array.
|
|
|
|
This will remove a set of objects, starting from the given index,
|
|
and move any subsequent elements down to close the gap.
|
|
|
|
If the range extends beyond the bounds of the array, it will
|
|
be safely clipped to the size of the array.
|
|
|
|
@param startIndex the index of the first object to remove
|
|
@param numberToRemove how many objects should be removed
|
|
@param deleteObjects whether to delete the objects that get removed
|
|
@see remove, removeObject
|
|
*/
|
|
void removeRange (int startIndex, int numberToRemove, bool deleteObjects = true)
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
auto endIndex = jlimit (0, numUsed, startIndex + numberToRemove);
|
|
startIndex = jlimit (0, numUsed, startIndex);
|
|
|
|
if (endIndex > startIndex)
|
|
{
|
|
if (deleteObjects)
|
|
{
|
|
for (int i = startIndex; i < endIndex; ++i)
|
|
{
|
|
ContainerDeletePolicy<ObjectClass>::destroy (data.elements[i]);
|
|
data.elements[i] = nullptr; // (in case one of the destructors accesses this array and hits a dangling pointer)
|
|
}
|
|
}
|
|
|
|
auto rangeSize = endIndex - startIndex;
|
|
auto** e = data.elements + startIndex;
|
|
auto numToShift = numUsed - endIndex;
|
|
numUsed -= rangeSize;
|
|
|
|
while (--numToShift >= 0)
|
|
{
|
|
*e = e[rangeSize];
|
|
++e;
|
|
}
|
|
|
|
if ((numUsed << 1) < data.numAllocated)
|
|
minimiseStorageOverheads();
|
|
}
|
|
}
|
|
|
|
/** Removes the last n objects from the array.
|
|
|
|
@param howManyToRemove how many objects to remove from the end of the array
|
|
@param deleteObjects whether to also delete the objects that are removed
|
|
@see remove, removeObject, removeRange
|
|
*/
|
|
void removeLast (int howManyToRemove = 1,
|
|
bool deleteObjects = true)
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
|
|
if (howManyToRemove >= numUsed)
|
|
clear (deleteObjects);
|
|
else
|
|
removeRange (numUsed - howManyToRemove, howManyToRemove, deleteObjects);
|
|
}
|
|
|
|
/** Swaps a pair of objects in the array.
|
|
|
|
If either of the indexes passed in is out-of-range, nothing will happen,
|
|
otherwise the two objects at these positions will be exchanged.
|
|
*/
|
|
void swap (int index1,
|
|
int index2) noexcept
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
|
|
if (isPositiveAndBelow (index1, numUsed)
|
|
&& isPositiveAndBelow (index2, numUsed))
|
|
{
|
|
std::swap (data.elements[index1],
|
|
data.elements[index2]);
|
|
}
|
|
}
|
|
|
|
/** Moves one of the objects to a different position.
|
|
|
|
This will move the object to a specified index, shuffling along
|
|
any intervening elements as required.
|
|
|
|
So for example, if you have the array { 0, 1, 2, 3, 4, 5 } then calling
|
|
move (2, 4) would result in { 0, 1, 3, 4, 2, 5 }.
|
|
|
|
@param currentIndex the index of the object to be moved. If this isn't a
|
|
valid index, then nothing will be done
|
|
@param newIndex the index at which you'd like this object to end up. If this
|
|
is less than zero, it will be moved to the end of the array
|
|
*/
|
|
void move (int currentIndex, int newIndex) noexcept
|
|
{
|
|
if (currentIndex != newIndex)
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
|
|
if (isPositiveAndBelow (currentIndex, numUsed))
|
|
{
|
|
if (! isPositiveAndBelow (newIndex, numUsed))
|
|
newIndex = numUsed - 1;
|
|
|
|
auto* value = data.elements[currentIndex];
|
|
|
|
if (newIndex > currentIndex)
|
|
{
|
|
memmove (data.elements + currentIndex,
|
|
data.elements + currentIndex + 1,
|
|
sizeof (ObjectClass*) * (size_t) (newIndex - currentIndex));
|
|
}
|
|
else
|
|
{
|
|
memmove (data.elements + newIndex + 1,
|
|
data.elements + newIndex,
|
|
sizeof (ObjectClass*) * (size_t) (currentIndex - newIndex));
|
|
}
|
|
|
|
data.elements[newIndex] = value;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** This swaps the contents of this array with those of another array.
|
|
|
|
If you need to exchange two arrays, this is vastly quicker than using copy-by-value
|
|
because it just swaps their internal pointers.
|
|
*/
|
|
template <class OtherArrayType>
|
|
void swapWith (OtherArrayType& otherArray) noexcept
|
|
{
|
|
const ScopedLockType lock1 (getLock());
|
|
const typename OtherArrayType::ScopedLockType lock2 (otherArray.getLock());
|
|
data.swapWith (otherArray.data);
|
|
std::swap (numUsed, otherArray.numUsed);
|
|
}
|
|
|
|
//==============================================================================
|
|
/** Reduces the amount of storage being used by the array.
|
|
|
|
Arrays typically allocate slightly more storage than they need, and after
|
|
removing elements, they may have quite a lot of unused space allocated.
|
|
This method will reduce the amount of allocated storage to a minimum.
|
|
*/
|
|
void minimiseStorageOverheads() noexcept
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
data.shrinkToNoMoreThan (numUsed);
|
|
}
|
|
|
|
/** Increases the array's internal storage to hold a minimum number of elements.
|
|
|
|
Calling this before adding a large known number of elements means that
|
|
the array won't have to keep dynamically resizing itself as the elements
|
|
are added, and it'll therefore be more efficient.
|
|
*/
|
|
void ensureStorageAllocated (const int minNumElements) noexcept
|
|
{
|
|
const ScopedLockType lock (getLock());
|
|
data.ensureAllocatedSize (minNumElements);
|
|
}
|
|
|
|
//==============================================================================
|
|
/** Sorts the elements in the array.
|
|
|
|
This will use a comparator object to sort the elements into order. The object
|
|
passed must have a method of the form:
|
|
@code
|
|
int compareElements (ElementType* first, ElementType* second);
|
|
@endcode
|
|
|
|
..and this method must return:
|
|
- a value of < 0 if the first comes before the second
|
|
- a value of 0 if the two objects are equivalent
|
|
- a value of > 0 if the second comes before the first
|
|
|
|
To improve performance, the compareElements() method can be declared as static or const.
|
|
|
|
@param comparator the comparator to use for comparing elements.
|
|
@param retainOrderOfEquivalentItems if this is true, then items
|
|
which the comparator says are equivalent will be
|
|
kept in the order in which they currently appear
|
|
in the array. This is slower to perform, but may
|
|
be important in some cases. If it's false, a faster
|
|
algorithm is used, but equivalent elements may be
|
|
rearranged.
|
|
@see sortArray, indexOfSorted
|
|
*/
|
|
template <class ElementComparator>
|
|
void sort (ElementComparator& comparator,
|
|
bool retainOrderOfEquivalentItems = false) const noexcept
|
|
{
|
|
ignoreUnused (comparator); // if you pass in an object with a static compareElements() method, this
|
|
// avoids getting warning messages about the parameter being unused
|
|
|
|
const ScopedLockType lock (getLock());
|
|
|
|
if (size() > 1)
|
|
sortArray (comparator, data.elements.get(), 0, size() - 1, retainOrderOfEquivalentItems);
|
|
}
|
|
|
|
//==============================================================================
|
|
/** Returns the CriticalSection that locks this array.
|
|
To lock, you can call getLock().enter() and getLock().exit(), or preferably use
|
|
an object of ScopedLockType as an RAII lock for it.
|
|
*/
|
|
inline const TypeOfCriticalSectionToUse& getLock() const noexcept { return data; }
|
|
|
|
/** Returns the type of scoped lock to use for locking this array */
|
|
using ScopedLockType = typename TypeOfCriticalSectionToUse::ScopedLockType;
|
|
|
|
|
|
//==============================================================================
|
|
#ifndef DOXYGEN
|
|
// Note that the swapWithArray method has been replaced by a more flexible templated version,
|
|
// and renamed "swapWith" to be more consistent with the names used in other classes.
|
|
JUCE_DEPRECATED_WITH_BODY (void swapWithArray (OwnedArray& other) noexcept, { swapWith (other); })
|
|
#endif
|
|
|
|
private:
|
|
//==============================================================================
|
|
ArrayAllocationBase <ObjectClass*, TypeOfCriticalSectionToUse> data;
|
|
int numUsed = 0;
|
|
|
|
void deleteAllObjects()
|
|
{
|
|
while (numUsed > 0)
|
|
ContainerDeletePolicy<ObjectClass>::destroy (data.elements[--numUsed]);
|
|
}
|
|
|
|
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (OwnedArray)
|
|
};
|
|
|
|
} // namespace juce
|