import bpy, mathutils, bmesh class FlattenParamBySize(): mScaleSize: float def __init__(self, scale_size: float) -> None: self.mScaleSize = scale_size class FlattenParamByRefPoint(): mReferencePoint: int mReferenceUV: float def __init__(self, ref_point: int, ref_point_uv: float) -> None: self.mReferencePoint = ref_point self.mReferenceUV = ref_point_uv class FlattenParam(): mUseRefPoint: bool mParamData: FlattenParamBySize | FlattenParamByRefPoint def __init__(self, use_ref_point: bool, data: FlattenParamBySize | FlattenParamByRefPoint) -> None: self.mUseRefPoint = use_ref_point self.mParamData = data @classmethod def CreateByScaleSize(cls, scale_num: float): return cls(False, FlattenParamBySize(scale_num)) @classmethod def CreateByRefPoint(cls, ref_point: int, ref_point_uv: float): return cls(True, FlattenParamByRefPoint(ref_point, ref_point_uv)) class BBP_OT_flatten_uv(bpy.types.Operator): """Flatten selected face UV. Only works for convex face""" bl_idname = "bbp.flatten_uv" bl_label = "Flatten UV" bl_options = {'REGISTER', 'UNDO'} reference_edge: bpy.props.IntProperty( name = "Reference Edge", description = "The references edge of UV.\nIt will be placed in V axis.", min = 0, soft_min = 0, soft_max = 3, default = 0, ) scale_mode: bpy.props.EnumProperty( name = "Scale Mode", items = ( ('NUM', "Scale Size", "Scale UV with specific number."), ('REF', "Ref. Point", "Scale UV with Reference Point feature."), ), ) scale_number: bpy.props.FloatProperty( name = "Scale Size", description = "The size which will be applied for scale.", min = 0, soft_min = 0, soft_max = 5, default = 5.0, step = 0.1, precision = 1, ) reference_point: bpy.props.IntProperty( name = "Reference Point", description = "The references point of UV.\nIt's U component will be set to the number specified by Reference Point UV.\nThis point index is related to the start point of reference edge.", min = 2, # 0 and 1 is invalid. we can not order the reference edge to be set on the outside of uv axis soft_min = 2, soft_max = 3, default = 2, ) reference_uv: bpy.props.FloatProperty( name = "Reference Point UV", description = "The U component which should be applied to references point in UV.", soft_min = 0, soft_max = 1, default = 0.5, step = 0.1, precision = 2, ) @classmethod def poll(cls, context): obj = bpy.context.active_object if obj is None: return False if obj.type != 'MESH': return False if obj.mode != 'EDIT': return False return True def execute(self, context): # construct scale data if self.scale_mode == 'NUM': scale_data: FlattenParam = FlattenParam.CreateByScaleSize(self.scale_number) else: scale_data: FlattenParam = FlattenParam.CreateByRefPoint(self.reference_point, self.reference_uv) # do flatten uv and report no_processed_count = real_flatten_uv(bpy.context.active_object.data, self.reference_edge, scale_data) if no_processed_count != 0: print("[Flatten UV] {} faces are not be processed correctly because process failed." .format(no_processed_count)) return {'FINISHED'} def draw(self, context): layout = self.layout layout.emboss = 'NORMAL' layout.prop(self, "reference_edge") layout.separator() layout.label(text = "Scale Mode") layout.prop(self, "scale_mode", expand = True) layout.separator() layout.label(text = "Scale Config") if self.scale_mode == 'NUM': layout.prop(self, "scale_number") else: layout.prop(self, "reference_point") layout.prop(self, "reference_uv") def real_flatten_uv(mesh: bpy.types.Mesh, reference_edge: int, scale_data: FlattenParam) -> int: no_processed_count: int = 0 # if no uv, create it if mesh.uv_layers.active is None: mesh.uv_layers.new(do_init = False) # create bmesh bm: bmesh.types.BMesh = bmesh.from_edit_mesh(mesh) # NOTE: Blender 3.5 change mesh underlying data struct. # Originally this section also need to be update ad Blender 3.5 style # But this is a part of bmesh. This struct is not changed so we don't need update it. uv_lay: bmesh.types.BMLayerItem = bm.loops.layers.uv.active face: bmesh.types.BMFace for face in bm.faces: # ========== only process selected face ========== if not face.select: continue # ========== resolve reference edge and point ========== # check reference validation allPoint: int = len(face.loops) if reference_edge >= allPoint: # reference edge overflow no_processed_count += 1 continue # check scale validation if scale_data.mUseRefPoint: if ((scale_data.mParamData.mReferencePoint <= 1) # reference point too low or (scale_data.mParamData.mReferencePoint >= allPoint)): # reference point overflow no_processed_count += 1 continue else: if round(scale_data.mParamData.mScaleSize, 7) == 0.0: # invalid scale size no_processed_count += 1 continue # ========== get correct new corrdinate system ========== # yyc mark: # we use 3 points located in this face to calc # the base of this local uv corredinate system. # however if this 3 points are set in a line, # this method will cause a error, zero vector error. # # if z axis is zero vector, we will try using face normal instead # to try getting correct data. # # zero base is not important. because it will not raise any math exception # just a weird uv. user will notice this problem. # get point p1Relative: int = reference_edge p2Relative: int = reference_edge + 1 p3Relative: int = reference_edge + 2 if p2Relative >= allPoint: p2Relative -= allPoint if p3Relative >= allPoint: p3Relative -= allPoint p1: mathutils.Vector = mathutils.Vector( tuple(face.loops[p1Relative].vert.co[x] for x in range(3))) p2: mathutils.Vector = mathutils.Vector( tuple(face.loops[p2Relative].vert.co[x] for x in range(3))) p3: mathutils.Vector = mathutils.Vector( tuple(face.loops[p3Relative].vert.co[x] for x in range(3))) # get y axis new_y_axis: mathutils.Vector = p2 - p1 new_y_axis.normalize() vec1: mathutils.Vector = p3 - p2 vec1.normalize() # get z axis new_z_axis: mathutils.Vector = new_y_axis.cross(vec1) new_z_axis.normalize() if not any(round(v, 7) for v in new_z_axis ): # if z is a zero vector, use face normal instead new_z_axis = face.normal.normalized() # get x axis new_x_axis: mathutils.Vector = new_y_axis.cross(new_z_axis) new_x_axis.normalize() # construct rebase matrix origin_base: mathutils.Matrix = mathutils.Matrix(( (1.0, 0, 0), (0, 1.0, 0), (0, 0, 1.0) )) origin_base.invert_safe() new_base: mathutils.Matrix = mathutils.Matrix(( (new_x_axis.x, new_y_axis.x, new_z_axis.x), (new_x_axis.y, new_y_axis.y, new_z_axis.y), (new_x_axis.z, new_y_axis.z, new_z_axis.z) )) transition_matrix: mathutils.Matrix = origin_base @ new_base transition_matrix.invert_safe() # ========== rescale correction ========== if scale_data.mUseRefPoint: # ref point method # get reference point from loop refpRelative: int = p1Relative + scale_data.mParamData.mReferencePoint if refpRelative >= allPoint: refpRelative -= allPoint pRef: mathutils.Vector = mathutils.Vector(tuple(face.loops[refpRelative].vert.co[x] for x in range(3))) - p1 # calc its U component vec_u: float = abs((transition_matrix @ pRef).x) if round(vec_u, 7) == 0.0: rescale: float = 1.0 # fallback. rescale = 1 will not affect anything else: rescale: float = scale_data.mParamData.mReferenceUV / vec_u else: # scale size method # apply rescale directly rescale: float = 1.0 / scale_data.mParamData.mScaleSize # construct matrix # we only rescale U component (X component) # and constant 5.0 scale for V component (Y component) scale_matrix: mathutils.Matrix = mathutils.Matrix(( (rescale, 0, 0), (0, 1.0 / 5.0, 0), (0, 0, 1.0) )) # order can not be changed. we order do transition first, then scale it. rescale_transition_matrix: mathutils.Matrix = scale_matrix @ transition_matrix # ========== process each face ========== for loop_index in range(allPoint): pp: mathutils.Vector = mathutils.Vector(tuple(face.loops[loop_index].vert.co[x] for x in range(3))) - p1 ppuv: mathutils.Vector = rescale_transition_matrix @ pp # u and v component has been calculated properly. no extra process needed. # just get abs for the u component face.loops[loop_index][uv_lay].uv = (abs(ppuv.x), ppuv.y) # sync the result to view port bmesh.update_edit_mesh(mesh) return no_processed_count