diff --git a/stb_dxt.h b/stb_dxt.h new file mode 100644 index 0000000..bec7279 --- /dev/null +++ b/stb_dxt.h @@ -0,0 +1,624 @@ +// stb_dxt.h - v1.04 - DXT1/DXT5 compressor - public domain +// original by fabian "ryg" giesen - ported to C by stb +// use '#define STB_DXT_IMPLEMENTATION' before including to create the implementation +// +// USAGE: +// call stb_compress_dxt_block() for every block (you must pad) +// source should be a 4x4 block of RGBA data in row-major order; +// A is ignored if you specify alpha=0; you can turn on dithering +// and "high quality" using mode. +// +// version history: +// v1.04 - (ryg) default to no rounding bias for lerped colors (as per S3TC/DX10 spec); +// single color match fix (allow for inexact color interpolation); +// optimal DXT5 index finder; "high quality" mode that runs multiple refinement steps. +// v1.03 - (stb) endianness support +// v1.02 - (stb) fix alpha encoding bug +// v1.01 - (stb) fix bug converting to RGB that messed up quality, thanks ryg & cbloom +// v1.00 - (stb) first release + +#ifndef STB_INCLUDE_STB_DXT_H +#define STB_INCLUDE_STB_DXT_H + +// compression mode (bitflags) +#define STB_DXT_NORMAL 0 +#define STB_DXT_DITHER 1 // use dithering. dubious win. never use for normal maps and the like! +#define STB_DXT_HIGHQUAL 2 // high quality mode, does two refinement steps instead of 1. ~30-40% slower. + +void stb_compress_dxt_block(unsigned char *dest, const unsigned char *src, int alpha, int mode); +#define STB_COMPRESS_DXT_BLOCK + +#ifdef STB_DXT_IMPLEMENTATION + +// configuration options for DXT encoder. set them in the project/makefile or just define +// them at the top. + +// STB_DXT_USE_ROUNDING_BIAS +// use a rounding bias during color interpolation. this is closer to what "ideal" +// interpolation would do but doesn't match the S3TC/DX10 spec. old versions (pre-1.03) +// implicitly had this turned on. +// +// in case you're targeting a specific type of hardware (e.g. console programmers): +// NVidia and Intel GPUs (as of 2010) as well as DX9 ref use DXT decoders that are closer +// to STB_DXT_USE_ROUNDING_BIAS. AMD/ATI, S3 and DX10 ref are closer to rounding with no bias. +// you also see "(a*5 + b*3) / 8" on some old GPU designs. +// #define STB_DXT_USE_ROUNDING_BIAS + +#include +#include +#include // memset + +static unsigned char stb__Expand5[32]; +static unsigned char stb__Expand6[64]; +static unsigned char stb__OMatch5[256][2]; +static unsigned char stb__OMatch6[256][2]; +static unsigned char stb__QuantRBTab[256+16]; +static unsigned char stb__QuantGTab[256+16]; + +static int stb__Mul8Bit(int a, int b) +{ + int t = a*b + 128; + return (t + (t >> 8)) >> 8; +} + +static void stb__From16Bit(unsigned char *out, unsigned short v) +{ + int rv = (v & 0xf800) >> 11; + int gv = (v & 0x07e0) >> 5; + int bv = (v & 0x001f) >> 0; + + out[0] = stb__Expand5[rv]; + out[1] = stb__Expand6[gv]; + out[2] = stb__Expand5[bv]; + out[3] = 0; +} + +static unsigned short stb__As16Bit(int r, int g, int b) +{ + return (stb__Mul8Bit(r,31) << 11) + (stb__Mul8Bit(g,63) << 5) + stb__Mul8Bit(b,31); +} + +// linear interpolation at 1/3 point between a and b, using desired rounding type +static int stb__Lerp13(int a, int b) +{ +#ifdef STB_DXT_USE_ROUNDING_BIAS + // with rounding bias + return a + stb__Mul8Bit(b-a, 0x55); +#else + // without rounding bias + // replace "/ 3" by "* 0xaaab) >> 17" if your compiler sucks or you really need every ounce of speed. + return (2*a + b) / 3; +#endif +} + +// lerp RGB color +static void stb__Lerp13RGB(unsigned char *out, unsigned char *p1, unsigned char *p2) +{ + out[0] = stb__Lerp13(p1[0], p2[0]); + out[1] = stb__Lerp13(p1[1], p2[1]); + out[2] = stb__Lerp13(p1[2], p2[2]); +} + +/****************************************************************************/ + +// compute table to reproduce constant colors as accurately as possible +static void stb__PrepareOptTable(unsigned char *Table,const unsigned char *expand,int size) +{ + int i,mn,mx; + for (i=0;i<256;i++) { + int bestErr = 256; + for (mn=0;mn> 4)]; + ep1[0] = bp[ 0] - dp[ 0]; + dp[ 4] = quant[bp[ 4] + ((7*ep1[0] + 3*ep2[2] + 5*ep2[1] + ep2[0]) >> 4)]; + ep1[1] = bp[ 4] - dp[ 4]; + dp[ 8] = quant[bp[ 8] + ((7*ep1[1] + 3*ep2[3] + 5*ep2[2] + ep2[1]) >> 4)]; + ep1[2] = bp[ 8] - dp[ 8]; + dp[12] = quant[bp[12] + ((7*ep1[2] + 5*ep2[3] + ep2[2]) >> 4)]; + ep1[3] = bp[12] - dp[12]; + bp += 16; + dp += 16; + et = ep1, ep1 = ep2, ep2 = et; // swap + } + } +} + +// The color matching function +static unsigned int stb__MatchColorsBlock(unsigned char *block, unsigned char *color,int dither) +{ + unsigned int mask = 0; + int dirr = color[0*4+0] - color[1*4+0]; + int dirg = color[0*4+1] - color[1*4+1]; + int dirb = color[0*4+2] - color[1*4+2]; + int dots[16]; + int stops[4]; + int i; + int c0Point, halfPoint, c3Point; + + for(i=0;i<16;i++) + dots[i] = block[i*4+0]*dirr + block[i*4+1]*dirg + block[i*4+2]*dirb; + + for(i=0;i<4;i++) + stops[i] = color[i*4+0]*dirr + color[i*4+1]*dirg + color[i*4+2]*dirb; + + // think of the colors as arranged on a line; project point onto that line, then choose + // next color out of available ones. we compute the crossover points for "best color in top + // half"/"best in bottom half" and then the same inside that subinterval. + // + // relying on this 1d approximation isn't always optimal in terms of euclidean distance, + // but it's very close and a lot faster. + // http://cbloomrants.blogspot.com/2008/12/12-08-08-dxtc-summary.html + + c0Point = (stops[1] + stops[3]) >> 1; + halfPoint = (stops[3] + stops[2]) >> 1; + c3Point = (stops[2] + stops[0]) >> 1; + + if(!dither) { + // the version without dithering is straightforward + for (i=15;i>=0;i--) { + int dot = dots[i]; + mask <<= 2; + + if(dot < halfPoint) + mask |= (dot < c0Point) ? 1 : 3; + else + mask |= (dot < c3Point) ? 2 : 0; + } + } else { + // with floyd-steinberg dithering + int err[8],*ep1 = err,*ep2 = err+4; + int *dp = dots, y; + + c0Point <<= 4; + halfPoint <<= 4; + c3Point <<= 4; + for(i=0;i<8;i++) + err[i] = 0; + + for(y=0;y<4;y++) + { + int dot,lmask,step; + + dot = (dp[0] << 4) + (3*ep2[1] + 5*ep2[0]); + if(dot < halfPoint) + step = (dot < c0Point) ? 1 : 3; + else + step = (dot < c3Point) ? 2 : 0; + ep1[0] = dp[0] - stops[step]; + lmask = step; + + dot = (dp[1] << 4) + (7*ep1[0] + 3*ep2[2] + 5*ep2[1] + ep2[0]); + if(dot < halfPoint) + step = (dot < c0Point) ? 1 : 3; + else + step = (dot < c3Point) ? 2 : 0; + ep1[1] = dp[1] - stops[step]; + lmask |= step<<2; + + dot = (dp[2] << 4) + (7*ep1[1] + 3*ep2[3] + 5*ep2[2] + ep2[1]); + if(dot < halfPoint) + step = (dot < c0Point) ? 1 : 3; + else + step = (dot < c3Point) ? 2 : 0; + ep1[2] = dp[2] - stops[step]; + lmask |= step<<4; + + dot = (dp[3] << 4) + (7*ep1[2] + 5*ep2[3] + ep2[2]); + if(dot < halfPoint) + step = (dot < c0Point) ? 1 : 3; + else + step = (dot < c3Point) ? 2 : 0; + ep1[3] = dp[3] - stops[step]; + lmask |= step<<6; + + dp += 4; + mask |= lmask << (y*8); + { int *et = ep1; ep1 = ep2; ep2 = et; } // swap + } + } + + return mask; +} + +// The color optimization function. (Clever code, part 1) +static void stb__OptimizeColorsBlock(unsigned char *block, unsigned short *pmax16, unsigned short *pmin16) +{ + int mind = 0x7fffffff,maxd = -0x7fffffff; + unsigned char *minp, *maxp; + double magn; + int v_r,v_g,v_b; + static const int nIterPower = 4; + float covf[6],vfr,vfg,vfb; + + // determine color distribution + int cov[6]; + int mu[3],min[3],max[3]; + int ch,i,iter; + + for(ch=0;ch<3;ch++) + { + const unsigned char *bp = ((const unsigned char *) block) + ch; + int muv,minv,maxv; + + muv = minv = maxv = bp[0]; + for(i=4;i<64;i+=4) + { + muv += bp[i]; + if (bp[i] < minv) minv = bp[i]; + else if (bp[i] > maxv) maxv = bp[i]; + } + + mu[ch] = (muv + 8) >> 4; + min[ch] = minv; + max[ch] = maxv; + } + + // determine covariance matrix + for (i=0;i<6;i++) + cov[i] = 0; + + for (i=0;i<16;i++) + { + int r = block[i*4+0] - mu[0]; + int g = block[i*4+1] - mu[1]; + int b = block[i*4+2] - mu[2]; + + cov[0] += r*r; + cov[1] += r*g; + cov[2] += r*b; + cov[3] += g*g; + cov[4] += g*b; + cov[5] += b*b; + } + + // convert covariance matrix to float, find principal axis via power iter + for(i=0;i<6;i++) + covf[i] = cov[i] / 255.0f; + + vfr = (float) (max[0] - min[0]); + vfg = (float) (max[1] - min[1]); + vfb = (float) (max[2] - min[2]); + + for(iter=0;iter magn) magn = fabs(vfg); + if (fabs(vfb) > magn) magn = fabs(vfb); + + if(magn < 4.0f) { // too small, default to luminance + v_r = 299; // JPEG YCbCr luma coefs, scaled by 1000. + v_g = 587; + v_b = 114; + } else { + magn = 512.0 / magn; + v_r = (int) (vfr * magn); + v_g = (int) (vfg * magn); + v_b = (int) (vfb * magn); + } + + // Pick colors at extreme points + for(i=0;i<16;i++) + { + int dot = block[i*4+0]*v_r + block[i*4+1]*v_g + block[i*4+2]*v_b; + + if (dot < mind) { + mind = dot; + minp = block+i*4; + } + + if (dot > maxd) { + maxd = dot; + maxp = block+i*4; + } + } + + *pmax16 = stb__As16Bit(maxp[0],maxp[1],maxp[2]); + *pmin16 = stb__As16Bit(minp[0],minp[1],minp[2]); +} + +static int stb__sclamp(float y, int p0, int p1) +{ + int x = (int) y; + if (x < p0) return p0; + if (x > p1) return p1; + return x; +} + +// The refinement function. (Clever code, part 2) +// Tries to optimize colors to suit block contents better. +// (By solving a least squares system via normal equations+Cramer's rule) +static int stb__RefineBlock(unsigned char *block, unsigned short *pmax16, unsigned short *pmin16, unsigned int mask) +{ + static const int w1Tab[4] = { 3,0,2,1 }; + static const int prods[4] = { 0x090000,0x000900,0x040102,0x010402 }; + // ^some magic to save a lot of multiplies in the accumulating loop... + // (precomputed products of weights for least squares system, accumulated inside one 32-bit register) + + float frb,fg; + unsigned short oldMin, oldMax, min16, max16; + int i, akku = 0, xx,xy,yy; + int At1_r,At1_g,At1_b; + int At2_r,At2_g,At2_b; + unsigned int cm = mask; + + oldMin = *pmin16; + oldMax = *pmax16; + + if((mask ^ (mask<<2)) < 4) // all pixels have the same index? + { + // yes, linear system would be singular; solve using optimal + // single-color match on average color + int r = 8, g = 8, b = 8; + for (i=0;i<16;++i) { + r += block[i*4+0]; + g += block[i*4+1]; + b += block[i*4+2]; + } + + r >>= 4; g >>= 4; b >>= 4; + + max16 = (stb__OMatch5[r][0]<<11) | (stb__OMatch6[g][0]<<5) | stb__OMatch5[b][0]; + min16 = (stb__OMatch5[r][1]<<11) | (stb__OMatch6[g][1]<<5) | stb__OMatch5[b][1]; + } else { + At1_r = At1_g = At1_b = 0; + At2_r = At2_g = At2_b = 0; + for (i=0;i<16;++i,cm>>=2) { + int step = cm&3; + int w1 = w1Tab[step]; + int r = block[i*4+0]; + int g = block[i*4+1]; + int b = block[i*4+2]; + + akku += prods[step]; + At1_r += w1*r; + At1_g += w1*g; + At1_b += w1*b; + At2_r += r; + At2_g += g; + At2_b += b; + } + + At2_r = 3*At2_r - At1_r; + At2_g = 3*At2_g - At1_g; + At2_b = 3*At2_b - At1_b; + + // extract solutions and decide solvability + xx = akku >> 16; + yy = (akku >> 8) & 0xff; + xy = (akku >> 0) & 0xff; + + frb = 3.0f * 31.0f / 255.0f / (xx*yy - xy*xy); + fg = frb * 63.0f / 31.0f; + + // solve. + max16 = stb__sclamp((At1_r*yy - At2_r*xy)*frb+0.5f,0,31) << 11; + max16 |= stb__sclamp((At1_g*yy - At2_g*xy)*fg +0.5f,0,63) << 5; + max16 |= stb__sclamp((At1_b*yy - At2_b*xy)*frb+0.5f,0,31) << 0; + + min16 = stb__sclamp((At2_r*xx - At1_r*xy)*frb+0.5f,0,31) << 11; + min16 |= stb__sclamp((At2_g*xx - At1_g*xy)*fg +0.5f,0,63) << 5; + min16 |= stb__sclamp((At2_b*xx - At1_b*xy)*frb+0.5f,0,31) << 0; + } + + *pmin16 = min16; + *pmax16 = max16; + return oldMin != min16 || oldMax != max16; +} + +// Color block compression +static void stb__CompressColorBlock(unsigned char *dest, unsigned char *block, int mode) +{ + unsigned int mask; + int i; + int dither; + int refinecount; + unsigned short max16, min16; + unsigned char dblock[16*4],color[4*4]; + + dither = mode & STB_DXT_DITHER; + refinecount = (mode & STB_DXT_HIGHQUAL) ? 2 : 1; + + // check if block is constant + for (i=1;i<16;i++) + if (((unsigned int *) block)[i] != ((unsigned int *) block)[0]) + break; + + if(i == 16) { // constant color + int r = block[0], g = block[1], b = block[2]; + mask = 0xaaaaaaaa; + max16 = (stb__OMatch5[r][0]<<11) | (stb__OMatch6[g][0]<<5) | stb__OMatch5[b][0]; + min16 = (stb__OMatch5[r][1]<<11) | (stb__OMatch6[g][1]<<5) | stb__OMatch5[b][1]; + } else { + // first step: compute dithered version for PCA if desired + if(dither) + stb__DitherBlock(dblock,block); + + // second step: pca+map along principal axis + stb__OptimizeColorsBlock(dither ? dblock : block,&max16,&min16); + if (max16 != min16) { + stb__EvalColors(color,max16,min16); + mask = stb__MatchColorsBlock(block,color,dither); + } else + mask = 0; + + // third step: refine (multiple times if requested) + for (i=0;i> 8); + dest[2] = (unsigned char) (min16); + dest[3] = (unsigned char) (min16 >> 8); + dest[4] = (unsigned char) (mask); + dest[5] = (unsigned char) (mask >> 8); + dest[6] = (unsigned char) (mask >> 16); + dest[7] = (unsigned char) (mask >> 24); +} + +// Alpha block compression (this is easy for a change) +static void stb__CompressAlphaBlock(unsigned char *dest,unsigned char *src,int mode) +{ + int i,dist,bias,dist4,dist2,bits,mask; + + // find min/max color + int mn,mx; + mn = mx = src[3]; + + for (i=1;i<16;i++) + { + if (src[i*4+3] < mn) mn = src[i*4+3]; + else if (src[i*4+3] > mx) mx = src[i*4+3]; + } + + // encode them + ((unsigned char *)dest)[0] = mx; + ((unsigned char *)dest)[1] = mn; + dest += 2; + + // determine bias and emit color indices + // given the choice of mx/mn, these indices are optimal: + // http://fgiesen.wordpress.com/2009/12/15/dxt5-alpha-block-index-determination/ + dist = mx-mn; + dist4 = dist*4; + dist2 = dist*2; + bias = (dist < 8) ? (dist - 1) : (dist/2 + 2); + bias -= mn * 7; + bits = 0,mask=0; + + for (i=0;i<16;i++) { + int a = src[i*4+3]*7 + bias; + int ind,t; + + // select index. this is a "linear scale" lerp factor between 0 (val=min) and 7 (val=max). + t = (a >= dist4) ? -1 : 0; ind = t & 4; a -= dist4 & t; + t = (a >= dist2) ? -1 : 0; ind += t & 2; a -= dist2 & t; + ind += (a >= dist); + + // turn linear scale into DXT index (0/1 are extremal pts) + ind = -ind & 7; + ind ^= (2 > ind); + + // write index + mask |= ind << bits; + if((bits += 3) >= 8) { + *dest++ = mask; + mask >>= 8; + bits -= 8; + } + } +} + +static void stb__InitDXT() +{ + int i; + for(i=0;i<32;i++) + stb__Expand5[i] = (i<<3)|(i>>2); + + for(i=0;i<64;i++) + stb__Expand6[i] = (i<<2)|(i>>4); + + for(i=0;i<256+16;i++) + { + int v = i-8 < 0 ? 0 : i-8 > 255 ? 255 : i-8; + stb__QuantRBTab[i] = stb__Expand5[stb__Mul8Bit(v,31)]; + stb__QuantGTab[i] = stb__Expand6[stb__Mul8Bit(v,63)]; + } + + stb__PrepareOptTable(&stb__OMatch5[0][0],stb__Expand5,32); + stb__PrepareOptTable(&stb__OMatch6[0][0],stb__Expand6,64); +} + +void stb_compress_dxt_block(unsigned char *dest, const unsigned char *src, int alpha, int mode) +{ + static int init=1; + if (init) { + stb__InitDXT(); + init=0; + } + + if (alpha) { + stb__CompressAlphaBlock(dest,(unsigned char*) src,mode); + dest += 8; + } + + stb__CompressColorBlock(dest,(unsigned char*) src,mode); +} +#endif // STB_DXT_IMPLEMENTATION + +#endif // STB_INCLUDE_STB_DXT_H