yyc12345
02a1222210
- support backward successive face searching to resolve some failed flatten uv in floor mode.
576 lines
23 KiB
Python
576 lines
23 KiB
Python
import bpy, mathutils, bmesh
|
|
import typing, enum, collections
|
|
from . import UTIL_virtools_types, UTIL_functions
|
|
|
|
#region Param Struct
|
|
|
|
class FlattenMethod(enum.IntEnum):
|
|
# The legacy flatten uv mode. Only just do space convertion for each individual faces.
|
|
Raw = enum.auto()
|
|
# The floor specific flatten uv.
|
|
# This method will make sure the continuity in V axis in uv when flatten uv.
|
|
# Only support rectangle faces.
|
|
Floor = enum.auto()
|
|
# The wood specific flatten uv.
|
|
# Similar floor, but it will force all horizontal uv edge parallel with U axis.
|
|
# Not only V axis, but also U axis' continuity will been make sure.
|
|
Wood = enum.auto()
|
|
|
|
class NeighborType(enum.IntEnum):
|
|
"""
|
|
NeighborType is used by special flatten uv to describe the direction of neighbor.
|
|
|
|
Normally we find neighbor by +V, +U direction (in UV world), these neighbors are "forward" neighbors and marked as Forward.
|
|
But if we try finding neighbor by -V, -U direction, we call these neighbors are "backward" neighbors,
|
|
and marked as VerticalBackward or HorizontalBackward by its direction.
|
|
|
|
The UV of Backward neighbor need to be processed specially so we need distinguish them with Forward neighbors.
|
|
"""
|
|
# +V, +U direction neighbor.
|
|
Forward = enum.auto()
|
|
# -V direction neighbor.
|
|
VerticalBackward = enum.auto()
|
|
# -U direction neighbor.
|
|
HorizontalBackward = enum.auto()
|
|
|
|
class FlattenParam():
|
|
mReferenceEdge: int
|
|
mUseRefPoint: bool
|
|
mFlattenMethod: FlattenMethod
|
|
|
|
mScaleSize: float
|
|
|
|
mReferencePoint: int
|
|
mReferenceUV: float
|
|
|
|
def __init__(self, use_ref_point: bool, reference_edge: int, flatten_method: FlattenMethod) -> None:
|
|
self.mReferenceEdge = reference_edge
|
|
self.mUseRefPoint = use_ref_point
|
|
self.mFlattenMethod = flatten_method
|
|
|
|
def is_valid(self) -> bool:
|
|
"""Check whether flatten params is valid"""
|
|
if self.mUseRefPoint:
|
|
# ref point should be great than 1.
|
|
# because 0 and 1 is located at the same line with reference edge.
|
|
return self.mReferencePoint > 1
|
|
else:
|
|
# zero scale size make no sense.
|
|
return round(self.mScaleSize, 7) != 0.0
|
|
|
|
@classmethod
|
|
def create_by_scale_size(cls, reference_edge: int, flatten_method: FlattenMethod, scale_num: float):
|
|
val = cls(False, reference_edge, flatten_method)
|
|
val.mScaleSize = scale_num
|
|
return val
|
|
|
|
@classmethod
|
|
def create_by_ref_point(cls, reference_edge: int, flatten_method: FlattenMethod, ref_point: int, ref_point_uv: float):
|
|
val = cls(True, reference_edge, flatten_method)
|
|
val.mReferencePoint = ref_point
|
|
val.mReferenceUV = ref_point_uv
|
|
return val
|
|
|
|
#endregion
|
|
|
|
class BBP_OT_flatten_uv(bpy.types.Operator):
|
|
"""Flatten selected face UV. Only works for convex face"""
|
|
bl_idname = "bbp.flatten_uv"
|
|
bl_label = "Flatten UV"
|
|
bl_options = {'REGISTER', 'UNDO'}
|
|
|
|
reference_edge: bpy.props.IntProperty(
|
|
name = "Reference Edge",
|
|
description = "The references edge of UV.\nIt will be placed in V axis.",
|
|
min = 0,
|
|
soft_min = 0, soft_max = 3,
|
|
default = 0,
|
|
) # type: ignore
|
|
|
|
flatten_method: bpy.props.EnumProperty(
|
|
name = "Flatten Method",
|
|
items = [
|
|
('RAW', "Raw", "Legacy flatten UV."),
|
|
('FLOOR', "Floor", "Floor specific flatten UV."),
|
|
('WOOD', "Wood", "Wood specific flatten UV."),
|
|
],
|
|
default = 'RAW'
|
|
) # type: ignore
|
|
|
|
scale_mode: bpy.props.EnumProperty(
|
|
name = "Scale Mode",
|
|
items = [
|
|
('NUM', "Scale Size", "Scale UV with specific number."),
|
|
('REF', "Ref. Point", "Scale UV with Reference Point feature."),
|
|
],
|
|
default = 'NUM'
|
|
) # type: ignore
|
|
|
|
scale_number: bpy.props.FloatProperty(
|
|
name = "Scale Size",
|
|
description = "The size which will be applied for scale.",
|
|
min = 0,
|
|
soft_min = 0, soft_max = 5,
|
|
default = 5.0,
|
|
step = 10,
|
|
precision = 1,
|
|
) # type: ignore
|
|
|
|
reference_point: bpy.props.IntProperty(
|
|
name = "Reference Point",
|
|
description = "The references point of UV.\nIt's U component will be set to the number specified by Reference Point UV.\nThis point index is related to the start point of reference edge.",
|
|
min = 2, # 0 and 1 is invalid. we can not order the reference edge to be set on the outside of uv axis
|
|
soft_min = 2, soft_max = 3,
|
|
default = 2,
|
|
) # type: ignore
|
|
|
|
reference_uv: bpy.props.FloatProperty(
|
|
name = "Reference Point UV",
|
|
description = "The U component which should be applied to references point in UV.",
|
|
soft_min = 0, soft_max = 1,
|
|
default = 0.5,
|
|
step = 10,
|
|
precision = 2,
|
|
) # type: ignore
|
|
|
|
@classmethod
|
|
def poll(cls, context):
|
|
obj = bpy.context.active_object
|
|
if obj is None:
|
|
return False
|
|
if obj.type != 'MESH':
|
|
return False
|
|
if obj.mode != 'EDIT':
|
|
return False
|
|
return True
|
|
|
|
def execute(self, context):
|
|
# construct scale data
|
|
flatten_method_: FlattenMethod
|
|
match(self.flatten_method):
|
|
case 'RAW': flatten_method_ = FlattenMethod.Raw
|
|
case 'FLOOR': flatten_method_ = FlattenMethod.Floor
|
|
case 'WOOD': flatten_method_ = FlattenMethod.Wood
|
|
case _: return {'CANCELLED'}
|
|
|
|
flatten_param_: FlattenParam
|
|
if self.scale_mode == 'NUM':
|
|
flatten_param_ = FlattenParam.create_by_scale_size(self.reference_edge, flatten_method_, self.scale_number)
|
|
else:
|
|
flatten_param_ = FlattenParam.create_by_ref_point(self.reference_edge, flatten_method_, self.reference_point, self.reference_uv)
|
|
if not flatten_param_.is_valid():
|
|
return {'CANCELLED'}
|
|
|
|
# do flatten uv and report
|
|
failed: int = _flatten_uv_wrapper(bpy.context.active_object.data, flatten_param_)
|
|
if failed != 0:
|
|
print(f'[Flatten UV] {failed} faces are not be processed correctly because process failed.')
|
|
return {'FINISHED'}
|
|
|
|
def draw(self, context):
|
|
layout = self.layout
|
|
layout.emboss = 'NORMAL'
|
|
layout.label(text = "Flatten Method")
|
|
sublayout = layout.row()
|
|
sublayout.prop(self, "flatten_method", expand = True)
|
|
layout.prop(self, "reference_edge")
|
|
|
|
layout.separator()
|
|
layout.label(text = "Scale Mode")
|
|
sublayout = layout.row()
|
|
sublayout.prop(self, "scale_mode", expand = True)
|
|
|
|
layout.separator()
|
|
layout.label(text = "Scale Config")
|
|
if self.scale_mode == 'NUM':
|
|
layout.prop(self, "scale_number")
|
|
else:
|
|
layout.prop(self, "reference_point")
|
|
layout.prop(self, "reference_uv")
|
|
|
|
#region BMesh Visitor Helper
|
|
|
|
def _set_face_vertex_uv(face: bmesh.types.BMFace, uv_layer: bmesh.types.BMLayerItem, idx: int, uv: UTIL_virtools_types.ConstVxVector2) -> None:
|
|
"""
|
|
Help function to set UV data for face.
|
|
|
|
@param face[in] The face to be set.
|
|
@param uv_layer[in] The corresponding uv layer. Hint: it was gotten from BMesh.loops.layers.uv.verify()
|
|
@param idx[in] The index of trying setting vertex.
|
|
@param uv[in] The set UV data
|
|
"""
|
|
face.loops[idx][uv_layer].uv = uv
|
|
|
|
def _get_face_vertex_uv(face: bmesh.types.BMFace, uv_layer: bmesh.types.BMLayerItem, idx: int) -> UTIL_virtools_types.ConstVxVector2:
|
|
"""
|
|
Help function to get UV data for face.
|
|
|
|
@param face[in] The face to be set.
|
|
@param uv_layer[in] The corresponding uv layer. Hint: it was gotten from BMesh.loops.layers.uv.verify()
|
|
@param idx[in] The index of trying setting vertex.
|
|
@return The UV data
|
|
"""
|
|
v: mathutils.Vector = face.loops[idx][uv_layer].uv
|
|
return (v[0], v[1])
|
|
|
|
def _get_face_vertex_pos(face: bmesh.types.BMFace, idx: int) -> UTIL_virtools_types.ConstVxVector3:
|
|
"""
|
|
Help function to get vertex position from face by provided index.
|
|
No index overflow checker. Caller must make sure the provided index is not overflow.
|
|
|
|
@param face[in] Bmesh face struct.
|
|
@param idx[in] The index of trying getting vertex.
|
|
@return The gotten vertex position.
|
|
"""
|
|
v: mathutils.Vector = face.loops[idx].vert.co
|
|
return (v[0], v[1], v[2])
|
|
|
|
def _circular_clamp_index(v: int, vmax: int) -> int:
|
|
"""
|
|
Circular clamp face vertex index.
|
|
Used by _real_flatten_uv.
|
|
|
|
@param v[in] The index to clamp
|
|
@param vmax[in] The count of used face vertex. At least 3.
|
|
@return The circular clamped value ranging from 0 to vmax.
|
|
"""
|
|
return v % vmax
|
|
|
|
#endregion
|
|
|
|
#region Real Worker Functions
|
|
|
|
def _flatten_uv_wrapper(mesh: bpy.types.Mesh, flatten_param: FlattenParam) -> int:
|
|
# create bmesh modifier
|
|
bm: bmesh.types.BMesh = bmesh.from_edit_mesh(mesh)
|
|
# use verify() to make sure there is a uv layer to write data
|
|
# verify() will return existing one or create one if no layer existing.
|
|
uv_layers: bmesh.types.BMLayerCollection = bm.loops.layers.uv
|
|
uv_layer: bmesh.types.BMLayerItem = uv_layers.verify()
|
|
|
|
# invoke core
|
|
failed: int
|
|
match(flatten_param.mFlattenMethod):
|
|
case FlattenMethod.Raw:
|
|
failed = _raw_flatten_uv(bm, uv_layer, flatten_param)
|
|
case FlattenMethod.Floor | FlattenMethod.Wood:
|
|
failed = _specific_flatten_uv(bm, uv_layer, flatten_param)
|
|
|
|
# show the updates in the viewport
|
|
bmesh.update_edit_mesh(mesh)
|
|
# return process result
|
|
return failed
|
|
|
|
def _raw_flatten_uv(bm: bmesh.types.BMesh, uv_layer: bmesh.types.BMLayerItem, flatten_param: FlattenParam) -> int:
|
|
# failed counter
|
|
failed: int = 0
|
|
# raw flatten uv always use zero offset
|
|
c_ZeroOffset: mathutils.Vector = mathutils.Vector((0, 0))
|
|
|
|
# process each face
|
|
face: bmesh.types.BMFace
|
|
for face in bm.faces:
|
|
# check requirement
|
|
# skip not selected face
|
|
if not face.select: continue
|
|
# skip the face that not fufill reference edge requirement
|
|
edge_count: int = len(face.loops)
|
|
if flatten_param.mReferenceEdge >= edge_count:
|
|
failed += 1
|
|
continue
|
|
# skip ref point overflow when using ref point mode
|
|
if flatten_param.mUseRefPoint and (flatten_param.mReferencePoint >= edge_count):
|
|
failed += 1
|
|
continue
|
|
|
|
# process this face
|
|
_flatten_face_uv(face, uv_layer, flatten_param, c_ZeroOffset)
|
|
|
|
return failed
|
|
|
|
def _specific_flatten_uv(bm: bmesh.types.BMesh, uv_layer: bmesh.types.BMLayerItem, flatten_param: FlattenParam) -> int:
|
|
# failed counter
|
|
failed: int = 0
|
|
|
|
# reset selected face's tag to False to indicate these face is not processed
|
|
face: bmesh.types.BMFace
|
|
for face in bm.faces:
|
|
if face.select:
|
|
face.tag = False
|
|
|
|
# prepare a function to check whether face is valid
|
|
def face_validator(f: bmesh.types.BMFace) -> bool:
|
|
# specify using external failed counter
|
|
nonlocal failed
|
|
# a valid face must be
|
|
# selected, not processed, and should be rectangle
|
|
# we check selection first
|
|
# then check tag. if tag == True, it mean this face has been processed.
|
|
if not f.select or f.tag: return False
|
|
# now this face can be processed, we need check whether it is rectangle
|
|
if len(f.loops) == 4:
|
|
# yes it is rectangle
|
|
return True
|
|
else:
|
|
# no, it is not rectangle
|
|
# we need mark its tag as True to prevent any possible recursive checking
|
|
# because it definately can not be processed in future.
|
|
f.tag = True
|
|
# then we report this face failed
|
|
failed = failed + 1
|
|
# return false
|
|
return False
|
|
# prepare face getter which will be used when stack is empty
|
|
face_getter: typing.Iterator[bmesh.types.BMFace] = filter(
|
|
lambda f: face_validator(f),
|
|
typing.cast(typing.Iterable[bmesh.types.BMFace], bm.faces)
|
|
)
|
|
# prepare a neighbor getter.
|
|
# this function will help finding the valid neighbor of specified face
|
|
# `loop_idx` is the index of loop getting from given face.
|
|
# `exp_loop_idx` is the expected index of neighbor loop in neighbor face.
|
|
def face_neighbor_getter(f: bmesh.types.BMFace, loop_idx: int, exp_loop_idx: int) -> bmesh.types.BMFace | None:
|
|
# get this face's loop
|
|
this_loop: bmesh.types.BMLoop = f.loops[loop_idx]
|
|
# check requirement for this loop
|
|
# this edge should be shared exactly by 2 faces.
|
|
#
|
|
# Manifold: For a mesh to be manifold, every edge must have exactly two adjacent faces.
|
|
# Ref: https://github.com/rlguy/Blender-FLIP-Fluids/wiki/Manifold-Meshes
|
|
if not this_loop.edge.is_manifold:
|
|
return None
|
|
|
|
# get neighbor loop
|
|
neighbor_loop: bmesh.types.BMLoop = this_loop.link_loop_radial_next
|
|
# get neighbor face and check it
|
|
neighbor_f: bmesh.types.BMFace = neighbor_loop.face
|
|
if not face_validator(neighbor_f):
|
|
return None
|
|
|
|
# check expected neighbor index
|
|
if neighbor_loop != neighbor_f.loops[exp_loop_idx]:
|
|
return None
|
|
|
|
# all check done, return face
|
|
return neighbor_f
|
|
# prepare face stack.
|
|
# NOTE: all face inserted into this stack should be marked as processed first.
|
|
face_stack: collections.deque[tuple[bmesh.types.BMFace, mathutils.Vector, NeighborType]] = collections.deque()
|
|
# start process faces
|
|
while True:
|
|
# if no item in face stack, pick one from face getter and mark it as processed
|
|
# if face getter failed, it mean that no more face, exit.
|
|
if len(face_stack) == 0:
|
|
try:
|
|
f = next(face_getter)
|
|
f.tag = True
|
|
face_stack.append((f, mathutils.Vector((0, 0)), NeighborType.Forward))
|
|
except StopIteration:
|
|
break
|
|
|
|
# pick one face from stack and process it
|
|
(face, face_offset, face_backward) = face_stack.pop()
|
|
_flatten_face_uv(face, uv_layer, flatten_param, face_offset)
|
|
|
|
# get 4 point uv because we need use them later
|
|
# NOTE: 4 uv point following this order
|
|
# +-----------+
|
|
# |(1) |(2)
|
|
# | |
|
|
# |(0) |(3)
|
|
# +-----------+
|
|
# So the loop index is
|
|
# (1)
|
|
# +---------->+
|
|
# ^ |
|
|
# |(0) |(2)
|
|
# | v
|
|
# +<----------+
|
|
# (3)
|
|
ind0 = _circular_clamp_index(flatten_param.mReferenceEdge, 4)
|
|
ind1 = _circular_clamp_index(flatten_param.mReferenceEdge + 1, 4)
|
|
ind2 = _circular_clamp_index(flatten_param.mReferenceEdge + 2, 4)
|
|
ind3 = _circular_clamp_index(flatten_param.mReferenceEdge + 3, 4)
|
|
uv0 = _get_face_vertex_uv(face, uv_layer, ind0)
|
|
uv1 = _get_face_vertex_uv(face, uv_layer, ind1)
|
|
uv2 = _get_face_vertex_uv(face, uv_layer, ind2)
|
|
uv3 = _get_face_vertex_uv(face, uv_layer, ind3)
|
|
|
|
# correct rectangle shape when in wood mode
|
|
if flatten_param.mFlattenMethod == FlattenMethod.Wood:
|
|
# make its uv geometry to rectangle from a trapezium.
|
|
# get the average U factor from its right edge.
|
|
# and make top + bottom uv edge be parallel with U axis by using left edge V factor.
|
|
average_u = (uv2[0] + uv3[0]) / 2
|
|
uv2 = (average_u, uv1[1])
|
|
uv3 = (average_u, uv0[1])
|
|
_set_face_vertex_uv(face, uv_layer, ind2, uv2)
|
|
_set_face_vertex_uv(face, uv_layer, ind3, uv3)
|
|
|
|
# do backward correction
|
|
# in backward mode, we can not know how many space backward one will occupied,
|
|
# thus we can not pass it by offset because we don't know the offset,
|
|
# so we only can patch it after computing its real size.
|
|
if face_backward != NeighborType.Forward:
|
|
if face_backward == NeighborType.VerticalBackward:
|
|
# in vertical backward patch,
|
|
# minus self height for all uv.
|
|
self_height: float = uv1[1] - uv0[1]
|
|
uv0 = (uv0[0], uv0[1] - self_height)
|
|
uv1 = (uv1[0], uv1[1] - self_height)
|
|
uv2 = (uv2[0], uv2[1] - self_height)
|
|
uv3 = (uv3[0], uv3[1] - self_height)
|
|
if face_backward == NeighborType.HorizontalBackward:
|
|
# in horizontal backward patch, minus self width for all uv.
|
|
# because we have process rectangle shape issue before this,
|
|
# so we can pick uv2 or uv3 to get width directly.
|
|
self_width: float = uv3[0] - uv0[0]
|
|
uv0 = (uv0[0] - self_width, uv0[1])
|
|
uv1 = (uv1[0] - self_width, uv1[1])
|
|
uv2 = (uv2[0] - self_width, uv2[1])
|
|
uv3 = (uv3[0] - self_width, uv3[1])
|
|
# set modified uv to geometry
|
|
_set_face_vertex_uv(face, uv_layer, ind0, uv0)
|
|
_set_face_vertex_uv(face, uv_layer, ind1, uv1)
|
|
_set_face_vertex_uv(face, uv_layer, ind2, uv2)
|
|
_set_face_vertex_uv(face, uv_layer, ind3, uv3)
|
|
|
|
# insert horizontal neighbor only in wood mode.
|
|
if flatten_param.mFlattenMethod == FlattenMethod.Wood:
|
|
# insert right neighbor (forward)
|
|
r_face: bmesh.types.BMFace | None = face_neighbor_getter(face, ind2, ind0)
|
|
if r_face is not None:
|
|
# mark it as processed
|
|
r_face.tag = True
|
|
# insert face with extra horizontal offset.
|
|
face_stack.append((r_face, mathutils.Vector((uv3[0], uv3[1])), NeighborType.Forward))
|
|
# insert left neighbor (backward)
|
|
# swap the index param of neighbor getter
|
|
l_face: bmesh.types.BMFace | None = face_neighbor_getter(face, ind0, ind2)
|
|
if l_face is not None:
|
|
l_face.tag = True
|
|
# pass origin pos, and order backward correction
|
|
face_stack.append((l_face, mathutils.Vector((uv0[0], uv0[1])), NeighborType.HorizontalBackward))
|
|
|
|
# insert vertical neighbor
|
|
# insert top neighbor (forward)
|
|
t_face: bmesh.types.BMFace | None = face_neighbor_getter(face, ind1, ind3)
|
|
if t_face is not None:
|
|
# mark it as processed
|
|
t_face.tag = True
|
|
# insert face with extra vertical offset.
|
|
face_stack.append((t_face, mathutils.Vector((uv1[0], uv1[1])), NeighborType.Forward))
|
|
# insert bottom neighbor (backward)
|
|
# swap the index param of neighbor getter
|
|
b_face: bmesh.types.BMFace | None = face_neighbor_getter(face, ind3, ind1)
|
|
if b_face is not None:
|
|
b_face.tag = True
|
|
# pass origin pos, and order backward correction
|
|
face_stack.append((b_face, mathutils.Vector((uv0[0], uv0[1])), NeighborType.VerticalBackward))
|
|
|
|
return failed
|
|
|
|
def _flatten_face_uv(face: bmesh.types.BMFace, uv_layer: bmesh.types.BMLayerItem, flatten_param: FlattenParam, offset: mathutils.Vector) -> None:
|
|
# ========== get correct new corrdinate system ==========
|
|
# yyc mark:
|
|
# we use 3 points located in this face to calc
|
|
# the base of this local uv corredinate system.
|
|
# however if this 3 points are set in a line,
|
|
# this method will cause a error, zero vector error.
|
|
#
|
|
# if z axis is zero vector, we will try using face normal instead
|
|
# to try getting correct data.
|
|
#
|
|
# zero base is not important. because it will not raise any math exception
|
|
# just a weird uv. user will notice this problem.
|
|
|
|
# get point
|
|
all_point: int = len(face.loops)
|
|
pidx_start: int = _circular_clamp_index(flatten_param.mReferenceEdge, all_point)
|
|
p1: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, pidx_start))
|
|
p2: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, _circular_clamp_index(flatten_param.mReferenceEdge + 1, all_point)))
|
|
p3: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, _circular_clamp_index(flatten_param.mReferenceEdge + 2, all_point)))
|
|
|
|
# get y axis
|
|
new_y_axis: mathutils.Vector = p2 - p1
|
|
new_y_axis.normalize()
|
|
vec1: mathutils.Vector = p3 - p2
|
|
vec1.normalize()
|
|
|
|
# get z axis
|
|
new_z_axis: mathutils.Vector = vec1.cross(new_y_axis)
|
|
new_z_axis.normalize()
|
|
# if z is a zero vector, use face normal instead
|
|
# please note we need use inverted face normal.
|
|
if not any(round(v, 7) for v in new_z_axis):
|
|
new_z_axis = typing.cast(mathutils.Vector, face.normal).normalized()
|
|
new_z_axis.negate()
|
|
|
|
# get x axis
|
|
new_x_axis: mathutils.Vector = new_y_axis.cross(new_z_axis)
|
|
new_x_axis.normalize()
|
|
|
|
# construct rebase matrix
|
|
origin_base: mathutils.Matrix = mathutils.Matrix((
|
|
(1.0, 0, 0),
|
|
(0, 1.0, 0),
|
|
(0, 0, 1.0)
|
|
))
|
|
origin_base.invert_safe()
|
|
new_base: mathutils.Matrix = mathutils.Matrix((
|
|
(new_x_axis.x, new_y_axis.x, new_z_axis.x),
|
|
(new_x_axis.y, new_y_axis.y, new_z_axis.y),
|
|
(new_x_axis.z, new_y_axis.z, new_z_axis.z)
|
|
))
|
|
transition_matrix: mathutils.Matrix = typing.cast(mathutils.Matrix, origin_base @ new_base)
|
|
transition_matrix.invert_safe()
|
|
|
|
# ===== rescale correction =====
|
|
rescale: float = 0.0
|
|
if flatten_param.mUseRefPoint:
|
|
# ref point method
|
|
# get reference point from loop
|
|
pidx_refp: int = _circular_clamp_index(pidx_start + flatten_param.mReferencePoint, all_point)
|
|
pref: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, pidx_refp)) - p1
|
|
|
|
# calc its U component
|
|
vec_u: float = abs(typing.cast(mathutils.Vector, transition_matrix @ pref).x)
|
|
if round(vec_u, 7) == 0.0:
|
|
rescale = 1.0 # fallback. rescale = 1 will not affect anything
|
|
else:
|
|
rescale = flatten_param.mReferenceUV / vec_u
|
|
else:
|
|
# scale size method
|
|
# apply rescale directly
|
|
rescale = 1.0 / flatten_param.mScaleSize
|
|
|
|
# construct matrix
|
|
# we only rescale U component (X component)
|
|
# and constant 5.0 scale for V component (Y component)
|
|
scale_matrix: mathutils.Matrix = mathutils.Matrix((
|
|
(rescale, 0, 0),
|
|
(0, 1.0 / 5.0, 0),
|
|
(0, 0, 1.0)
|
|
))
|
|
# order can not be changed. we order do transition first, then scale it.
|
|
rescale_transition_matrix: mathutils.Matrix = typing.cast(mathutils.Matrix, scale_matrix @ transition_matrix)
|
|
|
|
# ========== process each face ==========
|
|
for idx in range(all_point):
|
|
# compute uv
|
|
pp: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, idx)) - p1
|
|
ppuv: mathutils.Vector = typing.cast(mathutils.Vector, rescale_transition_matrix @ pp)
|
|
# u and v component has been calculated properly. no extra process needed.
|
|
# just get abs for the u component
|
|
ppuv.x = abs(ppuv.x)
|
|
# add offset and assign to uv
|
|
_set_face_vertex_uv(face, uv_layer, idx, (ppuv.x + offset.x, ppuv.y + offset.y))
|
|
|
|
#endregion
|
|
|
|
def register() -> None:
|
|
bpy.utils.register_class(BBP_OT_flatten_uv)
|
|
|
|
def unregister() -> None:
|
|
bpy.utils.unregister_class(BBP_OT_flatten_uv)
|