vector/stackvector refactor

This commit is contained in:
Noel Berry 2020-10-25 00:54:19 -07:00
parent 86bcd17f6a
commit cea39987b8
5 changed files with 465 additions and 371 deletions

View File

@ -1,6 +1,5 @@
#pragma once #pragma once
#include <blah/log.h> #include <blah/log.h>
#include <string.h>
#include <new> #include <new>
namespace Blah namespace Blah
@ -8,14 +7,12 @@ namespace Blah
// A mix between an std::vector and an std::array // A mix between an std::vector and an std::array
// The goal is to have an std::vector implementation that lives // The goal is to have an std::vector implementation that lives
// on the stack instead of the heap // on the stack instead of the heap
template<class T, int Capacity> template<class T, size_t Capacity>
class StackVector class StackVector
{ {
private: private:
// we avoid using an array of type T to make sure the default char* m_buffer[sizeof(T) * Capacity];
// constructor/destructors are not called int m_count;
char m_buffer[Capacity * sizeof(T)];
size_t m_size;
public: public:
@ -27,174 +24,246 @@ namespace Blah
StackVector& operator=(const StackVector& src); StackVector& operator=(const StackVector& src);
StackVector& operator=(StackVector&& src) noexcept; StackVector& operator=(StackVector&& src) noexcept;
void clear();
int size() const;
constexpr int capacity() { return Capacity; }
T* expand(int amount = 1);
void push_back(const T& item); void push_back(const T& item);
void push_back(T&& item); void push_back(T&& item);
template<class ...Args>
template<class ... Args> void emplace_back(Args&&...args);
void emplace_back(Args&&... args) { push_back(T(std::forward<Args>(args)...)); }
T& operator[](int index); T& operator[](int index);
const T& operator[](int index) const; const T& operator[](int index) const;
T* begin() { return (T*)m_buffer; } T* data();
const T* begin() const { return (T*)m_buffer; } const T* data() const;
T* end() { return ((T*)m_buffer) + m_size; } T* begin();
const T* end() const { return ((T*)m_buffer) + m_size; } const T* begin() const;
T& front() { BLAH_ASSERT(m_size > 0, "Index out of range"); return *begin(); } T* end();
const T& front() const { BLAH_ASSERT(m_size > 0, "Index out of range"); return *begin(); } const T* end() const;
T& back() { BLAH_ASSERT(m_size > 0, "Index out of range"); return *(end() - 1); } T& front();
const T& back() const { BLAH_ASSERT(m_size > 0, "Index out of range"); return *(end() - 1); } const T& front() const;
T& back();
const T& back() const;
void clear(); void erase(int index, int elements = 1);
T pop();
void erase(const T* position);
size_t size() const { return m_size; }
constexpr size_t capacity() const { return Capacity; }
}; };
template<class T, int Capacity> template<class T, size_t Capacity>
StackVector<T, Capacity>::StackVector() inline StackVector<T, Capacity>::StackVector()
{ {
m_size = 0; m_count = 0;
m_buffer[0] = 0;
} }
template<class T, int Capacity> template<class T, size_t Capacity>
StackVector<T, Capacity>::StackVector(const StackVector<T, Capacity>& src) inline StackVector<T, Capacity>::StackVector(const StackVector& src)
{ {
m_size = src.m_size; for (int i = 0; i < src.m_count; i++)
for (int n = 0; n < m_size; n++) new (data() + i) T(src.data()[i]);
new(begin() + n) T(*(src.begin() + n)); m_count = src.m_count;
} }
template<class T, int Capacity> template<class T, size_t Capacity>
StackVector<T, Capacity>::StackVector(StackVector<T, Capacity>&& src) noexcept inline StackVector<T, Capacity>::StackVector(StackVector&& src) noexcept
{ {
m_size = src.m_size; for (int i = 0; i < src.m_count; i++)
new (data() + i) T(std::move(src.data()[i]));
if (std::is_trivially_copyable<T>::value) m_count = src.m_count;
{
memcpy(m_buffer, src.m_buffer, sizeof(T) * m_size);
src.m_size = 0;
}
else
{
for (int n = 0; n < m_size; n++)
new(begin() + n) T(std::move(*(src.begin() + n)));
src.clear();
}
} }
template<class T, int Capacity> template<class T, size_t Capacity>
StackVector<T, Capacity>& StackVector<T, Capacity>::operator=(const StackVector<T, Capacity>& src) inline StackVector<T, Capacity>::~StackVector()
{
clear();
}
template<class T, size_t Capacity>
inline StackVector<T, Capacity>& StackVector<T, Capacity>::operator=(const StackVector& src)
{ {
clear(); clear();
m_size = src.m_size; for (int i = 0; i < src.m_count; i++)
for (int n = 0; n < m_size; n++) data()[i] = src.data()[i];
new(begin() + n) T(*(src.begin() + n)); m_count = src.m_count;
return *this; return *this;
} }
template<class T, int Capacity> template<class T, size_t Capacity>
StackVector<T, Capacity>& StackVector<T, Capacity>::operator=(StackVector<T, Capacity>&& src) noexcept inline StackVector<T, Capacity>& StackVector<T, Capacity>::operator=(StackVector&& src) noexcept
{ {
clear(); clear();
m_size = src.m_size; for (int i = 0; i < src.m_count; i++)
data()[i] = std::move(src.data()[i]);
if (std::is_trivially_copyable<T>::value) m_count = src.m_count;
{
memcpy(m_buffer, src.m_buffer, sizeof(T) * m_size);
src.m_size = 0;
}
else
{
for (int n = 0; n < m_size; n++)
new(begin() + n) T(std::move(*(src.begin() + n)));
src.clear();
}
return *this; return *this;
} }
template<class T, int Capacity> template<class T, size_t Capacity>
StackVector<T, Capacity>::~StackVector() inline void StackVector<T, Capacity>::clear()
{ {
clear(); for (int i = 0; i < m_count; i++)
data()[i].~T();
m_count = 0;
} }
template<class T, int Capacity> template<class T, size_t Capacity>
void StackVector<T, Capacity>::push_back(const T& item) inline int StackVector<T, Capacity>::size() const
{ {
BLAH_ASSERT(m_size < Capacity, "Exceeded StackVector Capacity"); return m_count;
new(begin() + m_size) T(item);
m_size++;
} }
template<class T, int Capacity> template<class T, size_t Capacity>
void StackVector<T, Capacity>::push_back(T&& item) inline T* StackVector<T, Capacity>::expand(int amount)
{ {
BLAH_ASSERT(m_size < Capacity, "Exceeded StackVector Capacity"); BLAH_ASSERT(m_count + amount <= Capacity, "Exceeded StackVector Capacity");
new(begin() + m_size) T(std::move(item));
m_size++;
}
template<class T, int Capacity> if (amount > 0)
T& StackVector<T, Capacity>::operator[](int index)
{
BLAH_ASSERT(index >= 0 && index < m_size, "Index is out of range");
return begin()[index];
}
template<class T, int Capacity>
const T& StackVector<T, Capacity>::operator[](int index) const
{
BLAH_ASSERT(index >= 0 && index < m_size, "Index is out of range");
return begin()[index];
}
template<class T, int Capacity>
void StackVector<T, Capacity>::clear()
{
for (T* it = begin(); it < begin() + m_size; it++)
it->~T();
m_size = 0;
}
template<class T, int Capacity>
void StackVector<T, Capacity>::erase(const T* position)
{
BLAH_ASSERT(position >= begin() && position < end(), "Index is out of range");
const size_t index = position - begin();
if (index < m_size - 1)
{ {
size_t diff = (m_size - index - 1); int count = m_count;
if (diff <= 0) diff = 0;
if (std::is_trivially_copyable<T>::value) for (int i = 0; i < amount; i++)
{ new (data() + count + i) T(item);
begin()[index].~T();
memmove(begin() + index, begin() + index + 1, (size_t)diff * sizeof(T)); m_count += amount;
} return &data()[count];
else
{
for (auto i = index; i < m_size - 1; i++)
begin()[i] = std::move(begin()[i + 1]);
begin()[m_size - 1].~T();
}
}
else
{
begin()[index].~T();
} }
m_size--; return m_buffer;
} }
template<class T, size_t Capacity>
inline void StackVector<T, Capacity>::push_back(const T& item)
{
BLAH_ASSERT(m_count + 1 <= Capacity, "Exceeded StackVector Capacity");
new (data() + m_count) T(item);
m_count++;
}
template<class T, size_t Capacity>
inline void StackVector<T, Capacity>::push_back(T&& item)
{
BLAH_ASSERT(m_count + 1 <= Capacity, "Exceeded StackVector Capacity");
new (data() + m_count) T(std::move(item));
m_count++;
}
template<class T, size_t Capacity>
template<class ...Args>
inline void StackVector<T, Capacity>::emplace_back(Args && ...args)
{
BLAH_ASSERT(m_count + 1 <= Capacity, "Exceeded StackVector Capacity");
new (data() + m_count) T(std::forward<Args>(args)...);
m_count++;
}
template<class T, size_t Capacity>
inline T& StackVector<T, Capacity>::operator[](int index)
{
BLAH_ASSERT(index >= 0 && index < m_count, "Index out of range");
return data()[index];
}
template<class T, size_t Capacity>
inline const T& StackVector<T, Capacity>::operator[](int index) const
{
BLAH_ASSERT(index >= 0 && index < m_count, "Index out of range");
return data()[index];
}
template<class T, size_t Capacity>
inline T* StackVector<T, Capacity>::data()
{
return (T*)m_buffer;
}
template<class T, size_t Capacity>
inline const T* StackVector<T, Capacity>::data() const
{
return (T*)m_buffer;
}
template<class T, size_t Capacity>
inline T* StackVector<T, Capacity>::begin()
{
return (T*)m_buffer;
}
template<class T, size_t Capacity>
inline const T* StackVector<T, Capacity>::begin() const
{
return (T*)m_buffer;
}
template<class T, size_t Capacity>
inline T* StackVector<T, Capacity>::end()
{
return ((T*)m_buffer) + m_count;
}
template<class T, size_t Capacity>
inline const T* StackVector<T, Capacity>::end() const
{
return ((T*)m_buffer) + m_count;
}
template<class T, size_t Capacity>
inline T& StackVector<T, Capacity>::front()
{
BLAH_ASSERT(m_count > 0, "Index out of range");
return data()[0];
}
template<class T, size_t Capacity>
inline const T& StackVector<T, Capacity>::front() const
{
BLAH_ASSERT(m_count > 0, "Index out of range");
return data()[0];
}
template<class T, size_t Capacity>
inline T& StackVector<T, Capacity>::back()
{
BLAH_ASSERT(m_count > 0, "Index out of range");
return data()[m_count - 1];
}
template<class T, size_t Capacity>
inline const T& StackVector<T, Capacity>::back() const
{
BLAH_ASSERT(m_count > 0, "Index out of range");
return data()[m_count - 1];
}
template<class T, size_t Capacity>
inline void StackVector<T, Capacity>::erase(int index, int elements)
{
BLAH_ASSERT(index >= 0 && index + elements <= m_count, "Index out of range");
if (elements >= 1)
{
for (int i = index; i < (m_count - elements); i++)
data()[i] = std::move(data()[i + elements]);
for (int i = m_count - elements; i < m_count; i++)
data()[i].~T();
m_count -= elements;
}
}
template<class T, size_t Capacity>
inline T StackVector<T, Capacity>::pop()
{
BLAH_ASSERT(m_count > 0, "Index out of range");
T value = std::move(data()[m_count - 1]);
data()[m_count - 1].~T();
m_count--;
return value;
}
} }

View File

@ -2,7 +2,6 @@
#include <blah/log.h> #include <blah/log.h>
#include <type_traits> #include <type_traits>
#include <new> #include <new>
#include <string.h>
namespace Blah namespace Blah
{ {
@ -11,8 +10,8 @@ namespace Blah
{ {
private: private:
T* m_buffer; T* m_buffer;
size_t m_size; int m_count;
size_t m_capacity; int m_capacity;
public: public:
@ -25,297 +24,318 @@ namespace Blah
Vector& operator=(const Vector& src); Vector& operator=(const Vector& src);
Vector& operator=(Vector&& src) noexcept; Vector& operator=(Vector&& src) noexcept;
// reserves the given amount of capacity void clear();
void dispose();
int size() const;
int capacity() const;
void reserve(size_t new_capacity); void reserve(size_t new_capacity);
void resize(int new_count);
T* expand(int amount = 1);
// adds an element to the Vector
void push_back(const T& item); void push_back(const T& item);
// moves an element into the Vector
void push_back(T&& item); void push_back(T&& item);
template<class ...Args> template<class ...Args>
void emplace_back(Args&&...args); void emplace_back(Args&&...args);
// resizes the vector
void resize(size_t capacity);
// expands the Vector by the given amount, and returns a pointer to the first element
T* expand(size_t amount = 1);
// returns a reference to the element at the given index
T& operator[](int index); T& operator[](int index);
// returns a reference to the element at the given index
const T& operator[](int index) const; const T& operator[](int index) const;
// returns a pointer to the first element T* data();
T* data() { return m_buffer; } const T* data() const;
T* begin();
const T* begin() const;
T* end();
const T* end() const;
T& front();
const T& front() const;
T& back();
const T& back() const;
// returns a pointer to the first element void erase(int index, int elements = 1);
const T* data() const { return m_buffer; } T pop();
// returns a pointer to the first element
T* begin() { return m_buffer; }
// returns a pointer to the first element
const T* begin() const { return m_buffer; }
// returns a pointer to the last element plus 1
T* end() { return m_buffer + m_size; }
// returns a pointer to the last element plus 1
const T* end() const { return m_buffer + m_size; }
// returns the front element
T& front() { BLAH_ASSERT(m_size > 0, "Index out of range"); return *begin(); }
// returns the front element
const T& front() const { BLAH_ASSERT(m_size > 0, "Index out of range"); return *begin(); }
// returns the last element
T& back() { BLAH_ASSERT(m_size > 0, "Index out of range"); return *(end() - 1); }
// returns the last element
const T& back() const { BLAH_ASSERT(m_size > 0, "Index out of range"); return *(end() - 1); }
// clears all elements
void clear();
// removes the element at the index
void erase(const T* position);
// returns the total number of elements
size_t size() const { return m_size; }
// returns the internal buffer capacity of the Vector
size_t capacity() const { return m_capacity; }
// removes all elements and disposes the internal buffer
void dispose();
}; };
template<class T> template<class T>
Vector<T>::Vector() inline Vector<T>::Vector()
{ {
m_buffer = nullptr; m_buffer = nullptr;
m_size = m_capacity = 0; m_count = m_capacity = 0;
} }
template<class T> template<class T>
Vector<T>::Vector(int capacity) inline Vector<T>::Vector(int capacity)
{ {
m_buffer = nullptr; m_buffer = nullptr;
m_size = m_capacity = capacity; m_count = m_capacity = 0;
reserve(m_capacity); reserve(capacity);
} }
template<class T> template<class T>
Vector<T>::Vector(const Vector<T>& src) inline Vector<T>::Vector(const Vector& src)
{ {
m_buffer = (T*)(::operator new (sizeof(T) * src.m_capacity)); m_buffer = nullptr;
m_size = src.m_size; m_count = m_capacity = 0;
m_capacity = src.m_capacity; reserve(src.m_capacity);
for (int i = 0; i < src.m_count; i++)
for (int n = 0; n < m_size; n++) m_buffer[i] = src.m_buffer[i];
new (m_buffer + n) T(*(src.m_buffer + n)); m_count = src.m_count;
} }
template<class T> template<class T>
Vector<T>::Vector(Vector<T>&& src) noexcept inline Vector<T>::Vector(Vector&& src) noexcept
{ {
m_buffer = src.m_buffer; m_buffer = src.m_buffer;
m_size = src.m_size;
m_capacity = src.m_capacity; m_capacity = src.m_capacity;
m_count = src.m_count;
src.m_buffer = nullptr; src.m_buffer = nullptr;
src.m_size = src.m_capacity = 0; src.m_capacity = 0;
src.m_count = 0;
} }
template<class T> template<class T>
Vector<T>& Vector<T>::operator=(const Vector<T>& src) inline Vector<T>::~Vector()
{
dispose();
}
template<class T>
inline Vector<T>& Vector<T>::operator=(const Vector& src)
{
clear();
reserve(src.m_capacity);
for (int i = 0; i < src.m_count; i++)
m_buffer[i] = src.m_buffer[i];
m_count = src.m_count;
return *this;
}
template<class T>
inline Vector<T>& Vector<T>::operator=(Vector&& src) noexcept
{
dispose();
m_buffer = src.m_buffer;
m_capacity = src.m_capacity;
m_count = src.m_count;
src.m_buffer = nullptr;
src.m_capacity = 0;
src.m_count = 0;
return *this;
}
template<class T>
inline void Vector<T>::clear()
{
for (int i = 0; i < m_count; i++)
m_buffer[i].~T();
m_count = 0;
}
template<class T>
inline void Vector<T>::dispose()
{ {
clear(); clear();
if (m_capacity < src.m_size) ::operator delete (m_buffer, sizeof(T) * m_capacity);
reserve(src.m_size);
m_size = src.m_size;
for (int n = 0; n < m_size; n++) m_capacity = 0;
new (m_buffer + n) T(*(src.m_buffer + n)); m_buffer = nullptr;
return *this;
} }
template<class T> template<class T>
Vector<T>& Vector<T>::operator=(Vector<T>&& src) noexcept inline int Vector<T>::size() const
{ {
dispose(); return m_count;
m_buffer = src.m_buffer;
m_size = src.m_size;
m_capacity = src.m_capacity;
src.m_buffer = nullptr;
src.m_size = src.m_capacity = 0;
return *this;
} }
template<class T> template<class T>
Vector<T>::~Vector() inline int Vector<T>::capacity() const
{ {
dispose(); return m_capacity;
} }
template<class T> template<class T>
void Vector<T>::reserve(size_t new_capacity) inline void Vector<T>::reserve(size_t cap)
{ {
if (new_capacity >= m_capacity) if (cap > m_capacity)
{ {
auto last_capacity = m_capacity; int new_capacity = m_capacity;
if (new_capacity <= 0)
new_capacity = 8;
while (new_capacity < cap)
new_capacity *= 2;
if (m_capacity <= 0) T* new_buffer = (T*)::operator new (sizeof(T) * new_capacity);
m_capacity = 8;
while (new_capacity >= m_capacity) for (int i = 0; i < m_count; i++)
m_capacity = m_capacity * 2;
T* new_buffer = (T*)::operator new (sizeof(T) * m_capacity);
if (std::is_trivially_copyable<T>::value)
{ {
memcpy(new_buffer, m_buffer, sizeof(T) * m_size); if (i < new_capacity)
} new (new_buffer + i) T(std::move(m_buffer[i]));
else
{
for (auto n = 0; n < m_size; n++)
{
new (new_buffer + n) T(std::move(m_buffer[n]));
m_buffer[n].~T();
}
}
::operator delete (m_buffer, sizeof(T) * last_capacity);
m_buffer = new_buffer;
}
}
template<class T>
void Vector<T>::resize(size_t new_size)
{
if (new_size > m_size)
{
reserve(new_size);
for (auto n = m_size; n < new_size; n++)
new (m_buffer + n) T();
}
else if (new_size < m_size)
{
for (auto i = new_size; i < m_size; i ++)
m_buffer[i].~T(); m_buffer[i].~T();
}
::operator delete (m_buffer, sizeof(T)* m_capacity);
m_buffer = new_buffer;
m_capacity = new_capacity;
}
}
template<class T>
inline void Vector<T>::resize(int new_count)
{
if (new_count < m_count)
erase(new_count, m_count - new_count);
else
expand(new_count - m_count);
}
template<class T>
inline T* Vector<T>::expand(int amount)
{
if (amount > 0)
{
int count = m_count;
reserve(count + amount);
for (int i = 0; i < amount; i++)
new (m_buffer + count + i) T();
m_count += amount;
return &m_buffer[count];
} }
m_size = new_size; return m_buffer;
} }
template<class T> template<class T>
T* Vector<T>::expand(size_t amount) inline void Vector<T>::push_back(const T& item)
{ {
reserve(m_size + amount); reserve(m_count + 1);
for (auto n = m_size; n < m_size + amount; n++) new (m_buffer + m_count) T(item);
new (m_buffer + n) T(); m_count++;
m_size += amount;
return (m_buffer + m_size - amount);
} }
template<class T> template<class T>
void Vector<T>::push_back(const T& item) inline void Vector<T>::push_back(T&& item)
{ {
reserve(m_size + 1); reserve(m_count + 1);
new (m_buffer + m_size) T(item); new (m_buffer + m_count) T(std::move(item));
m_size++; m_count++;
}
template<class T>
void Vector<T>::push_back(T&& item)
{
reserve(m_size + 1);
new (m_buffer + m_size) T(std::move(item));
m_size++;
} }
template<class T> template<class T>
template<class ...Args> template<class ...Args>
void Vector<T>::emplace_back(Args&&...args) inline void Vector<T>::emplace_back(Args && ...args)
{ {
reserve(m_size + 1); reserve(m_count + 1);
new (m_buffer + m_size) T(std::forward<Args>(args)...); new (m_buffer + m_count) T(std::forward<Args>(args)...);
m_size++; m_count++;
} }
template<class T> template<class T>
T& Vector<T>::operator[](int index) inline T& Vector<T>::operator[](int index)
{ {
BLAH_ASSERT(index >= 0 && index < m_size, "Index is out of range"); BLAH_ASSERT(index >= 0 && index < m_count, "Index out of range");
return m_buffer[index]; return m_buffer[index];
} }
template<class T> template<class T>
const T& Vector<T>::operator[](int index) const inline const T& Vector<T>::operator[](int index) const
{ {
BLAH_ASSERT(index >= 0 && index < m_size, "Index is out of range"); BLAH_ASSERT(index >= 0 && index < m_count, "Index out of range");
return m_buffer[index]; return m_buffer[index];
} }
template<class T> template<class T>
void Vector<T>::clear() inline T* Vector<T>::data()
{ {
for (T* it = m_buffer; it < m_buffer + m_size; it++) return m_buffer;
it->~T();
m_size = 0;
} }
template<class T> template<class T>
void Vector<T>::erase(const T* position) inline const T* Vector<T>::data() const
{ {
BLAH_ASSERT(m_size > 0, "Index is out of range"); return m_buffer;
BLAH_ASSERT(position >= begin() && position < end(), "Index is out of range"); }
if (m_size > 0) template<class T>
inline T* Vector<T>::begin()
{
return m_buffer;
}
template<class T>
inline const T* Vector<T>::begin() const
{
return m_buffer;
}
template<class T>
inline T* Vector<T>::end()
{
return m_buffer + m_count;
}
template<class T>
inline const T* Vector<T>::end() const
{
return m_buffer + m_count;
}
template<class T>
inline T& Vector<T>::front()
{
BLAH_ASSERT(m_count > 0, "Index out of range");
return m_buffer[0];
}
template<class T>
inline const T& Vector<T>::front() const
{
BLAH_ASSERT(m_count > 0, "Index out of range");
return m_buffer[0];
}
template<class T>
inline T& Vector<T>::back()
{
BLAH_ASSERT(m_count > 0, "Index out of range");
return m_buffer[m_count - 1];
}
template<class T>
inline const T& Vector<T>::back() const
{
BLAH_ASSERT(m_count > 0, "Index out of range");
return m_buffer[m_count - 1];
}
template<class T>
inline void Vector<T>::erase(int index, int elements)
{
BLAH_ASSERT(index >= 0 && index + elements <= m_count, "Index out of range");
if (elements >= 1)
{ {
const size_t index = position - begin(); for (int i = index; i < (m_count - elements); i++)
m_buffer[i] = std::move(m_buffer[i + elements]);
if (index < m_size - 1) for (int i = m_count - elements; i < m_count; i++)
{ m_buffer[i].~T();
size_t diff = (m_size - index - 1); m_count -= elements;
if (diff <= 0) diff = 0;
if (std::is_trivially_copyable<T>::value)
{
m_buffer[index].~T();
memmove(m_buffer + index, m_buffer + index + 1, (size_t)diff * sizeof(T));
}
else
{
for (auto i = index; i < m_size - 1; i++)
m_buffer[i] = std::move(m_buffer[i + 1]);
m_buffer[m_size - 1].~T();
}
}
else
{
m_buffer[index].~T();
}
m_size--;
} }
} }
template<class T> template<class T>
void Vector<T>::dispose() inline T Vector<T>::pop()
{ {
clear(); BLAH_ASSERT(m_count > 0, "Index out of range");
::operator delete (m_buffer, sizeof(T) * m_capacity);
m_buffer = nullptr;
m_size = 0;
m_capacity = 0;
}
T value = std::move(m_buffer[m_count - 1]);
m_buffer[m_count - 1].~T();
m_count--;
return value;
}
} }

View File

@ -137,71 +137,66 @@ Batch::~Batch()
void Batch::push_matrix(const Mat3x2& matrix) void Batch::push_matrix(const Mat3x2& matrix)
{ {
m_matrix_stack.push(m_matrix); m_matrix_stack.push_back(m_matrix);
m_matrix = matrix * m_matrix; m_matrix = matrix * m_matrix;
} }
void Batch::pop_matrix() void Batch::pop_matrix()
{ {
m_matrix = m_matrix_stack.top(); m_matrix = m_matrix_stack.pop();
m_matrix_stack.pop();
} }
void Batch::push_scissor(const Rect& scissor) void Batch::push_scissor(const Rect& scissor)
{ {
m_scissor_stack.push(m_batch.scissor); m_scissor_stack.push_back(m_batch.scissor);
SET_BATCH_VAR(scissor); SET_BATCH_VAR(scissor);
} }
void Batch::pop_scissor() void Batch::pop_scissor()
{ {
Rect scissor = m_scissor_stack.top(); Rect scissor = m_scissor_stack.pop();
m_scissor_stack.pop();
SET_BATCH_VAR(scissor); SET_BATCH_VAR(scissor);
} }
void Batch::push_blend(const BlendMode& blend) void Batch::push_blend(const BlendMode& blend)
{ {
m_blend_stack.push(m_batch.blend); m_blend_stack.push_back(m_batch.blend);
SET_BATCH_VAR(blend); SET_BATCH_VAR(blend);
} }
void Batch::pop_blend() void Batch::pop_blend()
{ {
BlendMode blend = m_blend_stack.top(); BlendMode blend = m_blend_stack.pop();
m_blend_stack.pop();
SET_BATCH_VAR(blend); SET_BATCH_VAR(blend);
} }
void Batch::push_material(const MaterialRef& material) void Batch::push_material(const MaterialRef& material)
{ {
m_material_stack.push(m_batch.material); m_material_stack.push_back(m_batch.material);
SET_BATCH_VAR(material); SET_BATCH_VAR(material);
} }
void Batch::pop_material() void Batch::pop_material()
{ {
MaterialRef material = m_material_stack.top(); MaterialRef material = m_material_stack.pop();
m_material_stack.pop();
SET_BATCH_VAR(material); SET_BATCH_VAR(material);
} }
void Batch::push_layer(int layer) void Batch::push_layer(int layer)
{ {
m_layer_stack.push(m_batch.layer); m_layer_stack.push_back(m_batch.layer);
SET_BATCH_VAR(layer); SET_BATCH_VAR(layer);
} }
void Batch::pop_layer() void Batch::pop_layer()
{ {
int layer = m_layer_stack.top(); int layer = m_layer_stack.pop();
m_layer_stack.pop();
SET_BATCH_VAR(layer); SET_BATCH_VAR(layer);
} }
void Batch::push_color_mode(ColorMode mode) void Batch::push_color_mode(ColorMode mode)
{ {
m_color_mode_stack.push(m_color_mode); m_color_mode_stack.push_back(m_color_mode);
m_color_mode = mode; m_color_mode = mode;
m_tex_mult = (m_color_mode == ColorMode::Normal ? 255 : 0); m_tex_mult = (m_color_mode == ColorMode::Normal ? 255 : 0);
@ -210,8 +205,7 @@ void Batch::push_color_mode(ColorMode mode)
void Batch::pop_color_mode() void Batch::pop_color_mode()
{ {
m_color_mode = m_color_mode_stack.top(); m_color_mode = m_color_mode_stack.pop();
m_color_mode_stack.pop();
m_tex_mult = (m_color_mode == ColorMode::Normal ? 255 : 0); m_tex_mult = (m_color_mode == ColorMode::Normal ? 255 : 0);
m_tex_wash = (m_color_mode == ColorMode::Wash ? 255 : 0); m_tex_wash = (m_color_mode == ColorMode::Wash ? 255 : 0);
} }
@ -321,18 +315,29 @@ void Batch::clear()
m_batch.scissor.w = m_batch.scissor.h = -1; m_batch.scissor.w = m_batch.scissor.h = -1;
m_batch.flip_vertically = false; m_batch.flip_vertically = false;
m_matrix_stack = std::stack<Mat3x2>(); m_matrix_stack.clear();
m_scissor_stack = std::stack<Rect>(); m_scissor_stack.clear();
m_blend_stack = std::stack<BlendMode>(); m_blend_stack.clear();
m_material_stack = std::stack<MaterialRef>(); m_material_stack.clear();
m_color_mode_stack = std::stack<ColorMode>(); m_color_mode_stack.clear();
m_layer_stack = std::stack<int>(); m_layer_stack.clear();
m_batches.clear(); m_batches.clear();
} }
void Batch::dispose() void Batch::dispose()
{ {
clear(); clear();
m_vertices.dispose();
m_indices.dispose();
m_matrix_stack.dispose();
m_scissor_stack.dispose();
m_blend_stack.dispose();
m_material_stack.dispose();
m_color_mode_stack.dispose();
m_layer_stack.dispose();
m_batches.dispose();
m_default_material.reset(); m_default_material.reset();
m_mesh.reset(); m_mesh.reset();
} }

View File

@ -9,7 +9,6 @@
#include <blah/drawing/subtexture.h> #include <blah/drawing/subtexture.h>
#include <blah/drawing/spritefont.h> #include <blah/drawing/spritefont.h>
#include <blah/containers/vector.h> #include <blah/containers/vector.h>
#include <stack>
namespace Blah namespace Blah
{ {
@ -146,23 +145,23 @@ namespace Blah
scissor(0, 0, -1, -1) {} scissor(0, 0, -1, -1) {}
}; };
static ShaderRef m_default_shader; static ShaderRef m_default_shader;
MaterialRef m_default_material; MaterialRef m_default_material;
MeshRef m_mesh; MeshRef m_mesh;
Mat3x2 m_matrix; Mat3x2 m_matrix;
ColorMode m_color_mode; ColorMode m_color_mode;
uint8_t m_tex_mult; uint8_t m_tex_mult;
uint8_t m_tex_wash; uint8_t m_tex_wash;
DrawBatch m_batch; DrawBatch m_batch;
Vector<Vertex> m_vertices; Vector<Vertex> m_vertices;
Vector<int> m_indices; Vector<int> m_indices;
std::stack<Mat3x2> m_matrix_stack; Vector<Mat3x2> m_matrix_stack;
std::stack<Rect> m_scissor_stack; Vector<Rect> m_scissor_stack;
std::stack<BlendMode> m_blend_stack; Vector<BlendMode> m_blend_stack;
std::stack<MaterialRef> m_material_stack; Vector<MaterialRef> m_material_stack;
std::stack<ColorMode> m_color_mode_stack; Vector<ColorMode> m_color_mode_stack;
std::stack<int> m_layer_stack; Vector<int> m_layer_stack;
Vector<DrawBatch> m_batches; Vector<DrawBatch> m_batches;
void render_single_batch(RenderCall& call, const DrawBatch& b, const Mat4x4& matrix); void render_single_batch(RenderCall& call, const DrawBatch& b, const Mat4x4& matrix);
}; };

View File

@ -2,6 +2,7 @@
#include <inttypes.h> #include <inttypes.h>
#include <blah/containers/str.h> #include <blah/containers/str.h>
#include <blah/streams/endian.h> #include <blah/streams/endian.h>
#include <string.h>
namespace Blah namespace Blah
{ {