import bpy, bmesh, mathutils, math import typing from . import UTIL_functions, UTIL_naming_convension from . import PROP_bme_material #region BMesh Operations Helper def _bmesh_extrude( bm: bmesh.types.BMesh, start_edges: list[bmesh.types.BMEdge], direction: mathutils.Vector) -> list[bmesh.types.BMEdge]: # extrude ret: dict[str, typing.Any] = bmesh.ops.extrude_edge_only( bm, edges = start_edges, use_normal_flip = True, # NOTE: flip normal according to test result. use_select_history = False ) # get end edges ret_geom = ret['geom'] del ret end_verts: list[bmesh.types.BMVert] = list(filter(lambda x: isinstance(x, bmesh.types.BMVert), ret_geom)) end_edges: list[bmesh.types.BMEdge] = list(filter(lambda x: isinstance(x, bmesh.types.BMEdge) and x.is_boundary, ret_geom)) # and move it bmesh.ops.translate( bm, vec = direction, space = mathutils.Matrix.Identity(4), verts = end_verts, use_shapekey = False ) # return value return end_edges def _bmesh_screw( bm: bmesh.types.BMesh, start_verts: list[bmesh.types.BMVert], start_edges: list[bmesh.types.BMEdge], angle: float, steps: int, iterations: int, center: mathutils.Vector, screw_per_iteration: float) -> list[bmesh.types.BMEdge]: """ Hints: Angle is input as degree unit. """ # screw ret: dict[str, typing.Any] = bmesh.ops.spin( bm, geom = start_edges, cent = center, axis = mathutils.Vector((0, 0, 1)), # default to +Z dvec = mathutils.Vector((0, 0, screw_per_iteration / steps)), # conv to step delta angle = math.radians(angle) * iterations, space = mathutils.Matrix.Identity(4), steps = steps * iterations, use_merge = False, use_normal_flip = True, # NOTE: flip normal according to test result. use_duplicate = False ) # return last segment geom_last = ret['geom_last'] del ret return list(filter(lambda x: isinstance(x, bmesh.types.BMEdge), geom_last)) def _bmesh_cap(bm: bmesh.types.BMesh, edges: list[bmesh.types.BMEdge]) -> None: """ Cap given edges. And mark it as sharp edge. Please reset all edges to smooth one before calling this. """ # fill holes bmesh.ops.triangle_fill( bm, use_beauty = False, use_dissolve = False, edges = edges # no pass to normal. ) # and only set sharp for cap's edges for edge in edges: edge.smooth = False def _bmesh_smooth_all_edges(bm: bmesh.types.BMesh) -> None: """ Reset all edges to smooth. Call this before calling edge cap function. """ # reset all edges to smooth edge: bmesh.types.BMEdge for edge in bm.edges: edge.smooth = True def _bmesh_flip_all_faces(bm: bmesh.types.BMesh, flip_x: bool, flip_y: bool, flip_z: bool) -> None: """ Flip the whole geometry in given bmesh with given axis. """ # get mirror result scale_factor: mathutils.Vector = mathutils.Vector(( (-1 if flip_x else 1), (-1 if flip_y else 1), (-1 if flip_z else 1) )) bmesh.ops.scale(bm, vec = scale_factor, verts = bm.verts[:]) # check whether we need perform normal flip. # see UTIL_bme._is_mirror_matrix for more detail test_matrix: mathutils.Matrix = mathutils.Matrix.LocRotScale(None, None, scale_factor) if test_matrix.is_negative: bmesh.ops.reverse_faces(bm, faces = bm.faces[:]) #endregion #region Real Rail Creators def rail_creator_wrapper(fct_poly_cret: typing.Callable[[bmesh.types.BMesh], None], extra_transform: mathutils.Matrix) -> bpy.types.Object: # create mesh first bm: bmesh.types.BMesh = bmesh.new() # call cret fct fct_poly_cret(bm) # finish up mesh: bpy.types.Mesh = bpy.data.meshes.new('Rail') bm.to_mesh(mesh) bm.free() # setup smooth for mesh mesh.shade_smooth() # setup default material with PROP_bme_material.BMEMaterialsHelper(bpy.context.scene) as bmemtl: mesh.materials.clear() mesh.materials.append(bmemtl.get_material('Rail')) mesh.validate_material_indices() # create object and assoc with it # create info first rail_info: UTIL_naming_convension.BallanceObjectInfo = UTIL_naming_convension.BallanceObjectInfo.create_from_others( UTIL_naming_convension.BallanceObjectType.RAIL ) # then get object name rail_name: str | None = UTIL_naming_convension.YYCToolchainConvention.set_to_name(rail_info, None) if rail_name is None: raise UTIL_functions.BBPException('impossible null name') # create object by name obj: bpy.types.Object = bpy.data.objects.new(rail_name, mesh) # assign virtools groups UTIL_naming_convension.VirtoolsGroupConvention.set_to_object(obj, rail_info, None) # move to cursor UTIL_functions.add_into_scene_and_move_to_cursor(obj) # add extra transform obj.matrix_world = obj.matrix_world @ extra_transform # select created object UTIL_functions.select_certain_objects((obj, )) # return rail return obj def create_rail_section( bm: bmesh.types.BMesh, is_monorail: bool, rail_radius: float, rail_span: float, matrix: mathutils.Matrix = mathutils.Matrix.Identity(4)) -> None: """ Add a rail section. If created is monorail, the original point locate at the center of section. Otherwise, the original point locate at the center point of the line connecting between left rail section and right rail section. The section will be placed in XZ panel. If ordered is monorail, `rail_span` param will be ignored. """ if is_monorail: # create monorail bmesh.ops.create_circle( bm, cap_ends = False, cap_tris = False, segments = 8, radius = rail_radius, matrix = typing.cast(mathutils.Matrix, matrix @ mathutils.Matrix.LocRotScale( None, mathutils.Euler((math.radians(90), math.radians(22.5), 0), 'XYZ'), None )), calc_uvs = False ) else: # create rail # create left rail bmesh.ops.create_circle( bm, cap_ends = False, cap_tris = False, segments = 8, radius = rail_radius, matrix = typing.cast(mathutils.Matrix, matrix @ mathutils.Matrix.LocRotScale( mathutils.Vector((-rail_span / 2, 0, 0)), mathutils.Euler((math.radians(90), 0, 0), 'XYZ'), None )), calc_uvs = False ) # create right rail bmesh.ops.create_circle( bm, cap_ends = False, cap_tris = False, segments = 8, radius = rail_radius, matrix = typing.cast(mathutils.Matrix, matrix @ mathutils.Matrix.LocRotScale( mathutils.Vector((rail_span / 2, 0, 0)), mathutils.Euler((math.radians(90), 0, 0), 'XYZ'), None )), calc_uvs = False ) def create_transition_section( bm: bmesh.types.BMesh, rail_radius: float, rail_span: float) -> None: """ Create the transition section between rail and monorail. """ # create rail section create_rail_section(bm, False, rail_radius, rail_span) # create monorail # calc sink first monorail_sink: float try: monorail_sink = math.sqrt((rail_radius + 2) ** 2 - (rail_span / 2) ** 2) - 2 - rail_radius except: monorail_sink = -2 # if sqrt(minus number) happended, it mean no triangle relation. the depth should always be -2. # create monorail with calculated sink create_rail_section( bm, True, rail_radius, rail_span, mathutils.Matrix.Translation((0, 0, monorail_sink)) ) def create_straight_rail( bm: bmesh.types.BMesh, is_monorail: bool, rail_radius: float, rail_span: float, rail_length: float, rail_angle: float, rail_start_cap: bool, rail_end_cap: bool) -> None: """ Add a straight rail. The original point is same as `_add_rail_section()`. The start terminal of this straight will be placed in XZ panel. The expand direction is +Y. If ordered is monorail, `rail_span` param will be ignored. The rail angle is in degree unit and indicate how any angle this rail should rotated by its axis. It usually used to create side rail. """ # create section first create_rail_section( bm, is_monorail, rail_radius, rail_span, mathutils.Matrix.LocRotScale( None, mathutils.Euler((0, math.radians(rail_angle), 0), 'XYZ'), None ) ) # get start edges start_edges: list[bmesh.types.BMEdge] = bm.edges[:] # extrude and get end edges end_edges: list[bmesh.types.BMEdge] = _bmesh_extrude( bm, start_edges, mathutils.Vector((0, rail_length, 0)) ) # smooth geometry _bmesh_smooth_all_edges(bm) # cap start and end edges if needed if rail_start_cap: _bmesh_cap(bm, start_edges) if rail_end_cap: _bmesh_cap(bm, end_edges) def create_transition_rail( bm: bmesh.types.BMesh, rail_radius: float, rail_span: float, rail_length: float, rail_start_cap: bool, rail_end_cap: bool) -> None: """ Add a transition rail. The original point is same as `_add_transition_section()`. The start terminal of this straight will be placed in XZ panel. The expand direction is +Y. """ # create section first create_transition_section(bm, rail_radius, rail_span) # get start edges start_edges: list[bmesh.types.BMEdge] = bm.edges[:] # extrude and get end edges end_edges: list[bmesh.types.BMEdge] = _bmesh_extrude( bm, start_edges, mathutils.Vector((0, rail_length, 0)) ) # smooth geometry _bmesh_smooth_all_edges(bm) # cap start and end edges if needed if rail_start_cap: _bmesh_cap(bm, start_edges) if rail_end_cap: _bmesh_cap(bm, end_edges) def create_screw_rail( bm: bmesh.types.BMesh, is_monorail: bool, rail_radius: float, rail_span: float, rail_start_cap: bool, rail_end_cap: bool, rail_screw_angle: float, rail_screw_screw: float, rail_screw_iterations: int, rail_screw_steps: int, rail_screw_radius: float, rail_screw_flip_x: bool, rail_screw_flip_y: bool, rail_screw_flip_z: bool) -> None: """ Add a screw rail. The original point is same as `_add_rail_section()`. The start terminal of this straight will be placed in XZ panel. The expand direction is +Y. If ordered is monorail, `rail_span` param will be ignored. Angle is input as degree unit. """ # create section first create_rail_section(bm, is_monorail, rail_radius, rail_span) start_edges: list[bmesh.types.BMEdge] = bm.edges[:] end_edges: list[bmesh.types.BMEdge] = _bmesh_screw( bm, bm.verts[:], start_edges, rail_screw_angle, rail_screw_steps, rail_screw_iterations, mathutils.Vector((rail_screw_radius, 0, 0)), rail_screw_screw ) # flip geometry if rail_screw_flip_x or rail_screw_flip_y or rail_screw_flip_z: _bmesh_flip_all_faces(bm, rail_screw_flip_x, rail_screw_flip_y, rail_screw_flip_z) # smooth geometry _bmesh_smooth_all_edges(bm) # cap start and end edges if needed if rail_start_cap: _bmesh_cap(bm, start_edges) if rail_end_cap: _bmesh_cap(bm, end_edges) #endregion