refactor flatten for future dev

This commit is contained in:
yyc12345 2024-01-12 23:55:28 +08:00
parent f123bdacc0
commit 259f99ddf8

View File

@ -1,37 +1,58 @@
import bpy, mathutils, bmesh
from . import UTIL_virtools_types
import typing, enum
from . import UTIL_virtools_types, UTIL_functions
#region Param Struct
class _FlattenParamBySize():
class FlattenMethod(enum.IntEnum):
# The legacy flatten uv mode. Only just do space convertion for each individual faces.
Raw = enum.auto()
# The floor specified flatten uv.
# This method will make sure the continuity in V axis in uv when flatten uv.
# Only support rectangle faces.
Floor = enum.auto()
# The wood specified flatten uv.
# Similar floor, but it will force all horizontal uv edge parallel with U axis.
# Not only V axis, but also U axis' continuity will been make sure.
Wood = enum.auto()
class FlattenParam():
mReferenceEdge: int
mUseRefPoint: bool
mFlattenMethod: FlattenMethod
mScaleSize: float
def __init__(self, scale_size: float) -> None:
self.mScaleSize = scale_size
class _FlattenParamByRefPoint():
mReferencePoint: int
mReferenceUV: float
def __init__(self, ref_point: int, ref_point_uv: float) -> None:
self.mReferencePoint = ref_point
self.mReferenceUV = ref_point_uv
class _FlattenParam():
mUseRefPoint: bool
mParamData: _FlattenParamBySize | _FlattenParamByRefPoint
def __init__(self, use_ref_point: bool, data: _FlattenParamBySize | _FlattenParamByRefPoint) -> None:
def __init__(self, use_ref_point: bool, reference_edge: int, flatten_method: FlattenMethod) -> None:
self.mReferenceEdge = reference_edge
self.mUseRefPoint = use_ref_point
self.mParamData = data
self.mFlattenMethod = flatten_method
def is_valid(self) -> bool:
"""Check whether flatten params is valid"""
if self.mUseRefPoint:
# ref point should be great than 1.
# because 0 and 1 is located at the same line with reference edge.
return self.mReferencePoint > 1
else:
# zero scale size make no sense.
return round(self.mScaleSize, 7) != 0.0
@classmethod
def CreateByScaleSize(cls, scale_num: float):
return cls(False, _FlattenParamBySize(scale_num))
def create_by_scale_size(cls, reference_edge: int, flatten_method: FlattenMethod, scale_num: float):
val = cls(False, reference_edge, flatten_method)
val.mScaleSize = scale_num
return val
@classmethod
def CreateByRefPoint(cls, ref_point: int, ref_point_uv: float):
return cls(True, _FlattenParamByRefPoint(ref_point, ref_point_uv))
def create_by_ref_point(cls, reference_edge: int, flatten_method: FlattenMethod, ref_point: int, ref_point_uv: float):
val = cls(True, reference_edge, flatten_method)
val.mReferencePoint = ref_point
val.mReferenceUV = ref_point_uv
return val
#endregion
@ -45,48 +66,55 @@ class BBP_OT_flatten_uv(bpy.types.Operator):
name = "Reference Edge",
description = "The references edge of UV.\nIt will be placed in V axis.",
min = 0,
soft_min = 0,
soft_max = 3,
soft_min = 0, soft_max = 3,
default = 0,
)
) # type: ignore
flatten_method: bpy.props.EnumProperty(
name = "Flatten Method",
items = [
('RAW', "Raw", "Legacy flatten UV."),
('FLOOR', "Floor", "Floor specified flatten UV."),
('WOOD', "Wood", "Wood specified flatten UV."),
],
default = 'RAW'
) # type: ignore
scale_mode: bpy.props.EnumProperty(
name = "Scale Mode",
items = (
items = [
('NUM', "Scale Size", "Scale UV with specific number."),
('REF', "Ref. Point", "Scale UV with Reference Point feature."),
),
)
],
default = 'NUM'
) # type: ignore
scale_number: bpy.props.FloatProperty(
name = "Scale Size",
description = "The size which will be applied for scale.",
min = 0,
soft_min = 0,
soft_max = 5,
soft_min = 0, soft_max = 5,
default = 5.0,
step = 0.1,
step = 10,
precision = 1,
)
) # type: ignore
reference_point: bpy.props.IntProperty(
name = "Reference Point",
description = "The references point of UV.\nIt's U component will be set to the number specified by Reference Point UV.\nThis point index is related to the start point of reference edge.",
min = 2, # 0 and 1 is invalid. we can not order the reference edge to be set on the outside of uv axis
soft_min = 2,
soft_max = 3,
soft_min = 2, soft_max = 3,
default = 2,
)
) # type: ignore
reference_uv: bpy.props.FloatProperty(
name = "Reference Point UV",
description = "The U component which should be applied to references point in UV.",
soft_min = 0,
soft_max = 1,
soft_min = 0, soft_max = 1,
default = 0.5,
step = 0.1,
step = 10,
precision = 2,
)
) # type: ignore
@classmethod
def poll(cls, context):
@ -101,35 +129,39 @@ class BBP_OT_flatten_uv(bpy.types.Operator):
def execute(self, context):
# construct scale data
flatten_method_: FlattenMethod
match(self.flatten_method):
case 'RAW': flatten_method_ = FlattenMethod.Raw
case 'FLOOR': flatten_method_ = FlattenMethod.Floor
case 'WOOD': flatten_method_ = FlattenMethod.Wood
case _: return {'CANCELLED'}
flatten_param_: FlattenParam
if self.scale_mode == 'NUM':
scale_data: _FlattenParam = _FlattenParam.CreateByScaleSize(self.scale_number)
flatten_param_ = FlattenParam.create_by_scale_size(self.reference_edge, flatten_method_, self.scale_number)
else:
scale_data: _FlattenParam = _FlattenParam.CreateByRefPoint(self.reference_point, self.reference_uv)
flatten_param_ = FlattenParam.create_by_ref_point(self.reference_edge, flatten_method_, self.reference_point, self.reference_uv)
if not flatten_param_.is_valid():
return {'CANCELLED'}
# do flatten uv and report
# sync data first
# ref: https://blender.stackexchange.com/questions/218086/data-vertices-returns-an-empty-collection-in-edit-mode
this_obj: bpy.types.Object = bpy.context.active_object
this_obj.update_from_editmode()
no_processed_count = _real_flatten_uv(
this_obj.data,
self.reference_edge,
scale_data
)
if no_processed_count != 0:
print("[Flatten UV] {} faces are not be processed correctly because process failed."
.format(no_processed_count))
failed: int = _flatten_uv_wrapper(bpy.context.active_object.data, flatten_param_)
if failed != 0:
print(f'[Flatten UV] {failed} faces are not be processed correctly because process failed.')
return {'FINISHED'}
def draw(self, context):
layout = self.layout
layout.emboss = 'NORMAL'
layout.label(text = "Flatten Method")
sublayout = layout.row()
sublayout.prop(self, "flatten_method", expand = True)
layout.prop(self, "reference_edge")
layout.separator()
layout.label(text = "Scale Mode")
layout.prop(self, "scale_mode", expand = True)
sublayout = layout.row()
sublayout.prop(self, "scale_mode", expand = True)
layout.separator()
layout.label(text = "Scale Config")
@ -139,7 +171,7 @@ class BBP_OT_flatten_uv(bpy.types.Operator):
layout.prop(self, "reference_point")
layout.prop(self, "reference_uv")
#region Real Worker Functions
#region BMesh Visitor Helper
def _set_face_vertex_uv(face: bmesh.types.BMFace, uv_layer: bmesh.types.BMLayerItem, idx: int, uv: UTIL_virtools_types.ConstVxVector2) -> None:
"""
@ -152,6 +184,18 @@ def _set_face_vertex_uv(face: bmesh.types.BMFace, uv_layer: bmesh.types.BMLayerI
"""
face.loops[idx][uv_layer].uv = uv
def _get_face_vertex_uv(face: bmesh.types.BMFace, uv_layer: bmesh.types.BMLayerItem, idx: int) -> UTIL_virtools_types.ConstVxVector2:
"""
Help function to get UV data for face.
@param face[in] The face to be set.
@param uv_layer[in] The corresponding uv layer. Hint: it was gotten from BMesh.loops.layers.uv.verify()
@param idx[in] The index of trying setting vertex.
@return The UV data
"""
v: mathutils.Vector = face.loops[idx][uv_layer].uv
return (v[0], v[1])
def _get_face_vertex_pos(face: bmesh.types.BMFace, idx: int) -> UTIL_virtools_types.ConstVxVector3:
"""
Help function to get vertex position from face by provided index.
@ -175,9 +219,11 @@ def _circular_clamp_index(v: int, vmax: int) -> int:
"""
return v % vmax
def _real_flatten_uv(mesh: bpy.types.Mesh, reference_edge: int, scale_data: _FlattenParam) -> int:
no_processed_count: int = 0
#endregion
#region Real Worker Functions
def _flatten_uv_wrapper(mesh: bpy.types.Mesh, flatten_param: FlattenParam) -> int:
# create bmesh modifier
bm: bmesh.types.BMesh = bmesh.from_edit_mesh(mesh)
# use verify() to make sure there is a uv layer to write data
@ -185,126 +231,146 @@ def _real_flatten_uv(mesh: bpy.types.Mesh, reference_edge: int, scale_data: _Fla
uv_layers: bmesh.types.BMLayerCollection = bm.loops.layers.uv
uv_layer: bmesh.types.BMLayerItem = uv_layers.verify()
# process each face
face: bmesh.types.BMFace
for face in bm.faces:
# ===== check requirement =====
# check whether face selected
# only process selected face
if not face.select:
continue
# ===== resolve reference edge and point =====
# check reference validation
all_point: int = len(face.loops)
if reference_edge >= all_point: # reference edge overflow
no_processed_count += 1
continue
# check scale validation
if scale_data.mUseRefPoint:
if ((scale_data.mParamData.mReferencePoint <= 1) # reference point too low
or (scale_data.mParamData.mReferencePoint >= all_point)): # reference point overflow
no_processed_count += 1
continue
else:
if round(scale_data.mParamData.mScaleSize, 7) == 0.0: # invalid scale size
no_processed_count += 1
continue
# ========== get correct new corrdinate system ==========
# yyc mark:
# we use 3 points located in this face to calc
# the base of this local uv corredinate system.
# however if this 3 points are set in a line,
# this method will cause a error, zero vector error.
#
# if z axis is zero vector, we will try using face normal instead
# to try getting correct data.
#
# zero base is not important. because it will not raise any math exception
# just a weird uv. user will notice this problem.
# get point
pidx_start: int = _circular_clamp_index(reference_edge, all_point)
p1: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, pidx_start))
p2: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, _circular_clamp_index(reference_edge + 1, all_point)))
p3: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, _circular_clamp_index(reference_edge + 2, all_point)))
# get y axis
new_y_axis: mathutils.Vector = p2 - p1
new_y_axis.normalize()
vec1: mathutils.Vector = p3 - p2
vec1.normalize()
# get z axis
new_z_axis: mathutils.Vector = new_y_axis.cross(vec1)
new_z_axis.normalize()
if not any(round(v, 7) for v in new_z_axis): # if z is a zero vector, use face normal instead
new_z_axis = face.normal.normalized()
# get x axis
new_x_axis: mathutils.Vector = new_y_axis.cross(new_z_axis)
new_x_axis.normalize()
# construct rebase matrix
origin_base: mathutils.Matrix = mathutils.Matrix((
(1.0, 0, 0),
(0, 1.0, 0),
(0, 0, 1.0)
))
origin_base.invert_safe()
new_base: mathutils.Matrix = mathutils.Matrix((
(new_x_axis.x, new_y_axis.x, new_z_axis.x),
(new_x_axis.y, new_y_axis.y, new_z_axis.y),
(new_x_axis.z, new_y_axis.z, new_z_axis.z)
))
transition_matrix: mathutils.Matrix = origin_base @ new_base
transition_matrix.invert_safe()
# ===== rescale correction =====
rescale: float = 0.0
if scale_data.mUseRefPoint:
# ref point method
# get reference point from loop
pidx_refp: int = _circular_clamp_index(pidx_start + scale_data.mParamData.mReferencePoint, all_point)
pref: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, pidx_refp)) - p1
# calc its U component
vec_u: float = abs((transition_matrix @ pref).x)
if round(vec_u, 7) == 0.0:
rescale = 1.0 # fallback. rescale = 1 will not affect anything
else:
rescale = scale_data.mParamData.mReferenceUV / vec_u
else:
# scale size method
# apply rescale directly
rescale = 1.0 / scale_data.mParamData.mScaleSize
# construct matrix
# we only rescale U component (X component)
# and constant 5.0 scale for V component (Y component)
scale_matrix: mathutils.Matrix = mathutils.Matrix((
(rescale, 0, 0),
(0, 1.0 / 5.0, 0),
(0, 0, 1.0)
))
# order can not be changed. we order do transition first, then scale it.
rescale_transition_matrix: mathutils.Matrix = scale_matrix @ transition_matrix
# ========== process each face ==========
for idx in range(all_point):
pp: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, idx)) - p1
ppuv: mathutils.Vector = rescale_transition_matrix @ pp
# u and v component has been calculated properly. no extra process needed.
# just get abs for the u component
_set_face_vertex_uv(face, uv_layer, idx, (abs(ppuv.x), ppuv.y))
# invoke core
failed: int
match(flatten_param.mFlattenMethod):
case FlattenMethod.Raw:
failed = _raw_flatten_uv(bm, uv_layer, flatten_param)
case FlattenMethod.Floor:
failed = _floor_flatten_uv(bm, uv_layer, flatten_param)
case FlattenMethod.Wood:
failed = _wood_flatten_uv(bm, uv_layer, flatten_param)
# show the updates in the viewport
bmesh.update_edit_mesh(mesh)
# return process result
return no_processed_count
return failed
def _raw_flatten_uv(bm: bmesh.types.BMesh, uv_layer: bmesh.types.BMLayerItem, flatten_param: FlattenParam) -> int:
# failed counter
failed: int = 0
# raw flatten uv always use zero offset
c_ZeroOffset: mathutils.Vector = mathutils.Vector((0, 0))
# process each face
face: bmesh.types.BMFace
for face in bm.faces:
# check requirement
# skip not selected face
if not face.select: continue
# skip the face that not fufill reference edge requirement
edge_count: int = len(face.loops)
if flatten_param.mReferenceEdge >= edge_count:
failed += 1
continue
# skip ref point overflow when using ref point mode
if flatten_param.mUseRefPoint and (flatten_param.mReferencePoint >= edge_count):
failed += 1
continue
# process this face
_flatten_face_uv(face, uv_layer, flatten_param, c_ZeroOffset)
return failed
def _floor_flatten_uv(bm: bmesh.types.BMesh, uv_layer: bmesh.types.BMLayerItem, flatten_param: FlattenParam) -> int:
return 0
def _wood_flatten_uv(bm: bmesh.types.BMesh, uv_layer: bmesh.types.BMLayerItem, flatten_param: FlattenParam) -> int:
return 0
def _flatten_face_uv(face: bmesh.types.BMFace, uv_layer: bmesh.types.BMLayerItem, flatten_param: FlattenParam, offset: mathutils.Vector) -> None:
# ========== get correct new corrdinate system ==========
# yyc mark:
# we use 3 points located in this face to calc
# the base of this local uv corredinate system.
# however if this 3 points are set in a line,
# this method will cause a error, zero vector error.
#
# if z axis is zero vector, we will try using face normal instead
# to try getting correct data.
#
# zero base is not important. because it will not raise any math exception
# just a weird uv. user will notice this problem.
# get point
all_point: int = len(face.loops)
pidx_start: int = _circular_clamp_index(flatten_param.mReferenceEdge, all_point)
p1: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, pidx_start))
p2: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, _circular_clamp_index(flatten_param.mReferenceEdge + 1, all_point)))
p3: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, _circular_clamp_index(flatten_param.mReferenceEdge + 2, all_point)))
# get y axis
new_y_axis: mathutils.Vector = p2 - p1
new_y_axis.normalize()
vec1: mathutils.Vector = p3 - p2
vec1.normalize()
# get z axis
new_z_axis: mathutils.Vector = new_y_axis.cross(vec1)
new_z_axis.normalize()
if not any(round(v, 7) for v in new_z_axis): # if z is a zero vector, use face normal instead
new_z_axis = typing.cast(mathutils.Vector, face.normal).normalized()
# get x axis
new_x_axis: mathutils.Vector = new_y_axis.cross(new_z_axis)
new_x_axis.normalize()
# construct rebase matrix
origin_base: mathutils.Matrix = mathutils.Matrix((
(1.0, 0, 0),
(0, 1.0, 0),
(0, 0, 1.0)
))
origin_base.invert_safe()
new_base: mathutils.Matrix = mathutils.Matrix((
(new_x_axis.x, new_y_axis.x, new_z_axis.x),
(new_x_axis.y, new_y_axis.y, new_z_axis.y),
(new_x_axis.z, new_y_axis.z, new_z_axis.z)
))
transition_matrix: mathutils.Matrix = typing.cast(mathutils.Matrix, origin_base @ new_base)
transition_matrix.invert_safe()
# ===== rescale correction =====
rescale: float = 0.0
if flatten_param.mUseRefPoint:
# ref point method
# get reference point from loop
pidx_refp: int = _circular_clamp_index(pidx_start + flatten_param.mReferencePoint, all_point)
pref: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, pidx_refp)) - p1
# calc its U component
vec_u: float = abs(typing.cast(mathutils.Vector, transition_matrix @ pref).x)
if round(vec_u, 7) == 0.0:
rescale = 1.0 # fallback. rescale = 1 will not affect anything
else:
rescale = flatten_param.mReferenceUV / vec_u
else:
# scale size method
# apply rescale directly
rescale = 1.0 / flatten_param.mScaleSize
# construct matrix
# we only rescale U component (X component)
# and constant 5.0 scale for V component (Y component)
scale_matrix: mathutils.Matrix = mathutils.Matrix((
(rescale, 0, 0),
(0, 1.0 / 5.0, 0),
(0, 0, 1.0)
))
# order can not be changed. we order do transition first, then scale it.
rescale_transition_matrix: mathutils.Matrix = typing.cast(mathutils.Matrix, scale_matrix @ transition_matrix)
# ========== process each face ==========
for idx in range(all_point):
# compute uv
pp: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, idx)) - p1
ppuv: mathutils.Vector = typing.cast(mathutils.Vector, rescale_transition_matrix @ pp)
# u and v component has been calculated properly. no extra process needed.
# just get abs for the u component
ppuv.x = abs(ppuv.x)
# add offset and assign to uv
_set_face_vertex_uv(face, uv_layer, idx, (ppuv.x + offset.x, ppuv.y + offset.y))
#endregion