BallanceBlenderHelper/bbp_ng/OP_UV_flatten_uv.py
yyc12345 8ec101e1f1 update flatten uv
- add `failed` counter for special flatten uv.
- ignore invalid face when checking them to prevent potential recursive checking.
2024-01-22 22:25:04 +08:00

512 lines
20 KiB
Python

import bpy, mathutils, bmesh
import typing, enum, collections
from . import UTIL_virtools_types, UTIL_functions
#region Param Struct
class FlattenMethod(enum.IntEnum):
# The legacy flatten uv mode. Only just do space convertion for each individual faces.
Raw = enum.auto()
# The floor specific flatten uv.
# This method will make sure the continuity in V axis in uv when flatten uv.
# Only support rectangle faces.
Floor = enum.auto()
# The wood specific flatten uv.
# Similar floor, but it will force all horizontal uv edge parallel with U axis.
# Not only V axis, but also U axis' continuity will been make sure.
Wood = enum.auto()
class FlattenParam():
mReferenceEdge: int
mUseRefPoint: bool
mFlattenMethod: FlattenMethod
mScaleSize: float
mReferencePoint: int
mReferenceUV: float
def __init__(self, use_ref_point: bool, reference_edge: int, flatten_method: FlattenMethod) -> None:
self.mReferenceEdge = reference_edge
self.mUseRefPoint = use_ref_point
self.mFlattenMethod = flatten_method
def is_valid(self) -> bool:
"""Check whether flatten params is valid"""
if self.mUseRefPoint:
# ref point should be great than 1.
# because 0 and 1 is located at the same line with reference edge.
return self.mReferencePoint > 1
else:
# zero scale size make no sense.
return round(self.mScaleSize, 7) != 0.0
@classmethod
def create_by_scale_size(cls, reference_edge: int, flatten_method: FlattenMethod, scale_num: float):
val = cls(False, reference_edge, flatten_method)
val.mScaleSize = scale_num
return val
@classmethod
def create_by_ref_point(cls, reference_edge: int, flatten_method: FlattenMethod, ref_point: int, ref_point_uv: float):
val = cls(True, reference_edge, flatten_method)
val.mReferencePoint = ref_point
val.mReferenceUV = ref_point_uv
return val
#endregion
class BBP_OT_flatten_uv(bpy.types.Operator):
"""Flatten selected face UV. Only works for convex face"""
bl_idname = "bbp.flatten_uv"
bl_label = "Flatten UV"
bl_options = {'REGISTER', 'UNDO'}
reference_edge: bpy.props.IntProperty(
name = "Reference Edge",
description = "The references edge of UV.\nIt will be placed in V axis.",
min = 0,
soft_min = 0, soft_max = 3,
default = 0,
) # type: ignore
flatten_method: bpy.props.EnumProperty(
name = "Flatten Method",
items = [
('RAW', "Raw", "Legacy flatten UV."),
('FLOOR', "Floor", "Floor specific flatten UV."),
('WOOD', "Wood", "Wood specific flatten UV."),
],
default = 'RAW'
) # type: ignore
scale_mode: bpy.props.EnumProperty(
name = "Scale Mode",
items = [
('NUM', "Scale Size", "Scale UV with specific number."),
('REF', "Ref. Point", "Scale UV with Reference Point feature."),
],
default = 'NUM'
) # type: ignore
scale_number: bpy.props.FloatProperty(
name = "Scale Size",
description = "The size which will be applied for scale.",
min = 0,
soft_min = 0, soft_max = 5,
default = 5.0,
step = 10,
precision = 1,
) # type: ignore
reference_point: bpy.props.IntProperty(
name = "Reference Point",
description = "The references point of UV.\nIt's U component will be set to the number specified by Reference Point UV.\nThis point index is related to the start point of reference edge.",
min = 2, # 0 and 1 is invalid. we can not order the reference edge to be set on the outside of uv axis
soft_min = 2, soft_max = 3,
default = 2,
) # type: ignore
reference_uv: bpy.props.FloatProperty(
name = "Reference Point UV",
description = "The U component which should be applied to references point in UV.",
soft_min = 0, soft_max = 1,
default = 0.5,
step = 10,
precision = 2,
) # type: ignore
@classmethod
def poll(cls, context):
obj = bpy.context.active_object
if obj is None:
return False
if obj.type != 'MESH':
return False
if obj.mode != 'EDIT':
return False
return True
def execute(self, context):
# construct scale data
flatten_method_: FlattenMethod
match(self.flatten_method):
case 'RAW': flatten_method_ = FlattenMethod.Raw
case 'FLOOR': flatten_method_ = FlattenMethod.Floor
case 'WOOD': flatten_method_ = FlattenMethod.Wood
case _: return {'CANCELLED'}
flatten_param_: FlattenParam
if self.scale_mode == 'NUM':
flatten_param_ = FlattenParam.create_by_scale_size(self.reference_edge, flatten_method_, self.scale_number)
else:
flatten_param_ = FlattenParam.create_by_ref_point(self.reference_edge, flatten_method_, self.reference_point, self.reference_uv)
if not flatten_param_.is_valid():
return {'CANCELLED'}
# do flatten uv and report
failed: int = _flatten_uv_wrapper(bpy.context.active_object.data, flatten_param_)
if failed != 0:
print(f'[Flatten UV] {failed} faces are not be processed correctly because process failed.')
return {'FINISHED'}
def draw(self, context):
layout = self.layout
layout.emboss = 'NORMAL'
layout.label(text = "Flatten Method")
sublayout = layout.row()
sublayout.prop(self, "flatten_method", expand = True)
layout.prop(self, "reference_edge")
layout.separator()
layout.label(text = "Scale Mode")
sublayout = layout.row()
sublayout.prop(self, "scale_mode", expand = True)
layout.separator()
layout.label(text = "Scale Config")
if self.scale_mode == 'NUM':
layout.prop(self, "scale_number")
else:
layout.prop(self, "reference_point")
layout.prop(self, "reference_uv")
#region BMesh Visitor Helper
def _set_face_vertex_uv(face: bmesh.types.BMFace, uv_layer: bmesh.types.BMLayerItem, idx: int, uv: UTIL_virtools_types.ConstVxVector2) -> None:
"""
Help function to set UV data for face.
@param face[in] The face to be set.
@param uv_layer[in] The corresponding uv layer. Hint: it was gotten from BMesh.loops.layers.uv.verify()
@param idx[in] The index of trying setting vertex.
@param uv[in] The set UV data
"""
face.loops[idx][uv_layer].uv = uv
def _get_face_vertex_uv(face: bmesh.types.BMFace, uv_layer: bmesh.types.BMLayerItem, idx: int) -> UTIL_virtools_types.ConstVxVector2:
"""
Help function to get UV data for face.
@param face[in] The face to be set.
@param uv_layer[in] The corresponding uv layer. Hint: it was gotten from BMesh.loops.layers.uv.verify()
@param idx[in] The index of trying setting vertex.
@return The UV data
"""
v: mathutils.Vector = face.loops[idx][uv_layer].uv
return (v[0], v[1])
def _get_face_vertex_pos(face: bmesh.types.BMFace, idx: int) -> UTIL_virtools_types.ConstVxVector3:
"""
Help function to get vertex position from face by provided index.
No index overflow checker. Caller must make sure the provided index is not overflow.
@param face[in] Bmesh face struct.
@param idx[in] The index of trying getting vertex.
@return The gotten vertex position.
"""
v: mathutils.Vector = face.loops[idx].vert.co
return (v[0], v[1], v[2])
def _circular_clamp_index(v: int, vmax: int) -> int:
"""
Circular clamp face vertex index.
Used by _real_flatten_uv.
@param v[in] The index to clamp
@param vmax[in] The count of used face vertex. At least 3.
@return The circular clamped value ranging from 0 to vmax.
"""
return v % vmax
#endregion
#region Real Worker Functions
def _flatten_uv_wrapper(mesh: bpy.types.Mesh, flatten_param: FlattenParam) -> int:
# create bmesh modifier
bm: bmesh.types.BMesh = bmesh.from_edit_mesh(mesh)
# use verify() to make sure there is a uv layer to write data
# verify() will return existing one or create one if no layer existing.
uv_layers: bmesh.types.BMLayerCollection = bm.loops.layers.uv
uv_layer: bmesh.types.BMLayerItem = uv_layers.verify()
# invoke core
failed: int
match(flatten_param.mFlattenMethod):
case FlattenMethod.Raw:
failed = _raw_flatten_uv(bm, uv_layer, flatten_param)
case FlattenMethod.Floor | FlattenMethod.Wood:
failed = _specific_flatten_uv(bm, uv_layer, flatten_param)
# show the updates in the viewport
bmesh.update_edit_mesh(mesh)
# return process result
return failed
def _raw_flatten_uv(bm: bmesh.types.BMesh, uv_layer: bmesh.types.BMLayerItem, flatten_param: FlattenParam) -> int:
# failed counter
failed: int = 0
# raw flatten uv always use zero offset
c_ZeroOffset: mathutils.Vector = mathutils.Vector((0, 0))
# process each face
face: bmesh.types.BMFace
for face in bm.faces:
# check requirement
# skip not selected face
if not face.select: continue
# skip the face that not fufill reference edge requirement
edge_count: int = len(face.loops)
if flatten_param.mReferenceEdge >= edge_count:
failed += 1
continue
# skip ref point overflow when using ref point mode
if flatten_param.mUseRefPoint and (flatten_param.mReferencePoint >= edge_count):
failed += 1
continue
# process this face
_flatten_face_uv(face, uv_layer, flatten_param, c_ZeroOffset)
return failed
def _specific_flatten_uv(bm: bmesh.types.BMesh, uv_layer: bmesh.types.BMLayerItem, flatten_param: FlattenParam) -> int:
# failed counter
failed: int = 0
# reset selected face's tag to False to indicate these face is not processed
face: bmesh.types.BMFace
for face in bm.faces:
if face.select:
face.tag = False
# prepare a function to check whether face is valid
def face_validator(f: bmesh.types.BMFace) -> bool:
# specify use external failed counter
nonlocal failed
# a valid face must be
# selected, not processed, and should be rectangle
# we check selection first
if not f.select or f.tag: return False
# then check tag. if tag == True, it mean this face has been processed.
if f.tag: return False
# now this face can be processed, we need check whether it is rectangle
if len(f.loops) == 4:
# yes it is rectangle
return True
else:
# no, it is not rectangle
# we need mark it tag as True to prevent any possible recursive checking
# because it definately can not be processed in future.
f.tag = True
# then we report this face failed
failed = failed + 1
# return false
return False
# prepare face getter which will be used when stack is empty
face_getter: typing.Iterator[bmesh.types.BMFace] = filter(
lambda f: face_validator(f),
typing.cast(typing.Iterable[bmesh.types.BMFace], bm.faces)
)
# prepare a neighbor getter.
# this function will help finding the valid neighbor of specified face
# `loop_idx` is the index of loop getting from given face.
# `exp_loop_idx` is the expected index of neighbor loop in neighbor face.
def face_neighbor_getter(f: bmesh.types.BMFace, loop_idx: int, exp_loop_idx: int) -> bmesh.types.BMFace | None:
# get this face's loop
this_loop: bmesh.types.BMLoop = f.loops[loop_idx]
# check requirement for this loop
# this edge should be shared exactly by 2 faces.
#
# Manifold: For a mesh to be manifold, every edge must have exactly two adjacent faces.
# Ref: https://github.com/rlguy/Blender-FLIP-Fluids/wiki/Manifold-Meshes
if not this_loop.edge.is_manifold:
return None
# get neighbor loop
neighbor_loop: bmesh.types.BMLoop = this_loop.link_loop_radial_next
# get neighbor face and check it
neighbor_f: bmesh.types.BMFace = neighbor_loop.face
if not face_validator(neighbor_f):
return None
# check expected neighbor index
if neighbor_loop != neighbor_f.loops[exp_loop_idx]:
return None
# all check done, return face
return neighbor_f
# prepare face stack.
# NOTE: all face inserted into this stack should be marked as processed first.
face_stack: collections.deque[tuple[bmesh.types.BMFace, mathutils.Vector]] = collections.deque()
# start process faces
while True:
# if no item in face stack, pick one from face getter and mark it as processed
# if face getter failed, it mean that no more face, exit.
if len(face_stack) == 0:
try:
f = next(face_getter)
f.tag = True
face_stack.append((f, mathutils.Vector((0, 0))))
except StopIteration:
break
# pick one face from stack and process it
(face, face_offset) = face_stack.pop()
_flatten_face_uv(face, uv_layer, flatten_param, face_offset)
# get 4 point uv because we need use them later
# NOTE: 4 uv point following this order
# +-----------+
# |(1) |(2)
# | |
# |(0) |(3)
# +-----------+
# So the loop index is
# (1)
# +---------->+
# ^ |
# |(0) |(2)
# | v
# +<----------+
# (3)
ind0 = _circular_clamp_index(flatten_param.mReferenceEdge, 4)
ind1 = _circular_clamp_index(flatten_param.mReferenceEdge + 1, 4)
ind2 = _circular_clamp_index(flatten_param.mReferenceEdge + 2, 4)
ind3 = _circular_clamp_index(flatten_param.mReferenceEdge + 3, 4)
uv0 = _get_face_vertex_uv(face, uv_layer, ind0)
uv1 = _get_face_vertex_uv(face, uv_layer, ind1)
uv2 = _get_face_vertex_uv(face, uv_layer, ind2)
uv3 = _get_face_vertex_uv(face, uv_layer, ind3)
# insert horizontal neighbor if we are wood flatten uv
if flatten_param.mFlattenMethod == FlattenMethod.Wood:
# first, make its uv geometry to rectangle from a trapezium.
# get the average U factor from its right edge.
# and make top + bottom uv edge be parallel with U axis by using left edge V factor.
average_u = (uv2[0] + uv3[0]) / 2
uv2 = (average_u, uv1[1])
uv3 = (average_u, uv0[1])
_set_face_vertex_uv(face, uv_layer, ind2, uv2)
_set_face_vertex_uv(face, uv_layer, ind3, uv3)
# then, try getting its right neighbor
r_face: bmesh.types.BMFace | None = face_neighbor_getter(face, ind2, ind0)
if r_face is not None:
# mark it as processed
r_face.tag = True
# insert face with extra horizontal offset.
face_stack.append((r_face, mathutils.Vector((uv3[0], uv3[1]))))
# insert vertical neighbor
t_face: bmesh.types.BMFace | None = face_neighbor_getter(face, ind1, ind3)
if t_face is not None:
# mark it as processed
t_face.tag = True
# insert face with extra vertical offset.
face_stack.append((t_face, mathutils.Vector((uv1[0], uv1[1]))))
return failed
def _flatten_face_uv(face: bmesh.types.BMFace, uv_layer: bmesh.types.BMLayerItem, flatten_param: FlattenParam, offset: mathutils.Vector) -> None:
# ========== get correct new corrdinate system ==========
# yyc mark:
# we use 3 points located in this face to calc
# the base of this local uv corredinate system.
# however if this 3 points are set in a line,
# this method will cause a error, zero vector error.
#
# if z axis is zero vector, we will try using face normal instead
# to try getting correct data.
#
# zero base is not important. because it will not raise any math exception
# just a weird uv. user will notice this problem.
# get point
all_point: int = len(face.loops)
pidx_start: int = _circular_clamp_index(flatten_param.mReferenceEdge, all_point)
p1: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, pidx_start))
p2: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, _circular_clamp_index(flatten_param.mReferenceEdge + 1, all_point)))
p3: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, _circular_clamp_index(flatten_param.mReferenceEdge + 2, all_point)))
# get y axis
new_y_axis: mathutils.Vector = p2 - p1
new_y_axis.normalize()
vec1: mathutils.Vector = p3 - p2
vec1.normalize()
# get z axis
new_z_axis: mathutils.Vector = new_y_axis.cross(vec1)
new_z_axis.normalize()
if not any(round(v, 7) for v in new_z_axis): # if z is a zero vector, use face normal instead
new_z_axis = typing.cast(mathutils.Vector, face.normal).normalized()
# get x axis
new_x_axis: mathutils.Vector = new_y_axis.cross(new_z_axis)
new_x_axis.normalize()
# construct rebase matrix
origin_base: mathutils.Matrix = mathutils.Matrix((
(1.0, 0, 0),
(0, 1.0, 0),
(0, 0, 1.0)
))
origin_base.invert_safe()
new_base: mathutils.Matrix = mathutils.Matrix((
(new_x_axis.x, new_y_axis.x, new_z_axis.x),
(new_x_axis.y, new_y_axis.y, new_z_axis.y),
(new_x_axis.z, new_y_axis.z, new_z_axis.z)
))
transition_matrix: mathutils.Matrix = typing.cast(mathutils.Matrix, origin_base @ new_base)
transition_matrix.invert_safe()
# ===== rescale correction =====
rescale: float = 0.0
if flatten_param.mUseRefPoint:
# ref point method
# get reference point from loop
pidx_refp: int = _circular_clamp_index(pidx_start + flatten_param.mReferencePoint, all_point)
pref: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, pidx_refp)) - p1
# calc its U component
vec_u: float = abs(typing.cast(mathutils.Vector, transition_matrix @ pref).x)
if round(vec_u, 7) == 0.0:
rescale = 1.0 # fallback. rescale = 1 will not affect anything
else:
rescale = flatten_param.mReferenceUV / vec_u
else:
# scale size method
# apply rescale directly
rescale = 1.0 / flatten_param.mScaleSize
# construct matrix
# we only rescale U component (X component)
# and constant 5.0 scale for V component (Y component)
scale_matrix: mathutils.Matrix = mathutils.Matrix((
(rescale, 0, 0),
(0, 1.0 / 5.0, 0),
(0, 0, 1.0)
))
# order can not be changed. we order do transition first, then scale it.
rescale_transition_matrix: mathutils.Matrix = typing.cast(mathutils.Matrix, scale_matrix @ transition_matrix)
# ========== process each face ==========
for idx in range(all_point):
# compute uv
pp: mathutils.Vector = mathutils.Vector(_get_face_vertex_pos(face, idx)) - p1
ppuv: mathutils.Vector = typing.cast(mathutils.Vector, rescale_transition_matrix @ pp)
# u and v component has been calculated properly. no extra process needed.
# just get abs for the u component
ppuv.x = abs(ppuv.x)
# add offset and assign to uv
_set_face_vertex_uv(face, uv_layer, idx, (ppuv.x + offset.x, ppuv.y + offset.y))
#endregion
def register() -> None:
bpy.utils.register_class(BBP_OT_flatten_uv)
def unregister() -> None:
bpy.utils.unregister_class(BBP_OT_flatten_uv)