#include "BMap.hpp" namespace BMap { #pragma region BMMeshTransition BMMeshTransition::TransitionVertex::TransitionVertex( const LibCmo::VxMath::VxVector3& vec, const LibCmo::VxMath::VxVector3& norm, const LibCmo::VxMath::VxVector2& uv) : m_Vertex(vec), m_Norm(norm), m_UV(uv) {} BMMeshTransition::TransitionFace::TransitionFace(LibCmo::CKDWORD _i1, LibCmo::CKDWORD _i2, LibCmo::CKDWORD _i3, LibCmo::CKDWORD mtl_id) : m_Idx1(_i1), m_Idx2(_i2), m_Idx3(_i3), m_MtlSlotIdx(mtl_id) {} bool BMMeshTransition::TransitionVertexCompare::operator()(const TransitionVertex& lhs, const TransitionVertex& rhs) const { if (auto cmp = std::memcmp(&lhs.m_Vertex, &rhs.m_Vertex, sizeof(LibCmo::VxMath::VxVector3)); cmp != 0) return cmp < 0; if (auto cmp = std::memcmp(&lhs.m_Norm, &rhs.m_Norm, sizeof(LibCmo::VxMath::VxVector3)); cmp != 0) return cmp < 0; return std::memcmp(&lhs.m_UV, &rhs.m_UV, sizeof(LibCmo::VxMath::VxVector2)) < 0; } BMMeshTransition::BMMeshTransition() : m_IsVertexOK(false), m_IsNormalOK(false), m_IsUVOK(false), m_IsFaceOK(false), m_IsMtlSlotOK(false), m_IsParsed(false), m_Vertexs(), m_Normals(), m_UVs(), m_MtlSlots(), m_FaceVertexs(), m_FaceNormals(), m_FaceUVs(), m_FaceMtlSlotIdxs(), m_ProcVertexs(), m_ProcFaces(), m_ProcDupRemover() {} BMMeshTransition::~BMMeshTransition() {} void BMMeshTransition::PrepareVertexCount(LibCmo::CKDWORD count) { if (m_IsParsed) return; m_Vertexs.resize(count); m_IsVertexOK = true; } LibCmo::VxMath::VxVector3* BMMeshTransition::PrepareVertex() { if (m_IsParsed || !m_IsVertexOK) return nullptr; return m_Vertexs.data(); } void BMMeshTransition::PrepareNormalCount(LibCmo::CKDWORD count) { if (m_IsParsed) return; m_Normals.resize(count); m_IsNormalOK = true; } LibCmo::VxMath::VxVector3* BMMeshTransition::PrepareNormal() { if (m_IsParsed || !m_IsNormalOK) return nullptr; return m_Normals.data(); } void BMMeshTransition::PrepareUVCount(LibCmo::CKDWORD count) { if (m_IsParsed) return; m_UVs.resize(count); m_IsUVOK = true; } LibCmo::VxMath::VxVector2* BMMeshTransition::PrepareUV() { if (m_IsParsed || !m_IsUVOK) return nullptr; return m_UVs.data(); } void BMMeshTransition::PrepareMtlSlotCount(LibCmo::CKDWORD count) { if (m_IsParsed) return; m_MtlSlots.resize(count, nullptr); m_IsMtlSlotOK = true; } LibCmo::CK2::ObjImpls::CKMaterial** BMMeshTransition::PrepareMtlSlot() { if (m_IsParsed || !m_IsMtlSlotOK) return nullptr; return m_MtlSlots.data(); } void BMMeshTransition::PrepareFaceCount(LibCmo::CKDWORD count) { if (m_IsParsed) return; m_FaceVertexs.resize(count * 3); m_FaceNormals.resize(count * 3); m_FaceUVs.resize(count * 3); m_FaceMtlSlotIdxs.resize(count); m_IsFaceOK = true; } LibCmo::CKDWORD* BMMeshTransition::PrepareFaceVertexIndices() { if (m_IsParsed || !m_IsFaceOK) return nullptr; return m_FaceVertexs.data(); } LibCmo::CKDWORD* BMMeshTransition::PrepareFaceNormalIndices() { if (m_IsParsed || !m_IsFaceOK) return nullptr; return m_FaceVertexs.data(); } LibCmo::CKDWORD* BMMeshTransition::PrepareFaceUVIndices() { if (m_IsParsed || !m_IsFaceOK) return nullptr; return m_FaceVertexs.data(); } LibCmo::CKDWORD* BMMeshTransition::PrepareFaceMtlSlot() { if (m_IsParsed || !m_IsFaceOK) return nullptr; return m_FaceVertexs.data(); } bool BMMeshTransition::Parse(LibCmo::CK2::ObjImpls::CKMesh* write_into_mesh) { if (m_IsParsed || write_into_mesh == nullptr) return false; if (!m_IsVertexOK || !m_IsNormalOK || !m_IsUVOK || !m_IsFaceOK || !m_IsMtlSlotOK) return false; m_IsParsed = true; // do parse DoRealParse(); // check vertex overflow if (m_ProcVertexs.size() > std::numeric_limits::max()) { return false; } // check mtl slot overflow if (m_MtlSlots.size() > std::numeric_limits::max()) { return false; } // apply to mesh ApplyToMesh(write_into_mesh); return true; } void BMMeshTransition::DoRealParse() { // reserve vector to prevent extra mem alloc // use the most bad situation to reserve size_t face_size = m_FaceMtlSlotIdxs.size(); m_ProcVertexs.reserve(face_size * 3); m_ProcFaces.reserve(face_size); // iterate face for (size_t faceid = 0; faceid < face_size; ++faceid) { LibCmo::CKDWORD idx[3]; for (int j = 0; j < 3; ++j) { // create one first TransitionVertex tvec( m_Vertexs[m_FaceVertexs[faceid * 3 + j]], m_Normals[m_FaceVertexs[faceid * 3 + j]], m_UVs[m_FaceVertexs[faceid * 3 + j]] ); // try insert it auto insert_result = m_ProcDupRemover.try_emplace(tvec, static_cast(m_ProcVertexs.size())); // get the new inserted index or existed index. idx[j] = insert_result.first->second; // if insert successfully, append to proc vertexs if (insert_result.second) { m_ProcVertexs.emplace_back(tvec); } } // create face m_ProcFaces.emplace_back(idx[0], idx[1], idx[2], m_FaceMtlSlotIdxs[faceid]); } } void BMMeshTransition::ApplyToMesh(LibCmo::CK2::ObjImpls::CKMesh* write_into_mesh) { LibCmo::CKDWORD vec_count = static_cast(m_ProcVertexs.size()), face_count = static_cast(m_ProcFaces.size()), mtl_count = static_cast(m_MtlSlots.size()); write_into_mesh->CleanMesh(); // write vertex write_into_mesh->SetVertexCount(vec_count); LibCmo::VxMath::VxCopyStructure( vec_count, write_into_mesh->GetVertexPositions(), CKSizeof(LibCmo::VxMath::VxVector3), CKSizeof(LibCmo::VxMath::VxVector3), &m_ProcVertexs.data()->m_Vertex, CKSizeof(TransitionVertex) ); LibCmo::VxMath::VxCopyStructure( vec_count, write_into_mesh->GetVertexNormals(), CKSizeof(LibCmo::VxMath::VxVector3), CKSizeof(LibCmo::VxMath::VxVector3), &m_ProcVertexs.data()->m_Norm, CKSizeof(TransitionVertex) ); LibCmo::VxMath::VxCopyStructure( vec_count, write_into_mesh->GetVertexUVs(), CKSizeof(LibCmo::VxMath::VxVector2), CKSizeof(LibCmo::VxMath::VxVector2), &m_ProcVertexs.data()->m_UV, CKSizeof(TransitionVertex) ); // write face write_into_mesh->SetFaceCount(face_count); auto pIndices = write_into_mesh->GetFaceIndices(); auto pMtlIdx = write_into_mesh->GetFaceMaterialSlotIndexs(); for (LibCmo::CKDWORD i = 0; i < face_count; ++i) { *(pIndices++) = static_cast(m_ProcFaces[i].m_Idx1); *(pIndices++) = static_cast(m_ProcFaces[i].m_Idx2); *(pIndices++) = static_cast(m_ProcFaces[i].m_Idx3); *(pMtlIdx++) = static_cast(m_ProcFaces[i].m_MtlSlotIdx); } // set mtl slot write_into_mesh->SetMaterialSlotCount(mtl_count); auto pMtlSlot = write_into_mesh->GetMaterialSlots(); for (LibCmo::CKDWORD i = 0; i < mtl_count; ++i) { *(pMtlSlot++) = m_MtlSlots[i]; } } #pragma endregion #pragma region BMfile BMFile::BMFile(LibCmo::CKSTRING temp_folder, LibCmo::CKSTRING texture_folder, LibCmo::CKDWORD encoding_count, LibCmo::CKSTRING encodings[], bool is_reader) : m_IsReader(is_reader), m_IsFailed(false) { m_Context = new LibCmo::CK2::CKContext(); // set temp folder and texture folder auto pm = m_Context->GetPathManager(); m_IsFailed = m_IsFailed || !pm->AddPath(texture_folder); m_IsFailed = m_IsFailed || !pm->SetTempFolder(temp_folder); // set encoding LibCmo::XContainer::XArray cache; for (LibCmo::CKDWORD i = 0; i < encoding_count; ++i) { if (encodings[i] != nullptr) cache.emplace_back(encodings[i]); } m_Context->SetEncoding(cache); } BMFile::~BMFile() { delete m_Context; } bool BMFile::IsFailed() { return m_IsFailed; } bool BMFile::Load(LibCmo::CKSTRING filename) { return false; } bool BMFile::Save(LibCmo::CKSTRING filename, LibCmo::CKINT compress_level) { return false; } #define VISITOR_IMPL(namepart, cidpart) \ LibCmo::CKDWORD BMFile::Get ## namepart ## Count() { \ if (!m_IsReader) return 0; \ return static_cast(m_Obj ## namepart ## s.size()); \ } \ LibCmo::CK2::ObjImpls::CK ## namepart * BMFile::Get ## namepart (LibCmo::CKDWORD idx) { \ if (!m_IsReader || idx >= m_Obj ## namepart ## s.size()) return nullptr; \ return m_Obj ## namepart ## s[idx]; \ } \ LibCmo::CK2::ObjImpls::CK ## namepart * BMFile::Create ## namepart (LibCmo::CKSTRING name) { \ if (m_IsReader) return nullptr; \ LibCmo::CK2::ObjImpls::CK ## namepart * obj = static_cast( \ m_Context->CreateObject(LibCmo::CK2::CK_CLASSID::CKCID_ ## cidpart, name) \ ); \ if (obj != nullptr) m_Obj ## namepart ## s.emplace_back(obj); \ return obj; \ } VISITOR_IMPL(Group, GROUP) VISITOR_IMPL(3dObject, 3DOBJECT) VISITOR_IMPL(Mesh, MESH) VISITOR_IMPL(Material, MATERIAL) VISITOR_IMPL(Texture, TEXTURE) #undef VISITOR_IMPL #pragma endregion }