10348 lines
431 KiB
C
10348 lines
431 KiB
C
/* stb_image_resize2 - v2.05 - public domain image resizing
|
|
|
|
by Jeff Roberts (v2) and Jorge L Rodriguez
|
|
http://github.com/nothings/stb
|
|
|
|
Can be threaded with the extended API. SSE2, AVX, Neon and WASM SIMD support. Only
|
|
scaling and translation is supported, no rotations or shears.
|
|
|
|
COMPILING & LINKING
|
|
In one C/C++ file that #includes this file, do this:
|
|
#define STB_IMAGE_RESIZE_IMPLEMENTATION
|
|
before the #include. That will create the implementation in that file.
|
|
|
|
PORTING FROM VERSION 1
|
|
|
|
The API has changed. You can continue to use the old version of stb_image_resize.h,
|
|
which is available in the "deprecated/" directory.
|
|
|
|
If you're using the old simple-to-use API, porting is straightforward.
|
|
(For more advanced APIs, read the documentation.)
|
|
|
|
stbir_resize_uint8():
|
|
- call `stbir_resize_uint8_linear`, cast channel count to `stbir_pixel_layout`
|
|
|
|
stbir_resize_float():
|
|
- call `stbir_resize_float_linear`, cast channel count to `stbir_pixel_layout`
|
|
|
|
stbir_resize_uint8_srgb():
|
|
- function name is unchanged
|
|
- cast channel count to `stbir_pixel_layout`
|
|
- above is sufficient unless your image has alpha and it's not RGBA/BGRA
|
|
- in that case, follow the below instructions for stbir_resize_uint8_srgb_edgemode
|
|
|
|
stbir_resize_uint8_srgb_edgemode()
|
|
- switch to the "medium complexity" API
|
|
- stbir_resize(), very similar API but a few more parameters:
|
|
- pixel_layout: cast channel count to `stbir_pixel_layout`
|
|
- data_type: STBIR_TYPE_UINT8_SRGB
|
|
- edge: unchanged (STBIR_EDGE_WRAP, etc.)
|
|
- filter: STBIR_FILTER_DEFAULT
|
|
- which channel is alpha is specified in stbir_pixel_layout, see enum for details
|
|
|
|
EASY API CALLS:
|
|
Easy API downsamples w/Mitchell filter, upsamples w/cubic interpolation, clamps to edge.
|
|
|
|
stbir_resize_uint8_srgb( input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
pixel_layout_enum )
|
|
|
|
stbir_resize_uint8_linear( input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
pixel_layout_enum )
|
|
|
|
stbir_resize_float_linear( input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
pixel_layout_enum )
|
|
|
|
If you pass NULL or zero for the output_pixels, we will allocate the output buffer
|
|
for you and return it from the function (free with free() or STBIR_FREE).
|
|
As a special case, XX_stride_in_bytes of 0 means packed continuously in memory.
|
|
|
|
API LEVELS
|
|
There are three levels of API - easy-to-use, medium-complexity and extended-complexity.
|
|
|
|
See the "header file" section of the source for API documentation.
|
|
|
|
ADDITIONAL DOCUMENTATION
|
|
|
|
MEMORY ALLOCATION
|
|
By default, we use malloc and free for memory allocation. To override the
|
|
memory allocation, before the implementation #include, add a:
|
|
|
|
#define STBIR_MALLOC(size,user_data) ...
|
|
#define STBIR_FREE(ptr,user_data) ...
|
|
|
|
Each resize makes exactly one call to malloc/free (unless you use the
|
|
extended API where you can do one allocation for many resizes). Under
|
|
address sanitizer, we do separate allocations to find overread/writes.
|
|
|
|
PERFORMANCE
|
|
This library was written with an emphasis on performance. When testing
|
|
stb_image_resize with RGBA, the fastest mode is STBIR_4CHANNEL with
|
|
STBIR_TYPE_UINT8 pixels and CLAMPed edges (which is what many other resize
|
|
libs do by default). Also, make sure SIMD is turned on of course (default
|
|
for 64-bit targets). Avoid WRAP edge mode if you want the fastest speed.
|
|
|
|
This library also comes with profiling built-in. If you define STBIR_PROFILE,
|
|
you can use the advanced API and get low-level profiling information by
|
|
calling stbir_resize_extended_profile_info() or stbir_resize_split_profile_info()
|
|
after a resize.
|
|
|
|
SIMD
|
|
Most of the routines have optimized SSE2, AVX, NEON and WASM versions.
|
|
|
|
On Microsoft compilers, we automatically turn on SIMD for 64-bit x64 and
|
|
ARM; for 32-bit x86 and ARM, you select SIMD mode by defining STBIR_SSE2 or
|
|
STBIR_NEON. For AVX and AVX2, we auto-select it by detecting the /arch:AVX
|
|
or /arch:AVX2 switches. You can also always manually turn SSE2, AVX or AVX2
|
|
support on by defining STBIR_SSE2, STBIR_AVX or STBIR_AVX2.
|
|
|
|
On Linux, SSE2 and Neon is on by default for 64-bit x64 or ARM64. For 32-bit,
|
|
we select x86 SIMD mode by whether you have -msse2, -mavx or -mavx2 enabled
|
|
on the command line. For 32-bit ARM, you must pass -mfpu=neon-vfpv4 for both
|
|
clang and GCC, but GCC also requires an additional -mfp16-format=ieee to
|
|
automatically enable NEON.
|
|
|
|
On x86 platforms, you can also define STBIR_FP16C to turn on FP16C instructions
|
|
for converting back and forth to half-floats. This is autoselected when we
|
|
are using AVX2. Clang and GCC also require the -mf16c switch. ARM always uses
|
|
the built-in half float hardware NEON instructions.
|
|
|
|
You can also tell us to use multiply-add instructions with STBIR_USE_FMA.
|
|
Because x86 doesn't always have fma, we turn it off by default to maintain
|
|
determinism across all platforms. If you don't care about non-FMA determinism
|
|
and are willing to restrict yourself to more recent x86 CPUs (around the AVX
|
|
timeframe), then fma will give you around a 15% speedup.
|
|
|
|
You can force off SIMD in all cases by defining STBIR_NO_SIMD. You can turn
|
|
off AVX or AVX2 specifically with STBIR_NO_AVX or STBIR_NO_AVX2. AVX is 10%
|
|
to 40% faster, and AVX2 is generally another 12%.
|
|
|
|
ALPHA CHANNEL
|
|
Most of the resizing functions provide the ability to control how the alpha
|
|
channel of an image is processed.
|
|
|
|
When alpha represents transparency, it is important that when combining
|
|
colors with filtering, the pixels should not be treated equally; they
|
|
should use a weighted average based on their alpha values. For example,
|
|
if a pixel is 1% opaque bright green and another pixel is 99% opaque
|
|
black and you average them, the average will be 50% opaque, but the
|
|
unweighted average and will be a middling green color, while the weighted
|
|
average will be nearly black. This means the unweighted version introduced
|
|
green energy that didn't exist in the source image.
|
|
|
|
(If you want to know why this makes sense, you can work out the math for
|
|
the following: consider what happens if you alpha composite a source image
|
|
over a fixed color and then average the output, vs. if you average the
|
|
source image pixels and then composite that over the same fixed color.
|
|
Only the weighted average produces the same result as the ground truth
|
|
composite-then-average result.)
|
|
|
|
Therefore, it is in general best to "alpha weight" the pixels when applying
|
|
filters to them. This essentially means multiplying the colors by the alpha
|
|
values before combining them, and then dividing by the alpha value at the
|
|
end.
|
|
|
|
The computer graphics industry introduced a technique called "premultiplied
|
|
alpha" or "associated alpha" in which image colors are stored in image files
|
|
already multiplied by their alpha. This saves some math when compositing,
|
|
and also avoids the need to divide by the alpha at the end (which is quite
|
|
inefficient). However, while premultiplied alpha is common in the movie CGI
|
|
industry, it is not commonplace in other industries like videogames, and most
|
|
consumer file formats are generally expected to contain not-premultiplied
|
|
colors. For example, Photoshop saves PNG files "unpremultiplied", and web
|
|
browsers like Chrome and Firefox expect PNG images to be unpremultiplied.
|
|
|
|
Note that there are three possibilities that might describe your image
|
|
and resize expectation:
|
|
|
|
1. images are not premultiplied, alpha weighting is desired
|
|
2. images are not premultiplied, alpha weighting is not desired
|
|
3. images are premultiplied
|
|
|
|
Both case #2 and case #3 require the exact same math: no alpha weighting
|
|
should be applied or removed. Only case 1 requires extra math operations;
|
|
the other two cases can be handled identically.
|
|
|
|
stb_image_resize expects case #1 by default, applying alpha weighting to
|
|
images, expecting the input images to be unpremultiplied. This is what the
|
|
COLOR+ALPHA buffer types tell the resizer to do.
|
|
|
|
When you use the pixel layouts STBIR_RGBA, STBIR_BGRA, STBIR_ARGB,
|
|
STBIR_ABGR, STBIR_RX, or STBIR_XR you are telling us that the pixels are
|
|
non-premultiplied. In these cases, the resizer will alpha weight the colors
|
|
(effectively creating the premultiplied image), do the filtering, and then
|
|
convert back to non-premult on exit.
|
|
|
|
When you use the pixel layouts STBIR_RGBA_PM, STBIR_RGBA_PM, STBIR_RGBA_PM,
|
|
STBIR_RGBA_PM, STBIR_RX_PM or STBIR_XR_PM, you are telling that the pixels
|
|
ARE premultiplied. In this case, the resizer doesn't have to do the
|
|
premultipling - it can filter directly on the input. This about twice as
|
|
fast as the non-premultiplied case, so it's the right option if your data is
|
|
already setup correctly.
|
|
|
|
When you use the pixel layout STBIR_4CHANNEL or STBIR_2CHANNEL, you are
|
|
telling us that there is no channel that represents transparency; it may be
|
|
RGB and some unrelated fourth channel that has been stored in the alpha
|
|
channel, but it is actually not alpha. No special processing will be
|
|
performed.
|
|
|
|
The difference between the generic 4 or 2 channel layouts, and the
|
|
specialized _PM versions is with the _PM versions you are telling us that
|
|
the data *is* alpha, just don't premultiply it. That's important when
|
|
using SRGB pixel formats, we need to know where the alpha is, because
|
|
it is converted linearly (rather than with the SRGB converters).
|
|
|
|
Because alpha weighting produces the same effect as premultiplying, you
|
|
even have the option with non-premultiplied inputs to let the resizer
|
|
produce a premultiplied output. Because the intially computed alpha-weighted
|
|
output image is effectively premultiplied, this is actually more performant
|
|
than the normal path which un-premultiplies the output image as a final step.
|
|
|
|
Finally, when converting both in and out of non-premulitplied space (for
|
|
example, when using STBIR_RGBA), we go to somewhat heroic measures to
|
|
ensure that areas with zero alpha value pixels get something reasonable
|
|
in the RGB values. If you don't care about the RGB values of zero alpha
|
|
pixels, you can call the stbir_set_non_pm_alpha_speed_over_quality()
|
|
function - this runs a premultiplied resize about 25% faster. That said,
|
|
when you really care about speed, using premultiplied pixels for both in
|
|
and out (STBIR_RGBA_PM, etc) much faster than both of these premultiplied
|
|
options.
|
|
|
|
PIXEL LAYOUT CONVERSION
|
|
The resizer can convert from some pixel layouts to others. When using the
|
|
stbir_set_pixel_layouts(), you can, for example, specify STBIR_RGBA
|
|
on input, and STBIR_ARGB on output, and it will re-organize the channels
|
|
during the resize. Currently, you can only convert between two pixel
|
|
layouts with the same number of channels.
|
|
|
|
DETERMINISM
|
|
We commit to being deterministic (from x64 to ARM to scalar to SIMD, etc).
|
|
This requires compiling with fast-math off (using at least /fp:precise).
|
|
Also, you must turn off fp-contracting (which turns mult+adds into fmas)!
|
|
We attempt to do this with pragmas, but with Clang, you usually want to add
|
|
-ffp-contract=off to the command line as well.
|
|
|
|
For 32-bit x86, you must use SSE and SSE2 codegen for determinism. That is,
|
|
if the scalar x87 unit gets used at all, we immediately lose determinism.
|
|
On Microsoft Visual Studio 2008 and earlier, from what we can tell there is
|
|
no way to be deterministic in 32-bit x86 (some x87 always leaks in, even
|
|
with fp:strict). On 32-bit x86 GCC, determinism requires both -msse2 and
|
|
-fpmath=sse.
|
|
|
|
Note that we will not be deterministic with float data containing NaNs -
|
|
the NaNs will propagate differently on different SIMD and platforms.
|
|
|
|
If you turn on STBIR_USE_FMA, then we will be deterministic with other
|
|
fma targets, but we will differ from non-fma targets (this is unavoidable,
|
|
because a fma isn't simply an add with a mult - it also introduces a
|
|
rounding difference compared to non-fma instruction sequences.
|
|
|
|
FLOAT PIXEL FORMAT RANGE
|
|
Any range of values can be used for the non-alpha float data that you pass
|
|
in (0 to 1, -1 to 1, whatever). However, if you are inputting float values
|
|
but *outputting* bytes or shorts, you must use a range of 0 to 1 so that we
|
|
scale back properly. The alpha channel must also be 0 to 1 for any format
|
|
that does premultiplication prior to resizing.
|
|
|
|
Note also that with float output, using filters with negative lobes, the
|
|
output filtered values might go slightly out of range. You can define
|
|
STBIR_FLOAT_LOW_CLAMP and/or STBIR_FLOAT_HIGH_CLAMP to specify the range
|
|
to clamp to on output, if that's important.
|
|
|
|
MAX/MIN SCALE FACTORS
|
|
The input pixel resolutions are in integers, and we do the internal pointer
|
|
resolution in size_t sized integers. However, the scale ratio from input
|
|
resolution to output resolution is calculated in float form. This means
|
|
the effective possible scale ratio is limited to 24 bits (or 16 million
|
|
to 1). As you get close to the size of the float resolution (again, 16
|
|
million pixels wide or high), you might start seeing float inaccuracy
|
|
issues in general in the pipeline. If you have to do extreme resizes,
|
|
you can usually do this is multiple stages (using float intermediate
|
|
buffers).
|
|
|
|
FLIPPED IMAGES
|
|
Stride is just the delta from one scanline to the next. This means you can
|
|
use a negative stride to handle inverted images (point to the final
|
|
scanline and use a negative stride). You can invert the input or output,
|
|
using negative strides.
|
|
|
|
DEFAULT FILTERS
|
|
For functions which don't provide explicit control over what filters to
|
|
use, you can change the compile-time defaults with:
|
|
|
|
#define STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_something
|
|
#define STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_something
|
|
|
|
See stbir_filter in the header-file section for the list of filters.
|
|
|
|
NEW FILTERS
|
|
A number of 1D filter kernels are supplied. For a list of supported
|
|
filters, see the stbir_filter enum. You can install your own filters by
|
|
using the stbir_set_filter_callbacks function.
|
|
|
|
PROGRESS
|
|
For interactive use with slow resize operations, you can use the the
|
|
scanline callbacks in the extended API. It would have to be a *very* large
|
|
image resample to need progress though - we're very fast.
|
|
|
|
CEIL and FLOOR
|
|
In scalar mode, the only functions we use from math.h are ceilf and floorf,
|
|
but if you have your own versions, you can define the STBIR_CEILF(v) and
|
|
STBIR_FLOORF(v) macros and we'll use them instead. In SIMD, we just use
|
|
our own versions.
|
|
|
|
ASSERT
|
|
Define STBIR_ASSERT(boolval) to override assert() and not use assert.h
|
|
|
|
FUTURE TODOS
|
|
* For polyphase integral filters, we just memcpy the coeffs to dupe
|
|
them, but we should indirect and use the same coeff memory.
|
|
* Add pixel layout conversions for sensible different channel counts
|
|
(maybe, 1->3/4, 3->4, 4->1, 3->1).
|
|
* For SIMD encode and decode scanline routines, do any pre-aligning
|
|
for bad input/output buffer alignments and pitch?
|
|
* For very wide scanlines, we should we do vertical strips to stay within
|
|
L2 cache. Maybe do chunks of 1K pixels at a time. There would be
|
|
some pixel reconversion, but probably dwarfed by things falling out
|
|
of cache. Probably also something possible with alternating between
|
|
scattering and gathering at high resize scales?
|
|
* Rewrite the coefficient generator to do many at once.
|
|
* AVX-512 vertical kernels - worried about downclocking here.
|
|
* Convert the reincludes to macros when we know they aren't changing.
|
|
* Experiment with pivoting the horizontal and always using the
|
|
vertical filters (which are faster, but perhaps not enough to overcome
|
|
the pivot cost and the extra memory touches). Need to buffer the whole
|
|
image so have to balance memory use.
|
|
* Most of our code is internally function pointers, should we compile
|
|
all the SIMD stuff always and dynamically dispatch?
|
|
|
|
CONTRIBUTORS
|
|
Jeff Roberts: 2.0 implementation, optimizations, SIMD
|
|
Martins Mozeiko: NEON simd, WASM simd, clang and GCC whisperer.
|
|
Fabian Giesen: half float and srgb converters
|
|
Sean Barrett: API design, optimizations
|
|
Jorge L Rodriguez: Original 1.0 implementation
|
|
Aras Pranckevicius: bugfixes
|
|
Nathan Reed: warning fixes for 1.0
|
|
|
|
REVISIONS
|
|
2.05 (2024-02-24) fix for 2 pixel to 1 pixel resizes with wrap (thanks Aras)
|
|
fix for output callback (thanks Julien Koenen)
|
|
2.04 (2023-11-17) fix for rare AVX bug, shadowed symbol (thanks Nikola Smiljanic).
|
|
2.03 (2023-11-01) ASAN and TSAN warnings fixed, minor tweaks.
|
|
2.00 (2023-10-10) mostly new source: new api, optimizations, simd, vertical-first, etc
|
|
(2x-5x faster without simd, 4x-12x faster with simd)
|
|
(in some cases, 20x to 40x faster - resizing to very small for example)
|
|
0.96 (2019-03-04) fixed warnings
|
|
0.95 (2017-07-23) fixed warnings
|
|
0.94 (2017-03-18) fixed warnings
|
|
0.93 (2017-03-03) fixed bug with certain combinations of heights
|
|
0.92 (2017-01-02) fix integer overflow on large (>2GB) images
|
|
0.91 (2016-04-02) fix warnings; fix handling of subpixel regions
|
|
0.90 (2014-09-17) first released version
|
|
|
|
LICENSE
|
|
See end of file for license information.
|
|
*/
|
|
|
|
#if !defined(STB_IMAGE_RESIZE_DO_HORIZONTALS) && !defined(STB_IMAGE_RESIZE_DO_VERTICALS) && !defined(STB_IMAGE_RESIZE_DO_CODERS) // for internal re-includes
|
|
|
|
#ifndef STBIR_INCLUDE_STB_IMAGE_RESIZE2_H
|
|
#define STBIR_INCLUDE_STB_IMAGE_RESIZE2_H
|
|
|
|
#include <stddef.h>
|
|
#ifdef _MSC_VER
|
|
typedef unsigned char stbir_uint8;
|
|
typedef unsigned short stbir_uint16;
|
|
typedef unsigned int stbir_uint32;
|
|
typedef unsigned __int64 stbir_uint64;
|
|
#else
|
|
#include <stdint.h>
|
|
typedef uint8_t stbir_uint8;
|
|
typedef uint16_t stbir_uint16;
|
|
typedef uint32_t stbir_uint32;
|
|
typedef uint64_t stbir_uint64;
|
|
#endif
|
|
|
|
#ifdef _M_IX86_FP
|
|
#if ( _M_IX86_FP >= 1 )
|
|
#ifndef STBIR_SSE
|
|
#define STBIR_SSE
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(_x86_64) || defined( __x86_64__ ) || defined( _M_X64 ) || defined(__x86_64) || defined(_M_AMD64) || defined(__SSE2__) || defined(STBIR_SSE) || defined(STBIR_SSE2)
|
|
#ifndef STBIR_SSE2
|
|
#define STBIR_SSE2
|
|
#endif
|
|
#if defined(__AVX__) || defined(STBIR_AVX2)
|
|
#ifndef STBIR_AVX
|
|
#ifndef STBIR_NO_AVX
|
|
#define STBIR_AVX
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#if defined(__AVX2__) || defined(STBIR_AVX2)
|
|
#ifndef STBIR_NO_AVX2
|
|
#ifndef STBIR_AVX2
|
|
#define STBIR_AVX2
|
|
#endif
|
|
#if defined( _MSC_VER ) && !defined(__clang__)
|
|
#ifndef STBIR_FP16C // FP16C instructions are on all AVX2 cpus, so we can autoselect it here on microsoft - clang needs -m16c
|
|
#define STBIR_FP16C
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#ifdef __F16C__
|
|
#ifndef STBIR_FP16C // turn on FP16C instructions if the define is set (for clang and gcc)
|
|
#define STBIR_FP16C
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ ) || defined(_M_ARM) || (__ARM_NEON_FP & 4) != 0 && __ARM_FP16_FORMAT_IEEE != 0
|
|
#ifndef STBIR_NEON
|
|
#define STBIR_NEON
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(_M_ARM)
|
|
#ifdef STBIR_USE_FMA
|
|
#undef STBIR_USE_FMA // no FMA for 32-bit arm on MSVC
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(__wasm__) && defined(__wasm_simd128__)
|
|
#ifndef STBIR_WASM
|
|
#define STBIR_WASM
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef STBIRDEF
|
|
#ifdef STB_IMAGE_RESIZE_STATIC
|
|
#define STBIRDEF static
|
|
#else
|
|
#ifdef __cplusplus
|
|
#define STBIRDEF extern "C"
|
|
#else
|
|
#define STBIRDEF extern
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
//// start "header file" ///////////////////////////////////////////////////
|
|
//
|
|
// Easy-to-use API:
|
|
//
|
|
// * stride is the offset between successive rows of image data
|
|
// in memory, in bytes. specify 0 for packed continuously in memory
|
|
// * colorspace is linear or sRGB as specified by function name
|
|
// * Uses the default filters
|
|
// * Uses edge mode clamped
|
|
// * returned result is 1 for success or 0 in case of an error.
|
|
|
|
|
|
// stbir_pixel_layout specifies:
|
|
// number of channels
|
|
// order of channels
|
|
// whether color is premultiplied by alpha
|
|
// for back compatibility, you can cast the old channel count to an stbir_pixel_layout
|
|
typedef enum
|
|
{
|
|
STBIR_1CHANNEL = 1,
|
|
STBIR_2CHANNEL = 2,
|
|
STBIR_RGB = 3, // 3-chan, with order specified (for channel flipping)
|
|
STBIR_BGR = 0, // 3-chan, with order specified (for channel flipping)
|
|
STBIR_4CHANNEL = 5,
|
|
|
|
STBIR_RGBA = 4, // alpha formats, where alpha is NOT premultiplied into color channels
|
|
STBIR_BGRA = 6,
|
|
STBIR_ARGB = 7,
|
|
STBIR_ABGR = 8,
|
|
STBIR_RA = 9,
|
|
STBIR_AR = 10,
|
|
|
|
STBIR_RGBA_PM = 11, // alpha formats, where alpha is premultiplied into color channels
|
|
STBIR_BGRA_PM = 12,
|
|
STBIR_ARGB_PM = 13,
|
|
STBIR_ABGR_PM = 14,
|
|
STBIR_RA_PM = 15,
|
|
STBIR_AR_PM = 16,
|
|
|
|
STBIR_RGBA_NO_AW = 11, // alpha formats, where NO alpha weighting is applied at all!
|
|
STBIR_BGRA_NO_AW = 12, // these are just synonyms for the _PM flags (which also do
|
|
STBIR_ARGB_NO_AW = 13, // no alpha weighting). These names just make it more clear
|
|
STBIR_ABGR_NO_AW = 14, // for some folks).
|
|
STBIR_RA_NO_AW = 15,
|
|
STBIR_AR_NO_AW = 16,
|
|
|
|
} stbir_pixel_layout;
|
|
|
|
//===============================================================
|
|
// Simple-complexity API
|
|
//
|
|
// If output_pixels is NULL (0), then we will allocate the buffer and return it to you.
|
|
//--------------------------------
|
|
|
|
STBIRDEF unsigned char * stbir_resize_uint8_srgb( const unsigned char *input_pixels , int input_w , int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_type );
|
|
|
|
STBIRDEF unsigned char * stbir_resize_uint8_linear( const unsigned char *input_pixels , int input_w , int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_type );
|
|
|
|
STBIRDEF float * stbir_resize_float_linear( const float *input_pixels , int input_w , int input_h, int input_stride_in_bytes,
|
|
float *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_type );
|
|
//===============================================================
|
|
|
|
//===============================================================
|
|
// Medium-complexity API
|
|
//
|
|
// This extends the easy-to-use API as follows:
|
|
//
|
|
// * Can specify the datatype - U8, U8_SRGB, U16, FLOAT, HALF_FLOAT
|
|
// * Edge wrap can selected explicitly
|
|
// * Filter can be selected explicitly
|
|
//--------------------------------
|
|
|
|
typedef enum
|
|
{
|
|
STBIR_EDGE_CLAMP = 0,
|
|
STBIR_EDGE_REFLECT = 1,
|
|
STBIR_EDGE_WRAP = 2, // this edge mode is slower and uses more memory
|
|
STBIR_EDGE_ZERO = 3,
|
|
} stbir_edge;
|
|
|
|
typedef enum
|
|
{
|
|
STBIR_FILTER_DEFAULT = 0, // use same filter type that easy-to-use API chooses
|
|
STBIR_FILTER_BOX = 1, // A trapezoid w/1-pixel wide ramps, same result as box for integer scale ratios
|
|
STBIR_FILTER_TRIANGLE = 2, // On upsampling, produces same results as bilinear texture filtering
|
|
STBIR_FILTER_CUBICBSPLINE = 3, // The cubic b-spline (aka Mitchell-Netrevalli with B=1,C=0), gaussian-esque
|
|
STBIR_FILTER_CATMULLROM = 4, // An interpolating cubic spline
|
|
STBIR_FILTER_MITCHELL = 5, // Mitchell-Netrevalli filter with B=1/3, C=1/3
|
|
STBIR_FILTER_POINT_SAMPLE = 6, // Simple point sampling
|
|
STBIR_FILTER_OTHER = 7, // User callback specified
|
|
} stbir_filter;
|
|
|
|
typedef enum
|
|
{
|
|
STBIR_TYPE_UINT8 = 0,
|
|
STBIR_TYPE_UINT8_SRGB = 1,
|
|
STBIR_TYPE_UINT8_SRGB_ALPHA = 2, // alpha channel, when present, should also be SRGB (this is very unusual)
|
|
STBIR_TYPE_UINT16 = 3,
|
|
STBIR_TYPE_FLOAT = 4,
|
|
STBIR_TYPE_HALF_FLOAT = 5
|
|
} stbir_datatype;
|
|
|
|
// medium api
|
|
STBIRDEF void * stbir_resize( const void *input_pixels , int input_w , int input_h, int input_stride_in_bytes,
|
|
void *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_layout, stbir_datatype data_type,
|
|
stbir_edge edge, stbir_filter filter );
|
|
//===============================================================
|
|
|
|
|
|
|
|
//===============================================================
|
|
// Extended-complexity API
|
|
//
|
|
// This API exposes all resize functionality.
|
|
//
|
|
// * Separate filter types for each axis
|
|
// * Separate edge modes for each axis
|
|
// * Separate input and output data types
|
|
// * Can specify regions with subpixel correctness
|
|
// * Can specify alpha flags
|
|
// * Can specify a memory callback
|
|
// * Can specify a callback data type for pixel input and output
|
|
// * Can be threaded for a single resize
|
|
// * Can be used to resize many frames without recalculating the sampler info
|
|
//
|
|
// Use this API as follows:
|
|
// 1) Call the stbir_resize_init function on a local STBIR_RESIZE structure
|
|
// 2) Call any of the stbir_set functions
|
|
// 3) Optionally call stbir_build_samplers() if you are going to resample multiple times
|
|
// with the same input and output dimensions (like resizing video frames)
|
|
// 4) Resample by calling stbir_resize_extended().
|
|
// 5) Call stbir_free_samplers() if you called stbir_build_samplers()
|
|
//--------------------------------
|
|
|
|
|
|
// Types:
|
|
|
|
// INPUT CALLBACK: this callback is used for input scanlines
|
|
typedef void const * stbir_input_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context );
|
|
|
|
// OUTPUT CALLBACK: this callback is used for output scanlines
|
|
typedef void stbir_output_callback( void const * output_ptr, int num_pixels, int y, void * context );
|
|
|
|
// callbacks for user installed filters
|
|
typedef float stbir__kernel_callback( float x, float scale, void * user_data ); // centered at zero
|
|
typedef float stbir__support_callback( float scale, void * user_data );
|
|
|
|
// internal structure with precomputed scaling
|
|
typedef struct stbir__info stbir__info;
|
|
|
|
typedef struct STBIR_RESIZE // use the stbir_resize_init and stbir_override functions to set these values for future compatibility
|
|
{
|
|
void * user_data;
|
|
void const * input_pixels;
|
|
int input_w, input_h;
|
|
double input_s0, input_t0, input_s1, input_t1;
|
|
stbir_input_callback * input_cb;
|
|
void * output_pixels;
|
|
int output_w, output_h;
|
|
int output_subx, output_suby, output_subw, output_subh;
|
|
stbir_output_callback * output_cb;
|
|
int input_stride_in_bytes;
|
|
int output_stride_in_bytes;
|
|
int splits;
|
|
int fast_alpha;
|
|
int needs_rebuild;
|
|
int called_alloc;
|
|
stbir_pixel_layout input_pixel_layout_public;
|
|
stbir_pixel_layout output_pixel_layout_public;
|
|
stbir_datatype input_data_type;
|
|
stbir_datatype output_data_type;
|
|
stbir_filter horizontal_filter, vertical_filter;
|
|
stbir_edge horizontal_edge, vertical_edge;
|
|
stbir__kernel_callback * horizontal_filter_kernel; stbir__support_callback * horizontal_filter_support;
|
|
stbir__kernel_callback * vertical_filter_kernel; stbir__support_callback * vertical_filter_support;
|
|
stbir__info * samplers;
|
|
} STBIR_RESIZE;
|
|
|
|
// extended complexity api
|
|
|
|
|
|
// First off, you must ALWAYS call stbir_resize_init on your resize structure before any of the other calls!
|
|
STBIRDEF void stbir_resize_init( STBIR_RESIZE * resize,
|
|
const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes, // stride can be zero
|
|
void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, // stride can be zero
|
|
stbir_pixel_layout pixel_layout, stbir_datatype data_type );
|
|
|
|
//===============================================================
|
|
// You can update these parameters any time after resize_init and there is no cost
|
|
//--------------------------------
|
|
|
|
STBIRDEF void stbir_set_datatypes( STBIR_RESIZE * resize, stbir_datatype input_type, stbir_datatype output_type );
|
|
STBIRDEF void stbir_set_pixel_callbacks( STBIR_RESIZE * resize, stbir_input_callback * input_cb, stbir_output_callback * output_cb ); // no callbacks by default
|
|
STBIRDEF void stbir_set_user_data( STBIR_RESIZE * resize, void * user_data ); // pass back STBIR_RESIZE* by default
|
|
STBIRDEF void stbir_set_buffer_ptrs( STBIR_RESIZE * resize, const void * input_pixels, int input_stride_in_bytes, void * output_pixels, int output_stride_in_bytes );
|
|
|
|
//===============================================================
|
|
|
|
|
|
//===============================================================
|
|
// If you call any of these functions, you will trigger a sampler rebuild!
|
|
//--------------------------------
|
|
|
|
STBIRDEF int stbir_set_pixel_layouts( STBIR_RESIZE * resize, stbir_pixel_layout input_pixel_layout, stbir_pixel_layout output_pixel_layout ); // sets new buffer layouts
|
|
STBIRDEF int stbir_set_edgemodes( STBIR_RESIZE * resize, stbir_edge horizontal_edge, stbir_edge vertical_edge ); // CLAMP by default
|
|
|
|
STBIRDEF int stbir_set_filters( STBIR_RESIZE * resize, stbir_filter horizontal_filter, stbir_filter vertical_filter ); // STBIR_DEFAULT_FILTER_UPSAMPLE/DOWNSAMPLE by default
|
|
STBIRDEF int stbir_set_filter_callbacks( STBIR_RESIZE * resize, stbir__kernel_callback * horizontal_filter, stbir__support_callback * horizontal_support, stbir__kernel_callback * vertical_filter, stbir__support_callback * vertical_support );
|
|
|
|
STBIRDEF int stbir_set_pixel_subrect( STBIR_RESIZE * resize, int subx, int suby, int subw, int subh ); // sets both sub-regions (full regions by default)
|
|
STBIRDEF int stbir_set_input_subrect( STBIR_RESIZE * resize, double s0, double t0, double s1, double t1 ); // sets input sub-region (full region by default)
|
|
STBIRDEF int stbir_set_output_pixel_subrect( STBIR_RESIZE * resize, int subx, int suby, int subw, int subh ); // sets output sub-region (full region by default)
|
|
|
|
// when inputting AND outputting non-premultiplied alpha pixels, we use a slower but higher quality technique
|
|
// that fills the zero alpha pixel's RGB values with something plausible. If you don't care about areas of
|
|
// zero alpha, you can call this function to get about a 25% speed improvement for STBIR_RGBA to STBIR_RGBA
|
|
// types of resizes.
|
|
STBIRDEF int stbir_set_non_pm_alpha_speed_over_quality( STBIR_RESIZE * resize, int non_pma_alpha_speed_over_quality );
|
|
//===============================================================
|
|
|
|
|
|
//===============================================================
|
|
// You can call build_samplers to prebuild all the internal data we need to resample.
|
|
// Then, if you call resize_extended many times with the same resize, you only pay the
|
|
// cost once.
|
|
// If you do call build_samplers, you MUST call free_samplers eventually.
|
|
//--------------------------------
|
|
|
|
// This builds the samplers and does one allocation
|
|
STBIRDEF int stbir_build_samplers( STBIR_RESIZE * resize );
|
|
|
|
// You MUST call this, if you call stbir_build_samplers or stbir_build_samplers_with_splits
|
|
STBIRDEF void stbir_free_samplers( STBIR_RESIZE * resize );
|
|
//===============================================================
|
|
|
|
|
|
// And this is the main function to perform the resize synchronously on one thread.
|
|
STBIRDEF int stbir_resize_extended( STBIR_RESIZE * resize );
|
|
|
|
|
|
//===============================================================
|
|
// Use these functions for multithreading.
|
|
// 1) You call stbir_build_samplers_with_splits first on the main thread
|
|
// 2) Then stbir_resize_with_split on each thread
|
|
// 3) stbir_free_samplers when done on the main thread
|
|
//--------------------------------
|
|
|
|
// This will build samplers for threading.
|
|
// You can pass in the number of threads you'd like to use (try_splits).
|
|
// It returns the number of splits (threads) that you can call it with.
|
|
/// It might be less if the image resize can't be split up that many ways.
|
|
|
|
STBIRDEF int stbir_build_samplers_with_splits( STBIR_RESIZE * resize, int try_splits );
|
|
|
|
// This function does a split of the resizing (you call this fuction for each
|
|
// split, on multiple threads). A split is a piece of the output resize pixel space.
|
|
|
|
// Note that you MUST call stbir_build_samplers_with_splits before stbir_resize_extended_split!
|
|
|
|
// Usually, you will always call stbir_resize_split with split_start as the thread_index
|
|
// and "1" for the split_count.
|
|
// But, if you have a weird situation where you MIGHT want 8 threads, but sometimes
|
|
// only 4 threads, you can use 0,2,4,6 for the split_start's and use "2" for the
|
|
// split_count each time to turn in into a 4 thread resize. (This is unusual).
|
|
|
|
STBIRDEF int stbir_resize_extended_split( STBIR_RESIZE * resize, int split_start, int split_count );
|
|
//===============================================================
|
|
|
|
|
|
//===============================================================
|
|
// Pixel Callbacks info:
|
|
//--------------------------------
|
|
|
|
// The input callback is super flexible - it calls you with the input address
|
|
// (based on the stride and base pointer), it gives you an optional_output
|
|
// pointer that you can fill, or you can just return your own pointer into
|
|
// your own data.
|
|
//
|
|
// You can also do conversion from non-supported data types if necessary - in
|
|
// this case, you ignore the input_ptr and just use the x and y parameters to
|
|
// calculate your own input_ptr based on the size of each non-supported pixel.
|
|
// (Something like the third example below.)
|
|
//
|
|
// You can also install just an input or just an output callback by setting the
|
|
// callback that you don't want to zero.
|
|
//
|
|
// First example, progress: (getting a callback that you can monitor the progress):
|
|
// void const * my_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context )
|
|
// {
|
|
// percentage_done = y / input_height;
|
|
// return input_ptr; // use buffer from call
|
|
// }
|
|
//
|
|
// Next example, copying: (copy from some other buffer or stream):
|
|
// void const * my_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context )
|
|
// {
|
|
// CopyOrStreamData( optional_output, other_data_src, num_pixels * pixel_width_in_bytes );
|
|
// return optional_output; // return the optional buffer that we filled
|
|
// }
|
|
//
|
|
// Third example, input another buffer without copying: (zero-copy from other buffer):
|
|
// void const * my_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context )
|
|
// {
|
|
// void * pixels = ( (char*) other_image_base ) + ( y * other_image_stride ) + ( x * other_pixel_width_in_bytes );
|
|
// return pixels; // return pointer to your data without copying
|
|
// }
|
|
//
|
|
//
|
|
// The output callback is considerably simpler - it just calls you so that you can dump
|
|
// out each scanline. You could even directly copy out to disk if you have a simple format
|
|
// like TGA or BMP. You can also convert to other output types here if you want.
|
|
//
|
|
// Simple example:
|
|
// void const * my_output( void * output_ptr, int num_pixels, int y, void * context )
|
|
// {
|
|
// percentage_done = y / output_height;
|
|
// fwrite( output_ptr, pixel_width_in_bytes, num_pixels, output_file );
|
|
// }
|
|
//===============================================================
|
|
|
|
|
|
|
|
|
|
//===============================================================
|
|
// optional built-in profiling API
|
|
//--------------------------------
|
|
|
|
#ifdef STBIR_PROFILE
|
|
|
|
typedef struct STBIR_PROFILE_INFO
|
|
{
|
|
stbir_uint64 total_clocks;
|
|
|
|
// how many clocks spent (of total_clocks) in the various resize routines, along with a string description
|
|
// there are "resize_count" number of zones
|
|
stbir_uint64 clocks[ 8 ];
|
|
char const ** descriptions;
|
|
|
|
// count of clocks and descriptions
|
|
stbir_uint32 count;
|
|
} STBIR_PROFILE_INFO;
|
|
|
|
// use after calling stbir_resize_extended (or stbir_build_samplers or stbir_build_samplers_with_splits)
|
|
STBIRDEF void stbir_resize_build_profile_info( STBIR_PROFILE_INFO * out_info, STBIR_RESIZE const * resize );
|
|
|
|
// use after calling stbir_resize_extended
|
|
STBIRDEF void stbir_resize_extended_profile_info( STBIR_PROFILE_INFO * out_info, STBIR_RESIZE const * resize );
|
|
|
|
// use after calling stbir_resize_extended_split
|
|
STBIRDEF void stbir_resize_split_profile_info( STBIR_PROFILE_INFO * out_info, STBIR_RESIZE const * resize, int split_start, int split_num );
|
|
|
|
//===============================================================
|
|
|
|
#endif
|
|
|
|
|
|
//// end header file /////////////////////////////////////////////////////
|
|
#endif // STBIR_INCLUDE_STB_IMAGE_RESIZE2_H
|
|
|
|
#if defined(STB_IMAGE_RESIZE_IMPLEMENTATION) || defined(STB_IMAGE_RESIZE2_IMPLEMENTATION)
|
|
|
|
#ifndef STBIR_ASSERT
|
|
#include <assert.h>
|
|
#define STBIR_ASSERT(x) assert(x)
|
|
#endif
|
|
|
|
#ifndef STBIR_MALLOC
|
|
#include <stdlib.h>
|
|
#define STBIR_MALLOC(size,user_data) ((void)(user_data), malloc(size))
|
|
#define STBIR_FREE(ptr,user_data) ((void)(user_data), free(ptr))
|
|
// (we used the comma operator to evaluate user_data, to avoid "unused parameter" warnings)
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
#define stbir__inline __forceinline
|
|
|
|
#else
|
|
|
|
#define stbir__inline __inline__
|
|
|
|
// Clang address sanitizer
|
|
#if defined(__has_feature)
|
|
#if __has_feature(address_sanitizer) || __has_feature(memory_sanitizer)
|
|
#ifndef STBIR__SEPARATE_ALLOCATIONS
|
|
#define STBIR__SEPARATE_ALLOCATIONS
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// GCC and MSVC
|
|
#if defined(__SANITIZE_ADDRESS__)
|
|
#ifndef STBIR__SEPARATE_ALLOCATIONS
|
|
#define STBIR__SEPARATE_ALLOCATIONS
|
|
#endif
|
|
#endif
|
|
|
|
// Always turn off automatic FMA use - use STBIR_USE_FMA if you want.
|
|
// Otherwise, this is a determinism disaster.
|
|
#ifndef STBIR_DONT_CHANGE_FP_CONTRACT // override in case you don't want this behavior
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#if _MSC_VER > 1200
|
|
#pragma fp_contract(off)
|
|
#endif
|
|
#elif defined(__GNUC__) && !defined(__clang__)
|
|
#pragma GCC optimize("fp-contract=off")
|
|
#else
|
|
#pragma STDC FP_CONTRACT OFF
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#define STBIR__UNUSED(v) (void)(v)
|
|
#else
|
|
#define STBIR__UNUSED(v) (void)sizeof(v)
|
|
#endif
|
|
|
|
#define STBIR__ARRAY_SIZE(a) (sizeof((a))/sizeof((a)[0]))
|
|
|
|
|
|
#ifndef STBIR_DEFAULT_FILTER_UPSAMPLE
|
|
#define STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_CATMULLROM
|
|
#endif
|
|
|
|
#ifndef STBIR_DEFAULT_FILTER_DOWNSAMPLE
|
|
#define STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_MITCHELL
|
|
#endif
|
|
|
|
|
|
#ifndef STBIR__HEADER_FILENAME
|
|
#define STBIR__HEADER_FILENAME "stb_image_resize2.h"
|
|
#endif
|
|
|
|
// the internal pixel layout enums are in a different order, so we can easily do range comparisons of types
|
|
// the public pixel layout is ordered in a way that if you cast num_channels (1-4) to the enum, you get something sensible
|
|
typedef enum
|
|
{
|
|
STBIRI_1CHANNEL = 0,
|
|
STBIRI_2CHANNEL = 1,
|
|
STBIRI_RGB = 2,
|
|
STBIRI_BGR = 3,
|
|
STBIRI_4CHANNEL = 4,
|
|
|
|
STBIRI_RGBA = 5,
|
|
STBIRI_BGRA = 6,
|
|
STBIRI_ARGB = 7,
|
|
STBIRI_ABGR = 8,
|
|
STBIRI_RA = 9,
|
|
STBIRI_AR = 10,
|
|
|
|
STBIRI_RGBA_PM = 11,
|
|
STBIRI_BGRA_PM = 12,
|
|
STBIRI_ARGB_PM = 13,
|
|
STBIRI_ABGR_PM = 14,
|
|
STBIRI_RA_PM = 15,
|
|
STBIRI_AR_PM = 16,
|
|
} stbir_internal_pixel_layout;
|
|
|
|
// define the public pixel layouts to not compile inside the implementation (to avoid accidental use)
|
|
#define STBIR_BGR bad_dont_use_in_implementation
|
|
#define STBIR_1CHANNEL STBIR_BGR
|
|
#define STBIR_2CHANNEL STBIR_BGR
|
|
#define STBIR_RGB STBIR_BGR
|
|
#define STBIR_RGBA STBIR_BGR
|
|
#define STBIR_4CHANNEL STBIR_BGR
|
|
#define STBIR_BGRA STBIR_BGR
|
|
#define STBIR_ARGB STBIR_BGR
|
|
#define STBIR_ABGR STBIR_BGR
|
|
#define STBIR_RA STBIR_BGR
|
|
#define STBIR_AR STBIR_BGR
|
|
#define STBIR_RGBA_PM STBIR_BGR
|
|
#define STBIR_BGRA_PM STBIR_BGR
|
|
#define STBIR_ARGB_PM STBIR_BGR
|
|
#define STBIR_ABGR_PM STBIR_BGR
|
|
#define STBIR_RA_PM STBIR_BGR
|
|
#define STBIR_AR_PM STBIR_BGR
|
|
|
|
// must match stbir_datatype
|
|
static unsigned char stbir__type_size[] = {
|
|
1,1,1,2,4,2 // STBIR_TYPE_UINT8,STBIR_TYPE_UINT8_SRGB,STBIR_TYPE_UINT8_SRGB_ALPHA,STBIR_TYPE_UINT16,STBIR_TYPE_FLOAT,STBIR_TYPE_HALF_FLOAT
|
|
};
|
|
|
|
// When gathering, the contributors are which source pixels contribute.
|
|
// When scattering, the contributors are which destination pixels are contributed to.
|
|
typedef struct
|
|
{
|
|
int n0; // First contributing pixel
|
|
int n1; // Last contributing pixel
|
|
} stbir__contributors;
|
|
|
|
typedef struct
|
|
{
|
|
int lowest; // First sample index for whole filter
|
|
int highest; // Last sample index for whole filter
|
|
int widest; // widest single set of samples for an output
|
|
} stbir__filter_extent_info;
|
|
|
|
typedef struct
|
|
{
|
|
int n0; // First pixel of decode buffer to write to
|
|
int n1; // Last pixel of decode that will be written to
|
|
int pixel_offset_for_input; // Pixel offset into input_scanline
|
|
} stbir__span;
|
|
|
|
typedef struct stbir__scale_info
|
|
{
|
|
int input_full_size;
|
|
int output_sub_size;
|
|
float scale;
|
|
float inv_scale;
|
|
float pixel_shift; // starting shift in output pixel space (in pixels)
|
|
int scale_is_rational;
|
|
stbir_uint32 scale_numerator, scale_denominator;
|
|
} stbir__scale_info;
|
|
|
|
typedef struct
|
|
{
|
|
stbir__contributors * contributors;
|
|
float* coefficients;
|
|
stbir__contributors * gather_prescatter_contributors;
|
|
float * gather_prescatter_coefficients;
|
|
stbir__scale_info scale_info;
|
|
float support;
|
|
stbir_filter filter_enum;
|
|
stbir__kernel_callback * filter_kernel;
|
|
stbir__support_callback * filter_support;
|
|
stbir_edge edge;
|
|
int coefficient_width;
|
|
int filter_pixel_width;
|
|
int filter_pixel_margin;
|
|
int num_contributors;
|
|
int contributors_size;
|
|
int coefficients_size;
|
|
stbir__filter_extent_info extent_info;
|
|
int is_gather; // 0 = scatter, 1 = gather with scale >= 1, 2 = gather with scale < 1
|
|
int gather_prescatter_num_contributors;
|
|
int gather_prescatter_coefficient_width;
|
|
int gather_prescatter_contributors_size;
|
|
int gather_prescatter_coefficients_size;
|
|
} stbir__sampler;
|
|
|
|
typedef struct
|
|
{
|
|
stbir__contributors conservative;
|
|
int edge_sizes[2]; // this can be less than filter_pixel_margin, if the filter and scaling falls off
|
|
stbir__span spans[2]; // can be two spans, if doing input subrect with clamp mode WRAP
|
|
} stbir__extents;
|
|
|
|
typedef struct
|
|
{
|
|
#ifdef STBIR_PROFILE
|
|
union
|
|
{
|
|
struct { stbir_uint64 total, looping, vertical, horizontal, decode, encode, alpha, unalpha; } named;
|
|
stbir_uint64 array[8];
|
|
} profile;
|
|
stbir_uint64 * current_zone_excluded_ptr;
|
|
#endif
|
|
float* decode_buffer;
|
|
|
|
int ring_buffer_first_scanline;
|
|
int ring_buffer_last_scanline;
|
|
int ring_buffer_begin_index; // first_scanline is at this index in the ring buffer
|
|
int start_output_y, end_output_y;
|
|
int start_input_y, end_input_y; // used in scatter only
|
|
|
|
#ifdef STBIR__SEPARATE_ALLOCATIONS
|
|
float** ring_buffers; // one pointer for each ring buffer
|
|
#else
|
|
float* ring_buffer; // one big buffer that we index into
|
|
#endif
|
|
|
|
float* vertical_buffer;
|
|
|
|
char no_cache_straddle[64];
|
|
} stbir__per_split_info;
|
|
|
|
typedef void stbir__decode_pixels_func( float * decode, int width_times_channels, void const * input );
|
|
typedef void stbir__alpha_weight_func( float * decode_buffer, int width_times_channels );
|
|
typedef void stbir__horizontal_gather_channels_func( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer,
|
|
stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width );
|
|
typedef void stbir__alpha_unweight_func(float * encode_buffer, int width_times_channels );
|
|
typedef void stbir__encode_pixels_func( void * output, int width_times_channels, float const * encode );
|
|
|
|
struct stbir__info
|
|
{
|
|
#ifdef STBIR_PROFILE
|
|
union
|
|
{
|
|
struct { stbir_uint64 total, build, alloc, horizontal, vertical, cleanup, pivot; } named;
|
|
stbir_uint64 array[7];
|
|
} profile;
|
|
stbir_uint64 * current_zone_excluded_ptr;
|
|
#endif
|
|
stbir__sampler horizontal;
|
|
stbir__sampler vertical;
|
|
|
|
void const * input_data;
|
|
void * output_data;
|
|
|
|
int input_stride_bytes;
|
|
int output_stride_bytes;
|
|
int ring_buffer_length_bytes; // The length of an individual entry in the ring buffer. The total number of ring buffers is stbir__get_filter_pixel_width(filter)
|
|
int ring_buffer_num_entries; // Total number of entries in the ring buffer.
|
|
|
|
stbir_datatype input_type;
|
|
stbir_datatype output_type;
|
|
|
|
stbir_input_callback * in_pixels_cb;
|
|
void * user_data;
|
|
stbir_output_callback * out_pixels_cb;
|
|
|
|
stbir__extents scanline_extents;
|
|
|
|
void * alloced_mem;
|
|
stbir__per_split_info * split_info; // by default 1, but there will be N of these allocated based on the thread init you did
|
|
|
|
stbir__decode_pixels_func * decode_pixels;
|
|
stbir__alpha_weight_func * alpha_weight;
|
|
stbir__horizontal_gather_channels_func * horizontal_gather_channels;
|
|
stbir__alpha_unweight_func * alpha_unweight;
|
|
stbir__encode_pixels_func * encode_pixels;
|
|
|
|
int alloced_total;
|
|
int splits; // count of splits
|
|
|
|
stbir_internal_pixel_layout input_pixel_layout_internal;
|
|
stbir_internal_pixel_layout output_pixel_layout_internal;
|
|
|
|
int input_color_and_type;
|
|
int offset_x, offset_y; // offset within output_data
|
|
int vertical_first;
|
|
int channels;
|
|
int effective_channels; // same as channels, except on RGBA/ARGB (7), or XA/AX (3)
|
|
int alloc_ring_buffer_num_entries; // Number of entries in the ring buffer that will be allocated
|
|
};
|
|
|
|
|
|
#define stbir__max_uint8_as_float 255.0f
|
|
#define stbir__max_uint16_as_float 65535.0f
|
|
#define stbir__max_uint8_as_float_inverted (1.0f/255.0f)
|
|
#define stbir__max_uint16_as_float_inverted (1.0f/65535.0f)
|
|
#define stbir__small_float ((float)1 / (1 << 20) / (1 << 20) / (1 << 20) / (1 << 20) / (1 << 20) / (1 << 20))
|
|
|
|
// min/max friendly
|
|
#define STBIR_CLAMP(x, xmin, xmax) do { \
|
|
if ( (x) < (xmin) ) (x) = (xmin); \
|
|
if ( (x) > (xmax) ) (x) = (xmax); \
|
|
} while (0)
|
|
|
|
static stbir__inline int stbir__min(int a, int b)
|
|
{
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
static stbir__inline int stbir__max(int a, int b)
|
|
{
|
|
return a > b ? a : b;
|
|
}
|
|
|
|
static float stbir__srgb_uchar_to_linear_float[256] = {
|
|
0.000000f, 0.000304f, 0.000607f, 0.000911f, 0.001214f, 0.001518f, 0.001821f, 0.002125f, 0.002428f, 0.002732f, 0.003035f,
|
|
0.003347f, 0.003677f, 0.004025f, 0.004391f, 0.004777f, 0.005182f, 0.005605f, 0.006049f, 0.006512f, 0.006995f, 0.007499f,
|
|
0.008023f, 0.008568f, 0.009134f, 0.009721f, 0.010330f, 0.010960f, 0.011612f, 0.012286f, 0.012983f, 0.013702f, 0.014444f,
|
|
0.015209f, 0.015996f, 0.016807f, 0.017642f, 0.018500f, 0.019382f, 0.020289f, 0.021219f, 0.022174f, 0.023153f, 0.024158f,
|
|
0.025187f, 0.026241f, 0.027321f, 0.028426f, 0.029557f, 0.030713f, 0.031896f, 0.033105f, 0.034340f, 0.035601f, 0.036889f,
|
|
0.038204f, 0.039546f, 0.040915f, 0.042311f, 0.043735f, 0.045186f, 0.046665f, 0.048172f, 0.049707f, 0.051269f, 0.052861f,
|
|
0.054480f, 0.056128f, 0.057805f, 0.059511f, 0.061246f, 0.063010f, 0.064803f, 0.066626f, 0.068478f, 0.070360f, 0.072272f,
|
|
0.074214f, 0.076185f, 0.078187f, 0.080220f, 0.082283f, 0.084376f, 0.086500f, 0.088656f, 0.090842f, 0.093059f, 0.095307f,
|
|
0.097587f, 0.099899f, 0.102242f, 0.104616f, 0.107023f, 0.109462f, 0.111932f, 0.114435f, 0.116971f, 0.119538f, 0.122139f,
|
|
0.124772f, 0.127438f, 0.130136f, 0.132868f, 0.135633f, 0.138432f, 0.141263f, 0.144128f, 0.147027f, 0.149960f, 0.152926f,
|
|
0.155926f, 0.158961f, 0.162029f, 0.165132f, 0.168269f, 0.171441f, 0.174647f, 0.177888f, 0.181164f, 0.184475f, 0.187821f,
|
|
0.191202f, 0.194618f, 0.198069f, 0.201556f, 0.205079f, 0.208637f, 0.212231f, 0.215861f, 0.219526f, 0.223228f, 0.226966f,
|
|
0.230740f, 0.234551f, 0.238398f, 0.242281f, 0.246201f, 0.250158f, 0.254152f, 0.258183f, 0.262251f, 0.266356f, 0.270498f,
|
|
0.274677f, 0.278894f, 0.283149f, 0.287441f, 0.291771f, 0.296138f, 0.300544f, 0.304987f, 0.309469f, 0.313989f, 0.318547f,
|
|
0.323143f, 0.327778f, 0.332452f, 0.337164f, 0.341914f, 0.346704f, 0.351533f, 0.356400f, 0.361307f, 0.366253f, 0.371238f,
|
|
0.376262f, 0.381326f, 0.386430f, 0.391573f, 0.396755f, 0.401978f, 0.407240f, 0.412543f, 0.417885f, 0.423268f, 0.428691f,
|
|
0.434154f, 0.439657f, 0.445201f, 0.450786f, 0.456411f, 0.462077f, 0.467784f, 0.473532f, 0.479320f, 0.485150f, 0.491021f,
|
|
0.496933f, 0.502887f, 0.508881f, 0.514918f, 0.520996f, 0.527115f, 0.533276f, 0.539480f, 0.545725f, 0.552011f, 0.558340f,
|
|
0.564712f, 0.571125f, 0.577581f, 0.584078f, 0.590619f, 0.597202f, 0.603827f, 0.610496f, 0.617207f, 0.623960f, 0.630757f,
|
|
0.637597f, 0.644480f, 0.651406f, 0.658375f, 0.665387f, 0.672443f, 0.679543f, 0.686685f, 0.693872f, 0.701102f, 0.708376f,
|
|
0.715694f, 0.723055f, 0.730461f, 0.737911f, 0.745404f, 0.752942f, 0.760525f, 0.768151f, 0.775822f, 0.783538f, 0.791298f,
|
|
0.799103f, 0.806952f, 0.814847f, 0.822786f, 0.830770f, 0.838799f, 0.846873f, 0.854993f, 0.863157f, 0.871367f, 0.879622f,
|
|
0.887923f, 0.896269f, 0.904661f, 0.913099f, 0.921582f, 0.930111f, 0.938686f, 0.947307f, 0.955974f, 0.964686f, 0.973445f,
|
|
0.982251f, 0.991102f, 1.0f
|
|
};
|
|
|
|
typedef union
|
|
{
|
|
unsigned int u;
|
|
float f;
|
|
} stbir__FP32;
|
|
|
|
// From https://gist.github.com/rygorous/2203834
|
|
|
|
static const stbir_uint32 fp32_to_srgb8_tab4[104] = {
|
|
0x0073000d, 0x007a000d, 0x0080000d, 0x0087000d, 0x008d000d, 0x0094000d, 0x009a000d, 0x00a1000d,
|
|
0x00a7001a, 0x00b4001a, 0x00c1001a, 0x00ce001a, 0x00da001a, 0x00e7001a, 0x00f4001a, 0x0101001a,
|
|
0x010e0033, 0x01280033, 0x01410033, 0x015b0033, 0x01750033, 0x018f0033, 0x01a80033, 0x01c20033,
|
|
0x01dc0067, 0x020f0067, 0x02430067, 0x02760067, 0x02aa0067, 0x02dd0067, 0x03110067, 0x03440067,
|
|
0x037800ce, 0x03df00ce, 0x044600ce, 0x04ad00ce, 0x051400ce, 0x057b00c5, 0x05dd00bc, 0x063b00b5,
|
|
0x06970158, 0x07420142, 0x07e30130, 0x087b0120, 0x090b0112, 0x09940106, 0x0a1700fc, 0x0a9500f2,
|
|
0x0b0f01cb, 0x0bf401ae, 0x0ccb0195, 0x0d950180, 0x0e56016e, 0x0f0d015e, 0x0fbc0150, 0x10630143,
|
|
0x11070264, 0x1238023e, 0x1357021d, 0x14660201, 0x156601e9, 0x165a01d3, 0x174401c0, 0x182401af,
|
|
0x18fe0331, 0x1a9602fe, 0x1c1502d2, 0x1d7e02ad, 0x1ed4028d, 0x201a0270, 0x21520256, 0x227d0240,
|
|
0x239f0443, 0x25c003fe, 0x27bf03c4, 0x29a10392, 0x2b6a0367, 0x2d1d0341, 0x2ebe031f, 0x304d0300,
|
|
0x31d105b0, 0x34a80555, 0x37520507, 0x39d504c5, 0x3c37048b, 0x3e7c0458, 0x40a8042a, 0x42bd0401,
|
|
0x44c20798, 0x488e071e, 0x4c1c06b6, 0x4f76065d, 0x52a50610, 0x55ac05cc, 0x5892058f, 0x5b590559,
|
|
0x5e0c0a23, 0x631c0980, 0x67db08f6, 0x6c55087f, 0x70940818, 0x74a007bd, 0x787d076c, 0x7c330723,
|
|
};
|
|
|
|
static stbir__inline stbir_uint8 stbir__linear_to_srgb_uchar(float in)
|
|
{
|
|
static const stbir__FP32 almostone = { 0x3f7fffff }; // 1-eps
|
|
static const stbir__FP32 minval = { (127-13) << 23 };
|
|
stbir_uint32 tab,bias,scale,t;
|
|
stbir__FP32 f;
|
|
|
|
// Clamp to [2^(-13), 1-eps]; these two values map to 0 and 1, respectively.
|
|
// The tests are carefully written so that NaNs map to 0, same as in the reference
|
|
// implementation.
|
|
if (!(in > minval.f)) // written this way to catch NaNs
|
|
return 0;
|
|
if (in > almostone.f)
|
|
return 255;
|
|
|
|
// Do the table lookup and unpack bias, scale
|
|
f.f = in;
|
|
tab = fp32_to_srgb8_tab4[(f.u - minval.u) >> 20];
|
|
bias = (tab >> 16) << 9;
|
|
scale = tab & 0xffff;
|
|
|
|
// Grab next-highest mantissa bits and perform linear interpolation
|
|
t = (f.u >> 12) & 0xff;
|
|
return (unsigned char) ((bias + scale*t) >> 16);
|
|
}
|
|
|
|
#ifndef STBIR_FORCE_GATHER_FILTER_SCANLINES_AMOUNT
|
|
#define STBIR_FORCE_GATHER_FILTER_SCANLINES_AMOUNT 32 // when downsampling and <= 32 scanlines of buffering, use gather. gather used down to 1/8th scaling for 25% win.
|
|
#endif
|
|
|
|
#ifndef STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS
|
|
#define STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS 4 // when threading, what is the minimum number of scanlines for a split?
|
|
#endif
|
|
|
|
// restrict pointers for the output pointers
|
|
#if defined( _MSC_VER ) && !defined(__clang__)
|
|
#define STBIR_STREAMOUT_PTR( star ) star __restrict
|
|
#define STBIR_NO_UNROLL( ptr ) __assume(ptr) // this oddly keeps msvc from unrolling a loop
|
|
#elif defined( __clang__ )
|
|
#define STBIR_STREAMOUT_PTR( star ) star __restrict__
|
|
#define STBIR_NO_UNROLL( ptr ) __asm__ (""::"r"(ptr))
|
|
#elif defined( __GNUC__ )
|
|
#define STBIR_STREAMOUT_PTR( star ) star __restrict__
|
|
#define STBIR_NO_UNROLL( ptr ) __asm__ (""::"r"(ptr))
|
|
#else
|
|
#define STBIR_STREAMOUT_PTR( star ) star
|
|
#define STBIR_NO_UNROLL( ptr )
|
|
#endif
|
|
|
|
#ifdef STBIR_NO_SIMD // force simd off for whatever reason
|
|
|
|
// force simd off overrides everything else, so clear it all
|
|
|
|
#ifdef STBIR_SSE2
|
|
#undef STBIR_SSE2
|
|
#endif
|
|
|
|
#ifdef STBIR_AVX
|
|
#undef STBIR_AVX
|
|
#endif
|
|
|
|
#ifdef STBIR_NEON
|
|
#undef STBIR_NEON
|
|
#endif
|
|
|
|
#ifdef STBIR_AVX2
|
|
#undef STBIR_AVX2
|
|
#endif
|
|
|
|
#ifdef STBIR_FP16C
|
|
#undef STBIR_FP16C
|
|
#endif
|
|
|
|
#ifdef STBIR_WASM
|
|
#undef STBIR_WASM
|
|
#endif
|
|
|
|
#ifdef STBIR_SIMD
|
|
#undef STBIR_SIMD
|
|
#endif
|
|
|
|
#else // STBIR_SIMD
|
|
|
|
#ifdef STBIR_SSE2
|
|
#include <emmintrin.h>
|
|
|
|
#define stbir__simdf __m128
|
|
#define stbir__simdi __m128i
|
|
|
|
#define stbir_simdi_castf( reg ) _mm_castps_si128(reg)
|
|
#define stbir_simdf_casti( reg ) _mm_castsi128_ps(reg)
|
|
|
|
#define stbir__simdf_load( reg, ptr ) (reg) = _mm_loadu_ps( (float const*)(ptr) )
|
|
#define stbir__simdi_load( reg, ptr ) (reg) = _mm_loadu_si128 ( (stbir__simdi const*)(ptr) )
|
|
#define stbir__simdf_load1( out, ptr ) (out) = _mm_load_ss( (float const*)(ptr) ) // top values can be random (not denormal or nan for perf)
|
|
#define stbir__simdi_load1( out, ptr ) (out) = _mm_castps_si128( _mm_load_ss( (float const*)(ptr) ))
|
|
#define stbir__simdf_load1z( out, ptr ) (out) = _mm_load_ss( (float const*)(ptr) ) // top values must be zero
|
|
#define stbir__simdf_frep4( fvar ) _mm_set_ps1( fvar )
|
|
#define stbir__simdf_load1frep4( out, fvar ) (out) = _mm_set_ps1( fvar )
|
|
#define stbir__simdf_load2( out, ptr ) (out) = _mm_castsi128_ps( _mm_loadl_epi64( (__m128i*)(ptr)) ) // top values can be random (not denormal or nan for perf)
|
|
#define stbir__simdf_load2z( out, ptr ) (out) = _mm_castsi128_ps( _mm_loadl_epi64( (__m128i*)(ptr)) ) // top values must be zero
|
|
#define stbir__simdf_load2hmerge( out, reg, ptr ) (out) = _mm_castpd_ps(_mm_loadh_pd( _mm_castps_pd(reg), (double*)(ptr) ))
|
|
|
|
#define stbir__simdf_zeroP() _mm_setzero_ps()
|
|
#define stbir__simdf_zero( reg ) (reg) = _mm_setzero_ps()
|
|
|
|
#define stbir__simdf_store( ptr, reg ) _mm_storeu_ps( (float*)(ptr), reg )
|
|
#define stbir__simdf_store1( ptr, reg ) _mm_store_ss( (float*)(ptr), reg )
|
|
#define stbir__simdf_store2( ptr, reg ) _mm_storel_epi64( (__m128i*)(ptr), _mm_castps_si128(reg) )
|
|
#define stbir__simdf_store2h( ptr, reg ) _mm_storeh_pd( (double*)(ptr), _mm_castps_pd(reg) )
|
|
|
|
#define stbir__simdi_store( ptr, reg ) _mm_storeu_si128( (__m128i*)(ptr), reg )
|
|
#define stbir__simdi_store1( ptr, reg ) _mm_store_ss( (float*)(ptr), _mm_castsi128_ps(reg) )
|
|
#define stbir__simdi_store2( ptr, reg ) _mm_storel_epi64( (__m128i*)(ptr), (reg) )
|
|
|
|
#define stbir__prefetch( ptr ) _mm_prefetch((char*)(ptr), _MM_HINT_T0 )
|
|
|
|
#define stbir__simdi_expand_u8_to_u32(out0,out1,out2,out3,ireg) \
|
|
{ \
|
|
stbir__simdi zero = _mm_setzero_si128(); \
|
|
out2 = _mm_unpacklo_epi8( ireg, zero ); \
|
|
out3 = _mm_unpackhi_epi8( ireg, zero ); \
|
|
out0 = _mm_unpacklo_epi16( out2, zero ); \
|
|
out1 = _mm_unpackhi_epi16( out2, zero ); \
|
|
out2 = _mm_unpacklo_epi16( out3, zero ); \
|
|
out3 = _mm_unpackhi_epi16( out3, zero ); \
|
|
}
|
|
|
|
#define stbir__simdi_expand_u8_to_1u32(out,ireg) \
|
|
{ \
|
|
stbir__simdi zero = _mm_setzero_si128(); \
|
|
out = _mm_unpacklo_epi8( ireg, zero ); \
|
|
out = _mm_unpacklo_epi16( out, zero ); \
|
|
}
|
|
|
|
#define stbir__simdi_expand_u16_to_u32(out0,out1,ireg) \
|
|
{ \
|
|
stbir__simdi zero = _mm_setzero_si128(); \
|
|
out0 = _mm_unpacklo_epi16( ireg, zero ); \
|
|
out1 = _mm_unpackhi_epi16( ireg, zero ); \
|
|
}
|
|
|
|
#define stbir__simdf_convert_float_to_i32( i, f ) (i) = _mm_cvttps_epi32(f)
|
|
#define stbir__simdf_convert_float_to_int( f ) _mm_cvtt_ss2si(f)
|
|
#define stbir__simdf_convert_float_to_uint8( f ) ((unsigned char)_mm_cvtsi128_si32(_mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(f,STBIR__CONSTF(STBIR_max_uint8_as_float)),_mm_setzero_ps()))))
|
|
#define stbir__simdf_convert_float_to_short( f ) ((unsigned short)_mm_cvtsi128_si32(_mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(f,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps()))))
|
|
|
|
#define stbir__simdi_to_int( i ) _mm_cvtsi128_si32(i)
|
|
#define stbir__simdi_convert_i32_to_float(out, ireg) (out) = _mm_cvtepi32_ps( ireg )
|
|
#define stbir__simdf_add( out, reg0, reg1 ) (out) = _mm_add_ps( reg0, reg1 )
|
|
#define stbir__simdf_mult( out, reg0, reg1 ) (out) = _mm_mul_ps( reg0, reg1 )
|
|
#define stbir__simdf_mult_mem( out, reg, ptr ) (out) = _mm_mul_ps( reg, _mm_loadu_ps( (float const*)(ptr) ) )
|
|
#define stbir__simdf_mult1_mem( out, reg, ptr ) (out) = _mm_mul_ss( reg, _mm_load_ss( (float const*)(ptr) ) )
|
|
#define stbir__simdf_add_mem( out, reg, ptr ) (out) = _mm_add_ps( reg, _mm_loadu_ps( (float const*)(ptr) ) )
|
|
#define stbir__simdf_add1_mem( out, reg, ptr ) (out) = _mm_add_ss( reg, _mm_load_ss( (float const*)(ptr) ) )
|
|
|
|
#ifdef STBIR_USE_FMA // not on by default to maintain bit identical simd to non-simd
|
|
#include <immintrin.h>
|
|
#define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = _mm_fmadd_ps( mul1, mul2, add )
|
|
#define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = _mm_fmadd_ss( mul1, mul2, add )
|
|
#define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = _mm_fmadd_ps( mul, _mm_loadu_ps( (float const*)(ptr) ), add )
|
|
#define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = _mm_fmadd_ss( mul, _mm_load_ss( (float const*)(ptr) ), add )
|
|
#else
|
|
#define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = _mm_add_ps( add, _mm_mul_ps( mul1, mul2 ) )
|
|
#define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = _mm_add_ss( add, _mm_mul_ss( mul1, mul2 ) )
|
|
#define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = _mm_add_ps( add, _mm_mul_ps( mul, _mm_loadu_ps( (float const*)(ptr) ) ) )
|
|
#define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = _mm_add_ss( add, _mm_mul_ss( mul, _mm_load_ss( (float const*)(ptr) ) ) )
|
|
#endif
|
|
|
|
#define stbir__simdf_add1( out, reg0, reg1 ) (out) = _mm_add_ss( reg0, reg1 )
|
|
#define stbir__simdf_mult1( out, reg0, reg1 ) (out) = _mm_mul_ss( reg0, reg1 )
|
|
|
|
#define stbir__simdf_and( out, reg0, reg1 ) (out) = _mm_and_ps( reg0, reg1 )
|
|
#define stbir__simdf_or( out, reg0, reg1 ) (out) = _mm_or_ps( reg0, reg1 )
|
|
|
|
#define stbir__simdf_min( out, reg0, reg1 ) (out) = _mm_min_ps( reg0, reg1 )
|
|
#define stbir__simdf_max( out, reg0, reg1 ) (out) = _mm_max_ps( reg0, reg1 )
|
|
#define stbir__simdf_min1( out, reg0, reg1 ) (out) = _mm_min_ss( reg0, reg1 )
|
|
#define stbir__simdf_max1( out, reg0, reg1 ) (out) = _mm_max_ss( reg0, reg1 )
|
|
|
|
#define stbir__simdf_0123ABCDto3ABx( out, reg0, reg1 ) (out)=_mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( _mm_shuffle_ps( reg1,reg0, (0<<0) + (1<<2) + (2<<4) + (3<<6) )), (3<<0) + (0<<2) + (1<<4) + (2<<6) ) )
|
|
#define stbir__simdf_0123ABCDto23Ax( out, reg0, reg1 ) (out)=_mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( _mm_shuffle_ps( reg1,reg0, (0<<0) + (1<<2) + (2<<4) + (3<<6) )), (2<<0) + (3<<2) + (0<<4) + (1<<6) ) )
|
|
|
|
static const stbir__simdf STBIR_zeroones = { 0.0f,1.0f,0.0f,1.0f };
|
|
static const stbir__simdf STBIR_onezeros = { 1.0f,0.0f,1.0f,0.0f };
|
|
#define stbir__simdf_aaa1( out, alp, ones ) (out)=_mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( _mm_movehl_ps( ones, alp ) ), (1<<0) + (1<<2) + (1<<4) + (2<<6) ) )
|
|
#define stbir__simdf_1aaa( out, alp, ones ) (out)=_mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( _mm_movelh_ps( ones, alp ) ), (0<<0) + (2<<2) + (2<<4) + (2<<6) ) )
|
|
#define stbir__simdf_a1a1( out, alp, ones) (out) = _mm_or_ps( _mm_castsi128_ps( _mm_srli_epi64( _mm_castps_si128(alp), 32 ) ), STBIR_zeroones )
|
|
#define stbir__simdf_1a1a( out, alp, ones) (out) = _mm_or_ps( _mm_castsi128_ps( _mm_slli_epi64( _mm_castps_si128(alp), 32 ) ), STBIR_onezeros )
|
|
|
|
#define stbir__simdf_swiz( reg, one, two, three, four ) _mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( reg ), (one<<0) + (two<<2) + (three<<4) + (four<<6) ) )
|
|
|
|
#define stbir__simdi_and( out, reg0, reg1 ) (out) = _mm_and_si128( reg0, reg1 )
|
|
#define stbir__simdi_or( out, reg0, reg1 ) (out) = _mm_or_si128( reg0, reg1 )
|
|
#define stbir__simdi_16madd( out, reg0, reg1 ) (out) = _mm_madd_epi16( reg0, reg1 )
|
|
|
|
#define stbir__simdf_pack_to_8bytes(out,aa,bb) \
|
|
{ \
|
|
stbir__simdf af,bf; \
|
|
stbir__simdi a,b; \
|
|
af = _mm_min_ps( aa, STBIR_max_uint8_as_float ); \
|
|
bf = _mm_min_ps( bb, STBIR_max_uint8_as_float ); \
|
|
af = _mm_max_ps( af, _mm_setzero_ps() ); \
|
|
bf = _mm_max_ps( bf, _mm_setzero_ps() ); \
|
|
a = _mm_cvttps_epi32( af ); \
|
|
b = _mm_cvttps_epi32( bf ); \
|
|
a = _mm_packs_epi32( a, b ); \
|
|
out = _mm_packus_epi16( a, a ); \
|
|
}
|
|
|
|
#define stbir__simdf_load4_transposed( o0, o1, o2, o3, ptr ) \
|
|
stbir__simdf_load( o0, (ptr) ); \
|
|
stbir__simdf_load( o1, (ptr)+4 ); \
|
|
stbir__simdf_load( o2, (ptr)+8 ); \
|
|
stbir__simdf_load( o3, (ptr)+12 ); \
|
|
{ \
|
|
__m128 tmp0, tmp1, tmp2, tmp3; \
|
|
tmp0 = _mm_unpacklo_ps(o0, o1); \
|
|
tmp2 = _mm_unpacklo_ps(o2, o3); \
|
|
tmp1 = _mm_unpackhi_ps(o0, o1); \
|
|
tmp3 = _mm_unpackhi_ps(o2, o3); \
|
|
o0 = _mm_movelh_ps(tmp0, tmp2); \
|
|
o1 = _mm_movehl_ps(tmp2, tmp0); \
|
|
o2 = _mm_movelh_ps(tmp1, tmp3); \
|
|
o3 = _mm_movehl_ps(tmp3, tmp1); \
|
|
}
|
|
|
|
#define stbir__interleave_pack_and_store_16_u8( ptr, r0, r1, r2, r3 ) \
|
|
r0 = _mm_packs_epi32( r0, r1 ); \
|
|
r2 = _mm_packs_epi32( r2, r3 ); \
|
|
r1 = _mm_unpacklo_epi16( r0, r2 ); \
|
|
r3 = _mm_unpackhi_epi16( r0, r2 ); \
|
|
r0 = _mm_unpacklo_epi16( r1, r3 ); \
|
|
r2 = _mm_unpackhi_epi16( r1, r3 ); \
|
|
r0 = _mm_packus_epi16( r0, r2 ); \
|
|
stbir__simdi_store( ptr, r0 ); \
|
|
|
|
#define stbir__simdi_32shr( out, reg, imm ) out = _mm_srli_epi32( reg, imm )
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
// msvc inits with 8 bytes
|
|
#define STBIR__CONST_32_TO_8( v ) (char)(unsigned char)((v)&255),(char)(unsigned char)(((v)>>8)&255),(char)(unsigned char)(((v)>>16)&255),(char)(unsigned char)(((v)>>24)&255)
|
|
#define STBIR__CONST_4_32i( v ) STBIR__CONST_32_TO_8( v ), STBIR__CONST_32_TO_8( v ), STBIR__CONST_32_TO_8( v ), STBIR__CONST_32_TO_8( v )
|
|
#define STBIR__CONST_4d_32i( v0, v1, v2, v3 ) STBIR__CONST_32_TO_8( v0 ), STBIR__CONST_32_TO_8( v1 ), STBIR__CONST_32_TO_8( v2 ), STBIR__CONST_32_TO_8( v3 )
|
|
#else
|
|
// everything else inits with long long's
|
|
#define STBIR__CONST_4_32i( v ) (long long)((((stbir_uint64)(stbir_uint32)(v))<<32)|((stbir_uint64)(stbir_uint32)(v))),(long long)((((stbir_uint64)(stbir_uint32)(v))<<32)|((stbir_uint64)(stbir_uint32)(v)))
|
|
#define STBIR__CONST_4d_32i( v0, v1, v2, v3 ) (long long)((((stbir_uint64)(stbir_uint32)(v1))<<32)|((stbir_uint64)(stbir_uint32)(v0))),(long long)((((stbir_uint64)(stbir_uint32)(v3))<<32)|((stbir_uint64)(stbir_uint32)(v2)))
|
|
#endif
|
|
|
|
#define STBIR__SIMDF_CONST(var, x) stbir__simdf var = { x, x, x, x }
|
|
#define STBIR__SIMDI_CONST(var, x) stbir__simdi var = { STBIR__CONST_4_32i(x) }
|
|
#define STBIR__CONSTF(var) (var)
|
|
#define STBIR__CONSTI(var) (var)
|
|
|
|
#if defined(STBIR_AVX) || defined(__SSE4_1__)
|
|
#include <smmintrin.h>
|
|
#define stbir__simdf_pack_to_8words(out,reg0,reg1) out = _mm_packus_epi32(_mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg0,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps())), _mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg1,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps())))
|
|
#else
|
|
STBIR__SIMDI_CONST(stbir__s32_32768, 32768);
|
|
STBIR__SIMDI_CONST(stbir__s16_32768, ((32768<<16)|32768));
|
|
|
|
#define stbir__simdf_pack_to_8words(out,reg0,reg1) \
|
|
{ \
|
|
stbir__simdi tmp0,tmp1; \
|
|
tmp0 = _mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg0,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps())); \
|
|
tmp1 = _mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg1,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps())); \
|
|
tmp0 = _mm_sub_epi32( tmp0, stbir__s32_32768 ); \
|
|
tmp1 = _mm_sub_epi32( tmp1, stbir__s32_32768 ); \
|
|
out = _mm_packs_epi32( tmp0, tmp1 ); \
|
|
out = _mm_sub_epi16( out, stbir__s16_32768 ); \
|
|
}
|
|
|
|
#endif
|
|
|
|
#define STBIR_SIMD
|
|
|
|
// if we detect AVX, set the simd8 defines
|
|
#ifdef STBIR_AVX
|
|
#include <immintrin.h>
|
|
#define STBIR_SIMD8
|
|
#define stbir__simdf8 __m256
|
|
#define stbir__simdi8 __m256i
|
|
#define stbir__simdf8_load( out, ptr ) (out) = _mm256_loadu_ps( (float const *)(ptr) )
|
|
#define stbir__simdi8_load( out, ptr ) (out) = _mm256_loadu_si256( (__m256i const *)(ptr) )
|
|
#define stbir__simdf8_mult( out, a, b ) (out) = _mm256_mul_ps( (a), (b) )
|
|
#define stbir__simdf8_store( ptr, out ) _mm256_storeu_ps( (float*)(ptr), out )
|
|
#define stbir__simdi8_store( ptr, reg ) _mm256_storeu_si256( (__m256i*)(ptr), reg )
|
|
#define stbir__simdf8_frep8( fval ) _mm256_set1_ps( fval )
|
|
|
|
#define stbir__simdf8_min( out, reg0, reg1 ) (out) = _mm256_min_ps( reg0, reg1 )
|
|
#define stbir__simdf8_max( out, reg0, reg1 ) (out) = _mm256_max_ps( reg0, reg1 )
|
|
|
|
#define stbir__simdf8_add4halves( out, bot4, top8 ) (out) = _mm_add_ps( bot4, _mm256_extractf128_ps( top8, 1 ) )
|
|
#define stbir__simdf8_mult_mem( out, reg, ptr ) (out) = _mm256_mul_ps( reg, _mm256_loadu_ps( (float const*)(ptr) ) )
|
|
#define stbir__simdf8_add_mem( out, reg, ptr ) (out) = _mm256_add_ps( reg, _mm256_loadu_ps( (float const*)(ptr) ) )
|
|
#define stbir__simdf8_add( out, a, b ) (out) = _mm256_add_ps( a, b )
|
|
#define stbir__simdf8_load1b( out, ptr ) (out) = _mm256_broadcast_ss( ptr )
|
|
#define stbir__simdf_load1rep4( out, ptr ) (out) = _mm_broadcast_ss( ptr ) // avx load instruction
|
|
|
|
#define stbir__simdi8_convert_i32_to_float(out, ireg) (out) = _mm256_cvtepi32_ps( ireg )
|
|
#define stbir__simdf8_convert_float_to_i32( i, f ) (i) = _mm256_cvttps_epi32(f)
|
|
|
|
#define stbir__simdf8_bot4s( out, a, b ) (out) = _mm256_permute2f128_ps(a,b, (0<<0)+(2<<4) )
|
|
#define stbir__simdf8_top4s( out, a, b ) (out) = _mm256_permute2f128_ps(a,b, (1<<0)+(3<<4) )
|
|
|
|
#define stbir__simdf8_gettop4( reg ) _mm256_extractf128_ps(reg,1)
|
|
|
|
#ifdef STBIR_AVX2
|
|
|
|
#define stbir__simdi8_expand_u8_to_u32(out0,out1,ireg) \
|
|
{ \
|
|
stbir__simdi8 a, zero =_mm256_setzero_si256();\
|
|
a = _mm256_permute4x64_epi64( _mm256_unpacklo_epi8( _mm256_permute4x64_epi64(_mm256_castsi128_si256(ireg),(0<<0)+(2<<2)+(1<<4)+(3<<6)), zero ),(0<<0)+(2<<2)+(1<<4)+(3<<6)); \
|
|
out0 = _mm256_unpacklo_epi16( a, zero ); \
|
|
out1 = _mm256_unpackhi_epi16( a, zero ); \
|
|
}
|
|
|
|
#define stbir__simdf8_pack_to_16bytes(out,aa,bb) \
|
|
{ \
|
|
stbir__simdi8 t; \
|
|
stbir__simdf8 af,bf; \
|
|
stbir__simdi8 a,b; \
|
|
af = _mm256_min_ps( aa, STBIR_max_uint8_as_floatX ); \
|
|
bf = _mm256_min_ps( bb, STBIR_max_uint8_as_floatX ); \
|
|
af = _mm256_max_ps( af, _mm256_setzero_ps() ); \
|
|
bf = _mm256_max_ps( bf, _mm256_setzero_ps() ); \
|
|
a = _mm256_cvttps_epi32( af ); \
|
|
b = _mm256_cvttps_epi32( bf ); \
|
|
t = _mm256_permute4x64_epi64( _mm256_packs_epi32( a, b ), (0<<0)+(2<<2)+(1<<4)+(3<<6) ); \
|
|
out = _mm256_castsi256_si128( _mm256_permute4x64_epi64( _mm256_packus_epi16( t, t ), (0<<0)+(2<<2)+(1<<4)+(3<<6) ) ); \
|
|
}
|
|
|
|
#define stbir__simdi8_expand_u16_to_u32(out,ireg) out = _mm256_unpacklo_epi16( _mm256_permute4x64_epi64(_mm256_castsi128_si256(ireg),(0<<0)+(2<<2)+(1<<4)+(3<<6)), _mm256_setzero_si256() );
|
|
|
|
#define stbir__simdf8_pack_to_16words(out,aa,bb) \
|
|
{ \
|
|
stbir__simdf8 af,bf; \
|
|
stbir__simdi8 a,b; \
|
|
af = _mm256_min_ps( aa, STBIR_max_uint16_as_floatX ); \
|
|
bf = _mm256_min_ps( bb, STBIR_max_uint16_as_floatX ); \
|
|
af = _mm256_max_ps( af, _mm256_setzero_ps() ); \
|
|
bf = _mm256_max_ps( bf, _mm256_setzero_ps() ); \
|
|
a = _mm256_cvttps_epi32( af ); \
|
|
b = _mm256_cvttps_epi32( bf ); \
|
|
(out) = _mm256_permute4x64_epi64( _mm256_packus_epi32(a, b), (0<<0)+(2<<2)+(1<<4)+(3<<6) ); \
|
|
}
|
|
|
|
#else
|
|
|
|
#define stbir__simdi8_expand_u8_to_u32(out0,out1,ireg) \
|
|
{ \
|
|
stbir__simdi a,zero = _mm_setzero_si128(); \
|
|
a = _mm_unpacklo_epi8( ireg, zero ); \
|
|
out0 = _mm256_setr_m128i( _mm_unpacklo_epi16( a, zero ), _mm_unpackhi_epi16( a, zero ) ); \
|
|
a = _mm_unpackhi_epi8( ireg, zero ); \
|
|
out1 = _mm256_setr_m128i( _mm_unpacklo_epi16( a, zero ), _mm_unpackhi_epi16( a, zero ) ); \
|
|
}
|
|
|
|
#define stbir__simdf8_pack_to_16bytes(out,aa,bb) \
|
|
{ \
|
|
stbir__simdi t; \
|
|
stbir__simdf8 af,bf; \
|
|
stbir__simdi8 a,b; \
|
|
af = _mm256_min_ps( aa, STBIR_max_uint8_as_floatX ); \
|
|
bf = _mm256_min_ps( bb, STBIR_max_uint8_as_floatX ); \
|
|
af = _mm256_max_ps( af, _mm256_setzero_ps() ); \
|
|
bf = _mm256_max_ps( bf, _mm256_setzero_ps() ); \
|
|
a = _mm256_cvttps_epi32( af ); \
|
|
b = _mm256_cvttps_epi32( bf ); \
|
|
out = _mm_packs_epi32( _mm256_castsi256_si128(a), _mm256_extractf128_si256( a, 1 ) ); \
|
|
out = _mm_packus_epi16( out, out ); \
|
|
t = _mm_packs_epi32( _mm256_castsi256_si128(b), _mm256_extractf128_si256( b, 1 ) ); \
|
|
t = _mm_packus_epi16( t, t ); \
|
|
out = _mm_castps_si128( _mm_shuffle_ps( _mm_castsi128_ps(out), _mm_castsi128_ps(t), (0<<0)+(1<<2)+(0<<4)+(1<<6) ) ); \
|
|
}
|
|
|
|
#define stbir__simdi8_expand_u16_to_u32(out,ireg) \
|
|
{ \
|
|
stbir__simdi a,b,zero = _mm_setzero_si128(); \
|
|
a = _mm_unpacklo_epi16( ireg, zero ); \
|
|
b = _mm_unpackhi_epi16( ireg, zero ); \
|
|
out = _mm256_insertf128_si256( _mm256_castsi128_si256( a ), b, 1 ); \
|
|
}
|
|
|
|
#define stbir__simdf8_pack_to_16words(out,aa,bb) \
|
|
{ \
|
|
stbir__simdi t0,t1; \
|
|
stbir__simdf8 af,bf; \
|
|
stbir__simdi8 a,b; \
|
|
af = _mm256_min_ps( aa, STBIR_max_uint16_as_floatX ); \
|
|
bf = _mm256_min_ps( bb, STBIR_max_uint16_as_floatX ); \
|
|
af = _mm256_max_ps( af, _mm256_setzero_ps() ); \
|
|
bf = _mm256_max_ps( bf, _mm256_setzero_ps() ); \
|
|
a = _mm256_cvttps_epi32( af ); \
|
|
b = _mm256_cvttps_epi32( bf ); \
|
|
t0 = _mm_packus_epi32( _mm256_castsi256_si128(a), _mm256_extractf128_si256( a, 1 ) ); \
|
|
t1 = _mm_packus_epi32( _mm256_castsi256_si128(b), _mm256_extractf128_si256( b, 1 ) ); \
|
|
out = _mm256_setr_m128i( t0, t1 ); \
|
|
}
|
|
|
|
#endif
|
|
|
|
static __m256i stbir_00001111 = { STBIR__CONST_4d_32i( 0, 0, 0, 0 ), STBIR__CONST_4d_32i( 1, 1, 1, 1 ) };
|
|
#define stbir__simdf8_0123to00001111( out, in ) (out) = _mm256_permutevar_ps ( in, stbir_00001111 )
|
|
|
|
static __m256i stbir_22223333 = { STBIR__CONST_4d_32i( 2, 2, 2, 2 ), STBIR__CONST_4d_32i( 3, 3, 3, 3 ) };
|
|
#define stbir__simdf8_0123to22223333( out, in ) (out) = _mm256_permutevar_ps ( in, stbir_22223333 )
|
|
|
|
#define stbir__simdf8_0123to2222( out, in ) (out) = stbir__simdf_swiz(_mm256_castps256_ps128(in), 2,2,2,2 )
|
|
|
|
#define stbir__simdf8_load4b( out, ptr ) (out) = _mm256_broadcast_ps( (__m128 const *)(ptr) )
|
|
|
|
static __m256i stbir_00112233 = { STBIR__CONST_4d_32i( 0, 0, 1, 1 ), STBIR__CONST_4d_32i( 2, 2, 3, 3 ) };
|
|
#define stbir__simdf8_0123to00112233( out, in ) (out) = _mm256_permutevar_ps ( in, stbir_00112233 )
|
|
#define stbir__simdf8_add4( out, a8, b ) (out) = _mm256_add_ps( a8, _mm256_castps128_ps256( b ) )
|
|
|
|
static __m256i stbir_load6 = { STBIR__CONST_4_32i( 0x80000000 ), STBIR__CONST_4d_32i( 0x80000000, 0x80000000, 0, 0 ) };
|
|
#define stbir__simdf8_load6z( out, ptr ) (out) = _mm256_maskload_ps( ptr, stbir_load6 )
|
|
|
|
#define stbir__simdf8_0123to00000000( out, in ) (out) = _mm256_shuffle_ps ( in, in, (0<<0)+(0<<2)+(0<<4)+(0<<6) )
|
|
#define stbir__simdf8_0123to11111111( out, in ) (out) = _mm256_shuffle_ps ( in, in, (1<<0)+(1<<2)+(1<<4)+(1<<6) )
|
|
#define stbir__simdf8_0123to22222222( out, in ) (out) = _mm256_shuffle_ps ( in, in, (2<<0)+(2<<2)+(2<<4)+(2<<6) )
|
|
#define stbir__simdf8_0123to33333333( out, in ) (out) = _mm256_shuffle_ps ( in, in, (3<<0)+(3<<2)+(3<<4)+(3<<6) )
|
|
#define stbir__simdf8_0123to21032103( out, in ) (out) = _mm256_shuffle_ps ( in, in, (2<<0)+(1<<2)+(0<<4)+(3<<6) )
|
|
#define stbir__simdf8_0123to32103210( out, in ) (out) = _mm256_shuffle_ps ( in, in, (3<<0)+(2<<2)+(1<<4)+(0<<6) )
|
|
#define stbir__simdf8_0123to12301230( out, in ) (out) = _mm256_shuffle_ps ( in, in, (1<<0)+(2<<2)+(3<<4)+(0<<6) )
|
|
#define stbir__simdf8_0123to10321032( out, in ) (out) = _mm256_shuffle_ps ( in, in, (1<<0)+(0<<2)+(3<<4)+(2<<6) )
|
|
#define stbir__simdf8_0123to30123012( out, in ) (out) = _mm256_shuffle_ps ( in, in, (3<<0)+(0<<2)+(1<<4)+(2<<6) )
|
|
|
|
#define stbir__simdf8_0123to11331133( out, in ) (out) = _mm256_shuffle_ps ( in, in, (1<<0)+(1<<2)+(3<<4)+(3<<6) )
|
|
#define stbir__simdf8_0123to00220022( out, in ) (out) = _mm256_shuffle_ps ( in, in, (0<<0)+(0<<2)+(2<<4)+(2<<6) )
|
|
|
|
#define stbir__simdf8_aaa1( out, alp, ones ) (out) = _mm256_blend_ps( alp, ones, (1<<0)+(1<<1)+(1<<2)+(0<<3)+(1<<4)+(1<<5)+(1<<6)+(0<<7)); (out)=_mm256_shuffle_ps( out,out, (3<<0) + (3<<2) + (3<<4) + (0<<6) )
|
|
#define stbir__simdf8_1aaa( out, alp, ones ) (out) = _mm256_blend_ps( alp, ones, (0<<0)+(1<<1)+(1<<2)+(1<<3)+(0<<4)+(1<<5)+(1<<6)+(1<<7)); (out)=_mm256_shuffle_ps( out,out, (1<<0) + (0<<2) + (0<<4) + (0<<6) )
|
|
#define stbir__simdf8_a1a1( out, alp, ones) (out) = _mm256_blend_ps( alp, ones, (1<<0)+(0<<1)+(1<<2)+(0<<3)+(1<<4)+(0<<5)+(1<<6)+(0<<7)); (out)=_mm256_shuffle_ps( out,out, (1<<0) + (0<<2) + (3<<4) + (2<<6) )
|
|
#define stbir__simdf8_1a1a( out, alp, ones) (out) = _mm256_blend_ps( alp, ones, (0<<0)+(1<<1)+(0<<2)+(1<<3)+(0<<4)+(1<<5)+(0<<6)+(1<<7)); (out)=_mm256_shuffle_ps( out,out, (1<<0) + (0<<2) + (3<<4) + (2<<6) )
|
|
|
|
#define stbir__simdf8_zero( reg ) (reg) = _mm256_setzero_ps()
|
|
|
|
#ifdef STBIR_USE_FMA // not on by default to maintain bit identical simd to non-simd
|
|
#define stbir__simdf8_madd( out, add, mul1, mul2 ) (out) = _mm256_fmadd_ps( mul1, mul2, add )
|
|
#define stbir__simdf8_madd_mem( out, add, mul, ptr ) (out) = _mm256_fmadd_ps( mul, _mm256_loadu_ps( (float const*)(ptr) ), add )
|
|
#define stbir__simdf8_madd_mem4( out, add, mul, ptr )(out) = _mm256_fmadd_ps( _mm256_setr_m128( mul, _mm_setzero_ps() ), _mm256_setr_m128( _mm_loadu_ps( (float const*)(ptr) ), _mm_setzero_ps() ), add )
|
|
#else
|
|
#define stbir__simdf8_madd( out, add, mul1, mul2 ) (out) = _mm256_add_ps( add, _mm256_mul_ps( mul1, mul2 ) )
|
|
#define stbir__simdf8_madd_mem( out, add, mul, ptr ) (out) = _mm256_add_ps( add, _mm256_mul_ps( mul, _mm256_loadu_ps( (float const*)(ptr) ) ) )
|
|
#define stbir__simdf8_madd_mem4( out, add, mul, ptr ) (out) = _mm256_add_ps( add, _mm256_setr_m128( _mm_mul_ps( mul, _mm_loadu_ps( (float const*)(ptr) ) ), _mm_setzero_ps() ) )
|
|
#endif
|
|
#define stbir__if_simdf8_cast_to_simdf4( val ) _mm256_castps256_ps128( val )
|
|
|
|
#endif
|
|
|
|
#ifdef STBIR_FLOORF
|
|
#undef STBIR_FLOORF
|
|
#endif
|
|
#define STBIR_FLOORF stbir_simd_floorf
|
|
static stbir__inline float stbir_simd_floorf(float x) // martins floorf
|
|
{
|
|
#if defined(STBIR_AVX) || defined(__SSE4_1__) || defined(STBIR_SSE41)
|
|
__m128 t = _mm_set_ss(x);
|
|
return _mm_cvtss_f32( _mm_floor_ss(t, t) );
|
|
#else
|
|
__m128 f = _mm_set_ss(x);
|
|
__m128 t = _mm_cvtepi32_ps(_mm_cvttps_epi32(f));
|
|
__m128 r = _mm_add_ss(t, _mm_and_ps(_mm_cmplt_ss(f, t), _mm_set_ss(-1.0f)));
|
|
return _mm_cvtss_f32(r);
|
|
#endif
|
|
}
|
|
|
|
#ifdef STBIR_CEILF
|
|
#undef STBIR_CEILF
|
|
#endif
|
|
#define STBIR_CEILF stbir_simd_ceilf
|
|
static stbir__inline float stbir_simd_ceilf(float x) // martins ceilf
|
|
{
|
|
#if defined(STBIR_AVX) || defined(__SSE4_1__) || defined(STBIR_SSE41)
|
|
__m128 t = _mm_set_ss(x);
|
|
return _mm_cvtss_f32( _mm_ceil_ss(t, t) );
|
|
#else
|
|
__m128 f = _mm_set_ss(x);
|
|
__m128 t = _mm_cvtepi32_ps(_mm_cvttps_epi32(f));
|
|
__m128 r = _mm_add_ss(t, _mm_and_ps(_mm_cmplt_ss(t, f), _mm_set_ss(1.0f)));
|
|
return _mm_cvtss_f32(r);
|
|
#endif
|
|
}
|
|
|
|
#elif defined(STBIR_NEON)
|
|
|
|
#include <arm_neon.h>
|
|
|
|
#define stbir__simdf float32x4_t
|
|
#define stbir__simdi uint32x4_t
|
|
|
|
#define stbir_simdi_castf( reg ) vreinterpretq_u32_f32(reg)
|
|
#define stbir_simdf_casti( reg ) vreinterpretq_f32_u32(reg)
|
|
|
|
#define stbir__simdf_load( reg, ptr ) (reg) = vld1q_f32( (float const*)(ptr) )
|
|
#define stbir__simdi_load( reg, ptr ) (reg) = vld1q_u32( (uint32_t const*)(ptr) )
|
|
#define stbir__simdf_load1( out, ptr ) (out) = vld1q_dup_f32( (float const*)(ptr) ) // top values can be random (not denormal or nan for perf)
|
|
#define stbir__simdi_load1( out, ptr ) (out) = vld1q_dup_u32( (uint32_t const*)(ptr) )
|
|
#define stbir__simdf_load1z( out, ptr ) (out) = vld1q_lane_f32( (float const*)(ptr), vdupq_n_f32(0), 0 ) // top values must be zero
|
|
#define stbir__simdf_frep4( fvar ) vdupq_n_f32( fvar )
|
|
#define stbir__simdf_load1frep4( out, fvar ) (out) = vdupq_n_f32( fvar )
|
|
#define stbir__simdf_load2( out, ptr ) (out) = vcombine_f32( vld1_f32( (float const*)(ptr) ), vcreate_f32(0) ) // top values can be random (not denormal or nan for perf)
|
|
#define stbir__simdf_load2z( out, ptr ) (out) = vcombine_f32( vld1_f32( (float const*)(ptr) ), vcreate_f32(0) ) // top values must be zero
|
|
#define stbir__simdf_load2hmerge( out, reg, ptr ) (out) = vcombine_f32( vget_low_f32(reg), vld1_f32( (float const*)(ptr) ) )
|
|
|
|
#define stbir__simdf_zeroP() vdupq_n_f32(0)
|
|
#define stbir__simdf_zero( reg ) (reg) = vdupq_n_f32(0)
|
|
|
|
#define stbir__simdf_store( ptr, reg ) vst1q_f32( (float*)(ptr), reg )
|
|
#define stbir__simdf_store1( ptr, reg ) vst1q_lane_f32( (float*)(ptr), reg, 0)
|
|
#define stbir__simdf_store2( ptr, reg ) vst1_f32( (float*)(ptr), vget_low_f32(reg) )
|
|
#define stbir__simdf_store2h( ptr, reg ) vst1_f32( (float*)(ptr), vget_high_f32(reg) )
|
|
|
|
#define stbir__simdi_store( ptr, reg ) vst1q_u32( (uint32_t*)(ptr), reg )
|
|
#define stbir__simdi_store1( ptr, reg ) vst1q_lane_u32( (uint32_t*)(ptr), reg, 0 )
|
|
#define stbir__simdi_store2( ptr, reg ) vst1_u32( (uint32_t*)(ptr), vget_low_u32(reg) )
|
|
|
|
#define stbir__prefetch( ptr )
|
|
|
|
#define stbir__simdi_expand_u8_to_u32(out0,out1,out2,out3,ireg) \
|
|
{ \
|
|
uint16x8_t l = vmovl_u8( vget_low_u8 ( vreinterpretq_u8_u32(ireg) ) ); \
|
|
uint16x8_t h = vmovl_u8( vget_high_u8( vreinterpretq_u8_u32(ireg) ) ); \
|
|
out0 = vmovl_u16( vget_low_u16 ( l ) ); \
|
|
out1 = vmovl_u16( vget_high_u16( l ) ); \
|
|
out2 = vmovl_u16( vget_low_u16 ( h ) ); \
|
|
out3 = vmovl_u16( vget_high_u16( h ) ); \
|
|
}
|
|
|
|
#define stbir__simdi_expand_u8_to_1u32(out,ireg) \
|
|
{ \
|
|
uint16x8_t tmp = vmovl_u8( vget_low_u8( vreinterpretq_u8_u32(ireg) ) ); \
|
|
out = vmovl_u16( vget_low_u16( tmp ) ); \
|
|
}
|
|
|
|
#define stbir__simdi_expand_u16_to_u32(out0,out1,ireg) \
|
|
{ \
|
|
uint16x8_t tmp = vreinterpretq_u16_u32(ireg); \
|
|
out0 = vmovl_u16( vget_low_u16 ( tmp ) ); \
|
|
out1 = vmovl_u16( vget_high_u16( tmp ) ); \
|
|
}
|
|
|
|
#define stbir__simdf_convert_float_to_i32( i, f ) (i) = vreinterpretq_u32_s32( vcvtq_s32_f32(f) )
|
|
#define stbir__simdf_convert_float_to_int( f ) vgetq_lane_s32(vcvtq_s32_f32(f), 0)
|
|
#define stbir__simdi_to_int( i ) (int)vgetq_lane_u32(i, 0)
|
|
#define stbir__simdf_convert_float_to_uint8( f ) ((unsigned char)vgetq_lane_s32(vcvtq_s32_f32(vmaxq_f32(vminq_f32(f,STBIR__CONSTF(STBIR_max_uint8_as_float)),vdupq_n_f32(0))), 0))
|
|
#define stbir__simdf_convert_float_to_short( f ) ((unsigned short)vgetq_lane_s32(vcvtq_s32_f32(vmaxq_f32(vminq_f32(f,STBIR__CONSTF(STBIR_max_uint16_as_float)),vdupq_n_f32(0))), 0))
|
|
#define stbir__simdi_convert_i32_to_float(out, ireg) (out) = vcvtq_f32_s32( vreinterpretq_s32_u32(ireg) )
|
|
#define stbir__simdf_add( out, reg0, reg1 ) (out) = vaddq_f32( reg0, reg1 )
|
|
#define stbir__simdf_mult( out, reg0, reg1 ) (out) = vmulq_f32( reg0, reg1 )
|
|
#define stbir__simdf_mult_mem( out, reg, ptr ) (out) = vmulq_f32( reg, vld1q_f32( (float const*)(ptr) ) )
|
|
#define stbir__simdf_mult1_mem( out, reg, ptr ) (out) = vmulq_f32( reg, vld1q_dup_f32( (float const*)(ptr) ) )
|
|
#define stbir__simdf_add_mem( out, reg, ptr ) (out) = vaddq_f32( reg, vld1q_f32( (float const*)(ptr) ) )
|
|
#define stbir__simdf_add1_mem( out, reg, ptr ) (out) = vaddq_f32( reg, vld1q_dup_f32( (float const*)(ptr) ) )
|
|
|
|
#ifdef STBIR_USE_FMA // not on by default to maintain bit identical simd to non-simd (and also x64 no madd to arm madd)
|
|
#define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = vfmaq_f32( add, mul1, mul2 )
|
|
#define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = vfmaq_f32( add, mul1, mul2 )
|
|
#define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = vfmaq_f32( add, mul, vld1q_f32( (float const*)(ptr) ) )
|
|
#define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = vfmaq_f32( add, mul, vld1q_dup_f32( (float const*)(ptr) ) )
|
|
#else
|
|
#define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = vaddq_f32( add, vmulq_f32( mul1, mul2 ) )
|
|
#define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = vaddq_f32( add, vmulq_f32( mul1, mul2 ) )
|
|
#define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = vaddq_f32( add, vmulq_f32( mul, vld1q_f32( (float const*)(ptr) ) ) )
|
|
#define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = vaddq_f32( add, vmulq_f32( mul, vld1q_dup_f32( (float const*)(ptr) ) ) )
|
|
#endif
|
|
|
|
#define stbir__simdf_add1( out, reg0, reg1 ) (out) = vaddq_f32( reg0, reg1 )
|
|
#define stbir__simdf_mult1( out, reg0, reg1 ) (out) = vmulq_f32( reg0, reg1 )
|
|
|
|
#define stbir__simdf_and( out, reg0, reg1 ) (out) = vreinterpretq_f32_u32( vandq_u32( vreinterpretq_u32_f32(reg0), vreinterpretq_u32_f32(reg1) ) )
|
|
#define stbir__simdf_or( out, reg0, reg1 ) (out) = vreinterpretq_f32_u32( vorrq_u32( vreinterpretq_u32_f32(reg0), vreinterpretq_u32_f32(reg1) ) )
|
|
|
|
#define stbir__simdf_min( out, reg0, reg1 ) (out) = vminq_f32( reg0, reg1 )
|
|
#define stbir__simdf_max( out, reg0, reg1 ) (out) = vmaxq_f32( reg0, reg1 )
|
|
#define stbir__simdf_min1( out, reg0, reg1 ) (out) = vminq_f32( reg0, reg1 )
|
|
#define stbir__simdf_max1( out, reg0, reg1 ) (out) = vmaxq_f32( reg0, reg1 )
|
|
|
|
#define stbir__simdf_0123ABCDto3ABx( out, reg0, reg1 ) (out) = vextq_f32( reg0, reg1, 3 )
|
|
#define stbir__simdf_0123ABCDto23Ax( out, reg0, reg1 ) (out) = vextq_f32( reg0, reg1, 2 )
|
|
|
|
#define stbir__simdf_a1a1( out, alp, ones ) (out) = vzipq_f32(vuzpq_f32(alp, alp).val[1], ones).val[0]
|
|
#define stbir__simdf_1a1a( out, alp, ones ) (out) = vzipq_f32(ones, vuzpq_f32(alp, alp).val[0]).val[0]
|
|
|
|
#if defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ )
|
|
|
|
#define stbir__simdf_aaa1( out, alp, ones ) (out) = vcopyq_laneq_f32(vdupq_n_f32(vgetq_lane_f32(alp, 3)), 3, ones, 3)
|
|
#define stbir__simdf_1aaa( out, alp, ones ) (out) = vcopyq_laneq_f32(vdupq_n_f32(vgetq_lane_f32(alp, 0)), 0, ones, 0)
|
|
|
|
#if defined( _MSC_VER ) && !defined(__clang__)
|
|
#define stbir_make16(a,b,c,d) vcombine_u8( \
|
|
vcreate_u8( (4*a+0) | ((4*a+1)<<8) | ((4*a+2)<<16) | ((4*a+3)<<24) | \
|
|
((stbir_uint64)(4*b+0)<<32) | ((stbir_uint64)(4*b+1)<<40) | ((stbir_uint64)(4*b+2)<<48) | ((stbir_uint64)(4*b+3)<<56)), \
|
|
vcreate_u8( (4*c+0) | ((4*c+1)<<8) | ((4*c+2)<<16) | ((4*c+3)<<24) | \
|
|
((stbir_uint64)(4*d+0)<<32) | ((stbir_uint64)(4*d+1)<<40) | ((stbir_uint64)(4*d+2)<<48) | ((stbir_uint64)(4*d+3)<<56) ) )
|
|
#else
|
|
#define stbir_make16(a,b,c,d) (uint8x16_t){4*a+0,4*a+1,4*a+2,4*a+3,4*b+0,4*b+1,4*b+2,4*b+3,4*c+0,4*c+1,4*c+2,4*c+3,4*d+0,4*d+1,4*d+2,4*d+3}
|
|
#endif
|
|
|
|
#define stbir__simdf_swiz( reg, one, two, three, four ) vreinterpretq_f32_u8( vqtbl1q_u8( vreinterpretq_u8_f32(reg), stbir_make16(one, two, three, four) ) )
|
|
|
|
#define stbir__simdi_16madd( out, reg0, reg1 ) \
|
|
{ \
|
|
int16x8_t r0 = vreinterpretq_s16_u32(reg0); \
|
|
int16x8_t r1 = vreinterpretq_s16_u32(reg1); \
|
|
int32x4_t tmp0 = vmull_s16( vget_low_s16(r0), vget_low_s16(r1) ); \
|
|
int32x4_t tmp1 = vmull_s16( vget_high_s16(r0), vget_high_s16(r1) ); \
|
|
(out) = vreinterpretq_u32_s32( vpaddq_s32(tmp0, tmp1) ); \
|
|
}
|
|
|
|
#else
|
|
|
|
#define stbir__simdf_aaa1( out, alp, ones ) (out) = vsetq_lane_f32(1.0f, vdupq_n_f32(vgetq_lane_f32(alp, 3)), 3)
|
|
#define stbir__simdf_1aaa( out, alp, ones ) (out) = vsetq_lane_f32(1.0f, vdupq_n_f32(vgetq_lane_f32(alp, 0)), 0)
|
|
|
|
#if defined( _MSC_VER ) && !defined(__clang__)
|
|
static stbir__inline uint8x8x2_t stbir_make8x2(float32x4_t reg)
|
|
{
|
|
uint8x8x2_t r = { { vget_low_u8(vreinterpretq_u8_f32(reg)), vget_high_u8(vreinterpretq_u8_f32(reg)) } };
|
|
return r;
|
|
}
|
|
#define stbir_make8(a,b) vcreate_u8( \
|
|
(4*a+0) | ((4*a+1)<<8) | ((4*a+2)<<16) | ((4*a+3)<<24) | \
|
|
((stbir_uint64)(4*b+0)<<32) | ((stbir_uint64)(4*b+1)<<40) | ((stbir_uint64)(4*b+2)<<48) | ((stbir_uint64)(4*b+3)<<56) )
|
|
#else
|
|
#define stbir_make8x2(reg) (uint8x8x2_t){ { vget_low_u8(vreinterpretq_u8_f32(reg)), vget_high_u8(vreinterpretq_u8_f32(reg)) } }
|
|
#define stbir_make8(a,b) (uint8x8_t){4*a+0,4*a+1,4*a+2,4*a+3,4*b+0,4*b+1,4*b+2,4*b+3}
|
|
#endif
|
|
|
|
#define stbir__simdf_swiz( reg, one, two, three, four ) vreinterpretq_f32_u8( vcombine_u8( \
|
|
vtbl2_u8( stbir_make8x2( reg ), stbir_make8( one, two ) ), \
|
|
vtbl2_u8( stbir_make8x2( reg ), stbir_make8( three, four ) ) ) )
|
|
|
|
#define stbir__simdi_16madd( out, reg0, reg1 ) \
|
|
{ \
|
|
int16x8_t r0 = vreinterpretq_s16_u32(reg0); \
|
|
int16x8_t r1 = vreinterpretq_s16_u32(reg1); \
|
|
int32x4_t tmp0 = vmull_s16( vget_low_s16(r0), vget_low_s16(r1) ); \
|
|
int32x4_t tmp1 = vmull_s16( vget_high_s16(r0), vget_high_s16(r1) ); \
|
|
int32x2_t out0 = vpadd_s32( vget_low_s32(tmp0), vget_high_s32(tmp0) ); \
|
|
int32x2_t out1 = vpadd_s32( vget_low_s32(tmp1), vget_high_s32(tmp1) ); \
|
|
(out) = vreinterpretq_u32_s32( vcombine_s32(out0, out1) ); \
|
|
}
|
|
|
|
#endif
|
|
|
|
#define stbir__simdi_and( out, reg0, reg1 ) (out) = vandq_u32( reg0, reg1 )
|
|
#define stbir__simdi_or( out, reg0, reg1 ) (out) = vorrq_u32( reg0, reg1 )
|
|
|
|
#define stbir__simdf_pack_to_8bytes(out,aa,bb) \
|
|
{ \
|
|
float32x4_t af = vmaxq_f32( vminq_f32(aa,STBIR__CONSTF(STBIR_max_uint8_as_float) ), vdupq_n_f32(0) ); \
|
|
float32x4_t bf = vmaxq_f32( vminq_f32(bb,STBIR__CONSTF(STBIR_max_uint8_as_float) ), vdupq_n_f32(0) ); \
|
|
int16x4_t ai = vqmovn_s32( vcvtq_s32_f32( af ) ); \
|
|
int16x4_t bi = vqmovn_s32( vcvtq_s32_f32( bf ) ); \
|
|
uint8x8_t out8 = vqmovun_s16( vcombine_s16(ai, bi) ); \
|
|
out = vreinterpretq_u32_u8( vcombine_u8(out8, out8) ); \
|
|
}
|
|
|
|
#define stbir__simdf_pack_to_8words(out,aa,bb) \
|
|
{ \
|
|
float32x4_t af = vmaxq_f32( vminq_f32(aa,STBIR__CONSTF(STBIR_max_uint16_as_float) ), vdupq_n_f32(0) ); \
|
|
float32x4_t bf = vmaxq_f32( vminq_f32(bb,STBIR__CONSTF(STBIR_max_uint16_as_float) ), vdupq_n_f32(0) ); \
|
|
int32x4_t ai = vcvtq_s32_f32( af ); \
|
|
int32x4_t bi = vcvtq_s32_f32( bf ); \
|
|
out = vreinterpretq_u32_u16( vcombine_u16(vqmovun_s32(ai), vqmovun_s32(bi)) ); \
|
|
}
|
|
|
|
#define stbir__interleave_pack_and_store_16_u8( ptr, r0, r1, r2, r3 ) \
|
|
{ \
|
|
int16x4x2_t tmp0 = vzip_s16( vqmovn_s32(vreinterpretq_s32_u32(r0)), vqmovn_s32(vreinterpretq_s32_u32(r2)) ); \
|
|
int16x4x2_t tmp1 = vzip_s16( vqmovn_s32(vreinterpretq_s32_u32(r1)), vqmovn_s32(vreinterpretq_s32_u32(r3)) ); \
|
|
uint8x8x2_t out = \
|
|
{ { \
|
|
vqmovun_s16( vcombine_s16(tmp0.val[0], tmp0.val[1]) ), \
|
|
vqmovun_s16( vcombine_s16(tmp1.val[0], tmp1.val[1]) ), \
|
|
} }; \
|
|
vst2_u8(ptr, out); \
|
|
}
|
|
|
|
#define stbir__simdf_load4_transposed( o0, o1, o2, o3, ptr ) \
|
|
{ \
|
|
float32x4x4_t tmp = vld4q_f32(ptr); \
|
|
o0 = tmp.val[0]; \
|
|
o1 = tmp.val[1]; \
|
|
o2 = tmp.val[2]; \
|
|
o3 = tmp.val[3]; \
|
|
}
|
|
|
|
#define stbir__simdi_32shr( out, reg, imm ) out = vshrq_n_u32( reg, imm )
|
|
|
|
#if defined( _MSC_VER ) && !defined(__clang__)
|
|
#define STBIR__SIMDF_CONST(var, x) __declspec(align(8)) float var[] = { x, x, x, x }
|
|
#define STBIR__SIMDI_CONST(var, x) __declspec(align(8)) uint32_t var[] = { x, x, x, x }
|
|
#define STBIR__CONSTF(var) (*(const float32x4_t*)var)
|
|
#define STBIR__CONSTI(var) (*(const uint32x4_t*)var)
|
|
#else
|
|
#define STBIR__SIMDF_CONST(var, x) stbir__simdf var = { x, x, x, x }
|
|
#define STBIR__SIMDI_CONST(var, x) stbir__simdi var = { x, x, x, x }
|
|
#define STBIR__CONSTF(var) (var)
|
|
#define STBIR__CONSTI(var) (var)
|
|
#endif
|
|
|
|
#ifdef STBIR_FLOORF
|
|
#undef STBIR_FLOORF
|
|
#endif
|
|
#define STBIR_FLOORF stbir_simd_floorf
|
|
static stbir__inline float stbir_simd_floorf(float x)
|
|
{
|
|
#if defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ )
|
|
return vget_lane_f32( vrndm_f32( vdup_n_f32(x) ), 0);
|
|
#else
|
|
float32x2_t f = vdup_n_f32(x);
|
|
float32x2_t t = vcvt_f32_s32(vcvt_s32_f32(f));
|
|
uint32x2_t a = vclt_f32(f, t);
|
|
uint32x2_t b = vreinterpret_u32_f32(vdup_n_f32(-1.0f));
|
|
float32x2_t r = vadd_f32(t, vreinterpret_f32_u32(vand_u32(a, b)));
|
|
return vget_lane_f32(r, 0);
|
|
#endif
|
|
}
|
|
|
|
#ifdef STBIR_CEILF
|
|
#undef STBIR_CEILF
|
|
#endif
|
|
#define STBIR_CEILF stbir_simd_ceilf
|
|
static stbir__inline float stbir_simd_ceilf(float x)
|
|
{
|
|
#if defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ )
|
|
return vget_lane_f32( vrndp_f32( vdup_n_f32(x) ), 0);
|
|
#else
|
|
float32x2_t f = vdup_n_f32(x);
|
|
float32x2_t t = vcvt_f32_s32(vcvt_s32_f32(f));
|
|
uint32x2_t a = vclt_f32(t, f);
|
|
uint32x2_t b = vreinterpret_u32_f32(vdup_n_f32(1.0f));
|
|
float32x2_t r = vadd_f32(t, vreinterpret_f32_u32(vand_u32(a, b)));
|
|
return vget_lane_f32(r, 0);
|
|
#endif
|
|
}
|
|
|
|
#define STBIR_SIMD
|
|
|
|
#elif defined(STBIR_WASM)
|
|
|
|
#include <wasm_simd128.h>
|
|
|
|
#define stbir__simdf v128_t
|
|
#define stbir__simdi v128_t
|
|
|
|
#define stbir_simdi_castf( reg ) (reg)
|
|
#define stbir_simdf_casti( reg ) (reg)
|
|
|
|
#define stbir__simdf_load( reg, ptr ) (reg) = wasm_v128_load( (void const*)(ptr) )
|
|
#define stbir__simdi_load( reg, ptr ) (reg) = wasm_v128_load( (void const*)(ptr) )
|
|
#define stbir__simdf_load1( out, ptr ) (out) = wasm_v128_load32_splat( (void const*)(ptr) ) // top values can be random (not denormal or nan for perf)
|
|
#define stbir__simdi_load1( out, ptr ) (out) = wasm_v128_load32_splat( (void const*)(ptr) )
|
|
#define stbir__simdf_load1z( out, ptr ) (out) = wasm_v128_load32_zero( (void const*)(ptr) ) // top values must be zero
|
|
#define stbir__simdf_frep4( fvar ) wasm_f32x4_splat( fvar )
|
|
#define stbir__simdf_load1frep4( out, fvar ) (out) = wasm_f32x4_splat( fvar )
|
|
#define stbir__simdf_load2( out, ptr ) (out) = wasm_v128_load64_splat( (void const*)(ptr) ) // top values can be random (not denormal or nan for perf)
|
|
#define stbir__simdf_load2z( out, ptr ) (out) = wasm_v128_load64_zero( (void const*)(ptr) ) // top values must be zero
|
|
#define stbir__simdf_load2hmerge( out, reg, ptr ) (out) = wasm_v128_load64_lane( (void const*)(ptr), reg, 1 )
|
|
|
|
#define stbir__simdf_zeroP() wasm_f32x4_const_splat(0)
|
|
#define stbir__simdf_zero( reg ) (reg) = wasm_f32x4_const_splat(0)
|
|
|
|
#define stbir__simdf_store( ptr, reg ) wasm_v128_store( (void*)(ptr), reg )
|
|
#define stbir__simdf_store1( ptr, reg ) wasm_v128_store32_lane( (void*)(ptr), reg, 0 )
|
|
#define stbir__simdf_store2( ptr, reg ) wasm_v128_store64_lane( (void*)(ptr), reg, 0 )
|
|
#define stbir__simdf_store2h( ptr, reg ) wasm_v128_store64_lane( (void*)(ptr), reg, 1 )
|
|
|
|
#define stbir__simdi_store( ptr, reg ) wasm_v128_store( (void*)(ptr), reg )
|
|
#define stbir__simdi_store1( ptr, reg ) wasm_v128_store32_lane( (void*)(ptr), reg, 0 )
|
|
#define stbir__simdi_store2( ptr, reg ) wasm_v128_store64_lane( (void*)(ptr), reg, 0 )
|
|
|
|
#define stbir__prefetch( ptr )
|
|
|
|
#define stbir__simdi_expand_u8_to_u32(out0,out1,out2,out3,ireg) \
|
|
{ \
|
|
v128_t l = wasm_u16x8_extend_low_u8x16 ( ireg ); \
|
|
v128_t h = wasm_u16x8_extend_high_u8x16( ireg ); \
|
|
out0 = wasm_u32x4_extend_low_u16x8 ( l ); \
|
|
out1 = wasm_u32x4_extend_high_u16x8( l ); \
|
|
out2 = wasm_u32x4_extend_low_u16x8 ( h ); \
|
|
out3 = wasm_u32x4_extend_high_u16x8( h ); \
|
|
}
|
|
|
|
#define stbir__simdi_expand_u8_to_1u32(out,ireg) \
|
|
{ \
|
|
v128_t tmp = wasm_u16x8_extend_low_u8x16(ireg); \
|
|
out = wasm_u32x4_extend_low_u16x8(tmp); \
|
|
}
|
|
|
|
#define stbir__simdi_expand_u16_to_u32(out0,out1,ireg) \
|
|
{ \
|
|
out0 = wasm_u32x4_extend_low_u16x8 ( ireg ); \
|
|
out1 = wasm_u32x4_extend_high_u16x8( ireg ); \
|
|
}
|
|
|
|
#define stbir__simdf_convert_float_to_i32( i, f ) (i) = wasm_i32x4_trunc_sat_f32x4(f)
|
|
#define stbir__simdf_convert_float_to_int( f ) wasm_i32x4_extract_lane(wasm_i32x4_trunc_sat_f32x4(f), 0)
|
|
#define stbir__simdi_to_int( i ) wasm_i32x4_extract_lane(i, 0)
|
|
#define stbir__simdf_convert_float_to_uint8( f ) ((unsigned char)wasm_i32x4_extract_lane(wasm_i32x4_trunc_sat_f32x4(wasm_f32x4_max(wasm_f32x4_min(f,STBIR_max_uint8_as_float),wasm_f32x4_const_splat(0))), 0))
|
|
#define stbir__simdf_convert_float_to_short( f ) ((unsigned short)wasm_i32x4_extract_lane(wasm_i32x4_trunc_sat_f32x4(wasm_f32x4_max(wasm_f32x4_min(f,STBIR_max_uint16_as_float),wasm_f32x4_const_splat(0))), 0))
|
|
#define stbir__simdi_convert_i32_to_float(out, ireg) (out) = wasm_f32x4_convert_i32x4(ireg)
|
|
#define stbir__simdf_add( out, reg0, reg1 ) (out) = wasm_f32x4_add( reg0, reg1 )
|
|
#define stbir__simdf_mult( out, reg0, reg1 ) (out) = wasm_f32x4_mul( reg0, reg1 )
|
|
#define stbir__simdf_mult_mem( out, reg, ptr ) (out) = wasm_f32x4_mul( reg, wasm_v128_load( (void const*)(ptr) ) )
|
|
#define stbir__simdf_mult1_mem( out, reg, ptr ) (out) = wasm_f32x4_mul( reg, wasm_v128_load32_splat( (void const*)(ptr) ) )
|
|
#define stbir__simdf_add_mem( out, reg, ptr ) (out) = wasm_f32x4_add( reg, wasm_v128_load( (void const*)(ptr) ) )
|
|
#define stbir__simdf_add1_mem( out, reg, ptr ) (out) = wasm_f32x4_add( reg, wasm_v128_load32_splat( (void const*)(ptr) ) )
|
|
|
|
#define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = wasm_f32x4_add( add, wasm_f32x4_mul( mul1, mul2 ) )
|
|
#define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = wasm_f32x4_add( add, wasm_f32x4_mul( mul1, mul2 ) )
|
|
#define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = wasm_f32x4_add( add, wasm_f32x4_mul( mul, wasm_v128_load( (void const*)(ptr) ) ) )
|
|
#define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = wasm_f32x4_add( add, wasm_f32x4_mul( mul, wasm_v128_load32_splat( (void const*)(ptr) ) ) )
|
|
|
|
#define stbir__simdf_add1( out, reg0, reg1 ) (out) = wasm_f32x4_add( reg0, reg1 )
|
|
#define stbir__simdf_mult1( out, reg0, reg1 ) (out) = wasm_f32x4_mul( reg0, reg1 )
|
|
|
|
#define stbir__simdf_and( out, reg0, reg1 ) (out) = wasm_v128_and( reg0, reg1 )
|
|
#define stbir__simdf_or( out, reg0, reg1 ) (out) = wasm_v128_or( reg0, reg1 )
|
|
|
|
#define stbir__simdf_min( out, reg0, reg1 ) (out) = wasm_f32x4_min( reg0, reg1 )
|
|
#define stbir__simdf_max( out, reg0, reg1 ) (out) = wasm_f32x4_max( reg0, reg1 )
|
|
#define stbir__simdf_min1( out, reg0, reg1 ) (out) = wasm_f32x4_min( reg0, reg1 )
|
|
#define stbir__simdf_max1( out, reg0, reg1 ) (out) = wasm_f32x4_max( reg0, reg1 )
|
|
|
|
#define stbir__simdf_0123ABCDto3ABx( out, reg0, reg1 ) (out) = wasm_i32x4_shuffle( reg0, reg1, 3, 4, 5, -1 )
|
|
#define stbir__simdf_0123ABCDto23Ax( out, reg0, reg1 ) (out) = wasm_i32x4_shuffle( reg0, reg1, 2, 3, 4, -1 )
|
|
|
|
#define stbir__simdf_aaa1(out,alp,ones) (out) = wasm_i32x4_shuffle(alp, ones, 3, 3, 3, 4)
|
|
#define stbir__simdf_1aaa(out,alp,ones) (out) = wasm_i32x4_shuffle(alp, ones, 4, 0, 0, 0)
|
|
#define stbir__simdf_a1a1(out,alp,ones) (out) = wasm_i32x4_shuffle(alp, ones, 1, 4, 3, 4)
|
|
#define stbir__simdf_1a1a(out,alp,ones) (out) = wasm_i32x4_shuffle(alp, ones, 4, 0, 4, 2)
|
|
|
|
#define stbir__simdf_swiz( reg, one, two, three, four ) wasm_i32x4_shuffle(reg, reg, one, two, three, four)
|
|
|
|
#define stbir__simdi_and( out, reg0, reg1 ) (out) = wasm_v128_and( reg0, reg1 )
|
|
#define stbir__simdi_or( out, reg0, reg1 ) (out) = wasm_v128_or( reg0, reg1 )
|
|
#define stbir__simdi_16madd( out, reg0, reg1 ) (out) = wasm_i32x4_dot_i16x8( reg0, reg1 )
|
|
|
|
#define stbir__simdf_pack_to_8bytes(out,aa,bb) \
|
|
{ \
|
|
v128_t af = wasm_f32x4_max( wasm_f32x4_min(aa, STBIR_max_uint8_as_float), wasm_f32x4_const_splat(0) ); \
|
|
v128_t bf = wasm_f32x4_max( wasm_f32x4_min(bb, STBIR_max_uint8_as_float), wasm_f32x4_const_splat(0) ); \
|
|
v128_t ai = wasm_i32x4_trunc_sat_f32x4( af ); \
|
|
v128_t bi = wasm_i32x4_trunc_sat_f32x4( bf ); \
|
|
v128_t out16 = wasm_i16x8_narrow_i32x4( ai, bi ); \
|
|
out = wasm_u8x16_narrow_i16x8( out16, out16 ); \
|
|
}
|
|
|
|
#define stbir__simdf_pack_to_8words(out,aa,bb) \
|
|
{ \
|
|
v128_t af = wasm_f32x4_max( wasm_f32x4_min(aa, STBIR_max_uint16_as_float), wasm_f32x4_const_splat(0)); \
|
|
v128_t bf = wasm_f32x4_max( wasm_f32x4_min(bb, STBIR_max_uint16_as_float), wasm_f32x4_const_splat(0)); \
|
|
v128_t ai = wasm_i32x4_trunc_sat_f32x4( af ); \
|
|
v128_t bi = wasm_i32x4_trunc_sat_f32x4( bf ); \
|
|
out = wasm_u16x8_narrow_i32x4( ai, bi ); \
|
|
}
|
|
|
|
#define stbir__interleave_pack_and_store_16_u8( ptr, r0, r1, r2, r3 ) \
|
|
{ \
|
|
v128_t tmp0 = wasm_i16x8_narrow_i32x4(r0, r1); \
|
|
v128_t tmp1 = wasm_i16x8_narrow_i32x4(r2, r3); \
|
|
v128_t tmp = wasm_u8x16_narrow_i16x8(tmp0, tmp1); \
|
|
tmp = wasm_i8x16_shuffle(tmp, tmp, 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15); \
|
|
wasm_v128_store( (void*)(ptr), tmp); \
|
|
}
|
|
|
|
#define stbir__simdf_load4_transposed( o0, o1, o2, o3, ptr ) \
|
|
{ \
|
|
v128_t t0 = wasm_v128_load( ptr ); \
|
|
v128_t t1 = wasm_v128_load( ptr+4 ); \
|
|
v128_t t2 = wasm_v128_load( ptr+8 ); \
|
|
v128_t t3 = wasm_v128_load( ptr+12 ); \
|
|
v128_t s0 = wasm_i32x4_shuffle(t0, t1, 0, 4, 2, 6); \
|
|
v128_t s1 = wasm_i32x4_shuffle(t0, t1, 1, 5, 3, 7); \
|
|
v128_t s2 = wasm_i32x4_shuffle(t2, t3, 0, 4, 2, 6); \
|
|
v128_t s3 = wasm_i32x4_shuffle(t2, t3, 1, 5, 3, 7); \
|
|
o0 = wasm_i32x4_shuffle(s0, s2, 0, 1, 4, 5); \
|
|
o1 = wasm_i32x4_shuffle(s1, s3, 0, 1, 4, 5); \
|
|
o2 = wasm_i32x4_shuffle(s0, s2, 2, 3, 6, 7); \
|
|
o3 = wasm_i32x4_shuffle(s1, s3, 2, 3, 6, 7); \
|
|
}
|
|
|
|
#define stbir__simdi_32shr( out, reg, imm ) out = wasm_u32x4_shr( reg, imm )
|
|
|
|
typedef float stbir__f32x4 __attribute__((__vector_size__(16), __aligned__(16)));
|
|
#define STBIR__SIMDF_CONST(var, x) stbir__simdf var = (v128_t)(stbir__f32x4){ x, x, x, x }
|
|
#define STBIR__SIMDI_CONST(var, x) stbir__simdi var = { x, x, x, x }
|
|
#define STBIR__CONSTF(var) (var)
|
|
#define STBIR__CONSTI(var) (var)
|
|
|
|
#ifdef STBIR_FLOORF
|
|
#undef STBIR_FLOORF
|
|
#endif
|
|
#define STBIR_FLOORF stbir_simd_floorf
|
|
static stbir__inline float stbir_simd_floorf(float x)
|
|
{
|
|
return wasm_f32x4_extract_lane( wasm_f32x4_floor( wasm_f32x4_splat(x) ), 0);
|
|
}
|
|
|
|
#ifdef STBIR_CEILF
|
|
#undef STBIR_CEILF
|
|
#endif
|
|
#define STBIR_CEILF stbir_simd_ceilf
|
|
static stbir__inline float stbir_simd_ceilf(float x)
|
|
{
|
|
return wasm_f32x4_extract_lane( wasm_f32x4_ceil( wasm_f32x4_splat(x) ), 0);
|
|
}
|
|
|
|
#define STBIR_SIMD
|
|
|
|
#endif // SSE2/NEON/WASM
|
|
|
|
#endif // NO SIMD
|
|
|
|
#ifdef STBIR_SIMD8
|
|
#define stbir__simdfX stbir__simdf8
|
|
#define stbir__simdiX stbir__simdi8
|
|
#define stbir__simdfX_load stbir__simdf8_load
|
|
#define stbir__simdiX_load stbir__simdi8_load
|
|
#define stbir__simdfX_mult stbir__simdf8_mult
|
|
#define stbir__simdfX_add_mem stbir__simdf8_add_mem
|
|
#define stbir__simdfX_madd_mem stbir__simdf8_madd_mem
|
|
#define stbir__simdfX_store stbir__simdf8_store
|
|
#define stbir__simdiX_store stbir__simdi8_store
|
|
#define stbir__simdf_frepX stbir__simdf8_frep8
|
|
#define stbir__simdfX_madd stbir__simdf8_madd
|
|
#define stbir__simdfX_min stbir__simdf8_min
|
|
#define stbir__simdfX_max stbir__simdf8_max
|
|
#define stbir__simdfX_aaa1 stbir__simdf8_aaa1
|
|
#define stbir__simdfX_1aaa stbir__simdf8_1aaa
|
|
#define stbir__simdfX_a1a1 stbir__simdf8_a1a1
|
|
#define stbir__simdfX_1a1a stbir__simdf8_1a1a
|
|
#define stbir__simdfX_convert_float_to_i32 stbir__simdf8_convert_float_to_i32
|
|
#define stbir__simdfX_pack_to_words stbir__simdf8_pack_to_16words
|
|
#define stbir__simdfX_zero stbir__simdf8_zero
|
|
#define STBIR_onesX STBIR_ones8
|
|
#define STBIR_max_uint8_as_floatX STBIR_max_uint8_as_float8
|
|
#define STBIR_max_uint16_as_floatX STBIR_max_uint16_as_float8
|
|
#define STBIR_simd_point5X STBIR_simd_point58
|
|
#define stbir__simdfX_float_count 8
|
|
#define stbir__simdfX_0123to1230 stbir__simdf8_0123to12301230
|
|
#define stbir__simdfX_0123to2103 stbir__simdf8_0123to21032103
|
|
static const stbir__simdf8 STBIR_max_uint16_as_float_inverted8 = { stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted };
|
|
static const stbir__simdf8 STBIR_max_uint8_as_float_inverted8 = { stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted };
|
|
static const stbir__simdf8 STBIR_ones8 = { 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0 };
|
|
static const stbir__simdf8 STBIR_simd_point58 = { 0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5 };
|
|
static const stbir__simdf8 STBIR_max_uint8_as_float8 = { stbir__max_uint8_as_float,stbir__max_uint8_as_float,stbir__max_uint8_as_float,stbir__max_uint8_as_float, stbir__max_uint8_as_float,stbir__max_uint8_as_float,stbir__max_uint8_as_float,stbir__max_uint8_as_float };
|
|
static const stbir__simdf8 STBIR_max_uint16_as_float8 = { stbir__max_uint16_as_float,stbir__max_uint16_as_float,stbir__max_uint16_as_float,stbir__max_uint16_as_float, stbir__max_uint16_as_float,stbir__max_uint16_as_float,stbir__max_uint16_as_float,stbir__max_uint16_as_float };
|
|
#else
|
|
#define stbir__simdfX stbir__simdf
|
|
#define stbir__simdiX stbir__simdi
|
|
#define stbir__simdfX_load stbir__simdf_load
|
|
#define stbir__simdiX_load stbir__simdi_load
|
|
#define stbir__simdfX_mult stbir__simdf_mult
|
|
#define stbir__simdfX_add_mem stbir__simdf_add_mem
|
|
#define stbir__simdfX_madd_mem stbir__simdf_madd_mem
|
|
#define stbir__simdfX_store stbir__simdf_store
|
|
#define stbir__simdiX_store stbir__simdi_store
|
|
#define stbir__simdf_frepX stbir__simdf_frep4
|
|
#define stbir__simdfX_madd stbir__simdf_madd
|
|
#define stbir__simdfX_min stbir__simdf_min
|
|
#define stbir__simdfX_max stbir__simdf_max
|
|
#define stbir__simdfX_aaa1 stbir__simdf_aaa1
|
|
#define stbir__simdfX_1aaa stbir__simdf_1aaa
|
|
#define stbir__simdfX_a1a1 stbir__simdf_a1a1
|
|
#define stbir__simdfX_1a1a stbir__simdf_1a1a
|
|
#define stbir__simdfX_convert_float_to_i32 stbir__simdf_convert_float_to_i32
|
|
#define stbir__simdfX_pack_to_words stbir__simdf_pack_to_8words
|
|
#define stbir__simdfX_zero stbir__simdf_zero
|
|
#define STBIR_onesX STBIR__CONSTF(STBIR_ones)
|
|
#define STBIR_simd_point5X STBIR__CONSTF(STBIR_simd_point5)
|
|
#define STBIR_max_uint8_as_floatX STBIR__CONSTF(STBIR_max_uint8_as_float)
|
|
#define STBIR_max_uint16_as_floatX STBIR__CONSTF(STBIR_max_uint16_as_float)
|
|
#define stbir__simdfX_float_count 4
|
|
#define stbir__if_simdf8_cast_to_simdf4( val ) ( val )
|
|
#define stbir__simdfX_0123to1230 stbir__simdf_0123to1230
|
|
#define stbir__simdfX_0123to2103 stbir__simdf_0123to2103
|
|
#endif
|
|
|
|
|
|
#if defined(STBIR_NEON) && !defined(_M_ARM)
|
|
|
|
#if defined( _MSC_VER ) && !defined(__clang__)
|
|
typedef __int16 stbir__FP16;
|
|
#else
|
|
typedef float16_t stbir__FP16;
|
|
#endif
|
|
|
|
#else // no NEON, or 32-bit ARM for MSVC
|
|
|
|
typedef union stbir__FP16
|
|
{
|
|
unsigned short u;
|
|
} stbir__FP16;
|
|
|
|
#endif
|
|
|
|
#if !defined(STBIR_NEON) && !defined(STBIR_FP16C) || defined(STBIR_NEON) && defined(_M_ARM)
|
|
|
|
// Fabian's half float routines, see: https://gist.github.com/rygorous/2156668
|
|
|
|
static stbir__inline float stbir__half_to_float( stbir__FP16 h )
|
|
{
|
|
static const stbir__FP32 magic = { (254 - 15) << 23 };
|
|
static const stbir__FP32 was_infnan = { (127 + 16) << 23 };
|
|
stbir__FP32 o;
|
|
|
|
o.u = (h.u & 0x7fff) << 13; // exponent/mantissa bits
|
|
o.f *= magic.f; // exponent adjust
|
|
if (o.f >= was_infnan.f) // make sure Inf/NaN survive
|
|
o.u |= 255 << 23;
|
|
o.u |= (h.u & 0x8000) << 16; // sign bit
|
|
return o.f;
|
|
}
|
|
|
|
static stbir__inline stbir__FP16 stbir__float_to_half(float val)
|
|
{
|
|
stbir__FP32 f32infty = { 255 << 23 };
|
|
stbir__FP32 f16max = { (127 + 16) << 23 };
|
|
stbir__FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 };
|
|
unsigned int sign_mask = 0x80000000u;
|
|
stbir__FP16 o = { 0 };
|
|
stbir__FP32 f;
|
|
unsigned int sign;
|
|
|
|
f.f = val;
|
|
sign = f.u & sign_mask;
|
|
f.u ^= sign;
|
|
|
|
if (f.u >= f16max.u) // result is Inf or NaN (all exponent bits set)
|
|
o.u = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
|
|
else // (De)normalized number or zero
|
|
{
|
|
if (f.u < (113 << 23)) // resulting FP16 is subnormal or zero
|
|
{
|
|
// use a magic value to align our 10 mantissa bits at the bottom of
|
|
// the float. as long as FP addition is round-to-nearest-even this
|
|
// just works.
|
|
f.f += denorm_magic.f;
|
|
// and one integer subtract of the bias later, we have our final float!
|
|
o.u = (unsigned short) ( f.u - denorm_magic.u );
|
|
}
|
|
else
|
|
{
|
|
unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd
|
|
// update exponent, rounding bias part 1
|
|
f.u = f.u + ((15u - 127) << 23) + 0xfff;
|
|
// rounding bias part 2
|
|
f.u += mant_odd;
|
|
// take the bits!
|
|
o.u = (unsigned short) ( f.u >> 13 );
|
|
}
|
|
}
|
|
|
|
o.u |= sign >> 16;
|
|
return o;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#if defined(STBIR_FP16C)
|
|
|
|
#include <immintrin.h>
|
|
|
|
static stbir__inline void stbir__half_to_float_SIMD(float * output, stbir__FP16 const * input)
|
|
{
|
|
_mm256_storeu_ps( (float*)output, _mm256_cvtph_ps( _mm_loadu_si128( (__m128i const* )input ) ) );
|
|
}
|
|
|
|
static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 * output, float const * input)
|
|
{
|
|
_mm_storeu_si128( (__m128i*)output, _mm256_cvtps_ph( _mm256_loadu_ps( input ), 0 ) );
|
|
}
|
|
|
|
static stbir__inline float stbir__half_to_float( stbir__FP16 h )
|
|
{
|
|
return _mm_cvtss_f32( _mm_cvtph_ps( _mm_cvtsi32_si128( (int)h.u ) ) );
|
|
}
|
|
|
|
static stbir__inline stbir__FP16 stbir__float_to_half( float f )
|
|
{
|
|
stbir__FP16 h;
|
|
h.u = (unsigned short) _mm_cvtsi128_si32( _mm_cvtps_ph( _mm_set_ss( f ), 0 ) );
|
|
return h;
|
|
}
|
|
|
|
#elif defined(STBIR_SSE2)
|
|
|
|
// Fabian's half float routines, see: https://gist.github.com/rygorous/2156668
|
|
stbir__inline static void stbir__half_to_float_SIMD(float * output, void const * input)
|
|
{
|
|
static const STBIR__SIMDI_CONST(mask_nosign, 0x7fff);
|
|
static const STBIR__SIMDI_CONST(smallest_normal, 0x0400);
|
|
static const STBIR__SIMDI_CONST(infinity, 0x7c00);
|
|
static const STBIR__SIMDI_CONST(expadjust_normal, (127 - 15) << 23);
|
|
static const STBIR__SIMDI_CONST(magic_denorm, 113 << 23);
|
|
|
|
__m128i i = _mm_loadu_si128 ( (__m128i const*)(input) );
|
|
__m128i h = _mm_unpacklo_epi16 ( i, _mm_setzero_si128() );
|
|
__m128i mnosign = STBIR__CONSTI(mask_nosign);
|
|
__m128i eadjust = STBIR__CONSTI(expadjust_normal);
|
|
__m128i smallest = STBIR__CONSTI(smallest_normal);
|
|
__m128i infty = STBIR__CONSTI(infinity);
|
|
__m128i expmant = _mm_and_si128(mnosign, h);
|
|
__m128i justsign = _mm_xor_si128(h, expmant);
|
|
__m128i b_notinfnan = _mm_cmpgt_epi32(infty, expmant);
|
|
__m128i b_isdenorm = _mm_cmpgt_epi32(smallest, expmant);
|
|
__m128i shifted = _mm_slli_epi32(expmant, 13);
|
|
__m128i adj_infnan = _mm_andnot_si128(b_notinfnan, eadjust);
|
|
__m128i adjusted = _mm_add_epi32(eadjust, shifted);
|
|
__m128i den1 = _mm_add_epi32(shifted, STBIR__CONSTI(magic_denorm));
|
|
__m128i adjusted2 = _mm_add_epi32(adjusted, adj_infnan);
|
|
__m128 den2 = _mm_sub_ps(_mm_castsi128_ps(den1), *(const __m128 *)&magic_denorm);
|
|
__m128 adjusted3 = _mm_and_ps(den2, _mm_castsi128_ps(b_isdenorm));
|
|
__m128 adjusted4 = _mm_andnot_ps(_mm_castsi128_ps(b_isdenorm), _mm_castsi128_ps(adjusted2));
|
|
__m128 adjusted5 = _mm_or_ps(adjusted3, adjusted4);
|
|
__m128i sign = _mm_slli_epi32(justsign, 16);
|
|
__m128 final = _mm_or_ps(adjusted5, _mm_castsi128_ps(sign));
|
|
stbir__simdf_store( output + 0, final );
|
|
|
|
h = _mm_unpackhi_epi16 ( i, _mm_setzero_si128() );
|
|
expmant = _mm_and_si128(mnosign, h);
|
|
justsign = _mm_xor_si128(h, expmant);
|
|
b_notinfnan = _mm_cmpgt_epi32(infty, expmant);
|
|
b_isdenorm = _mm_cmpgt_epi32(smallest, expmant);
|
|
shifted = _mm_slli_epi32(expmant, 13);
|
|
adj_infnan = _mm_andnot_si128(b_notinfnan, eadjust);
|
|
adjusted = _mm_add_epi32(eadjust, shifted);
|
|
den1 = _mm_add_epi32(shifted, STBIR__CONSTI(magic_denorm));
|
|
adjusted2 = _mm_add_epi32(adjusted, adj_infnan);
|
|
den2 = _mm_sub_ps(_mm_castsi128_ps(den1), *(const __m128 *)&magic_denorm);
|
|
adjusted3 = _mm_and_ps(den2, _mm_castsi128_ps(b_isdenorm));
|
|
adjusted4 = _mm_andnot_ps(_mm_castsi128_ps(b_isdenorm), _mm_castsi128_ps(adjusted2));
|
|
adjusted5 = _mm_or_ps(adjusted3, adjusted4);
|
|
sign = _mm_slli_epi32(justsign, 16);
|
|
final = _mm_or_ps(adjusted5, _mm_castsi128_ps(sign));
|
|
stbir__simdf_store( output + 4, final );
|
|
|
|
// ~38 SSE2 ops for 8 values
|
|
}
|
|
|
|
// Fabian's round-to-nearest-even float to half
|
|
// ~48 SSE2 ops for 8 output
|
|
stbir__inline static void stbir__float_to_half_SIMD(void * output, float const * input)
|
|
{
|
|
static const STBIR__SIMDI_CONST(mask_sign, 0x80000000u);
|
|
static const STBIR__SIMDI_CONST(c_f16max, (127 + 16) << 23); // all FP32 values >=this round to +inf
|
|
static const STBIR__SIMDI_CONST(c_nanbit, 0x200);
|
|
static const STBIR__SIMDI_CONST(c_infty_as_fp16, 0x7c00);
|
|
static const STBIR__SIMDI_CONST(c_min_normal, (127 - 14) << 23); // smallest FP32 that yields a normalized FP16
|
|
static const STBIR__SIMDI_CONST(c_subnorm_magic, ((127 - 15) + (23 - 10) + 1) << 23);
|
|
static const STBIR__SIMDI_CONST(c_normal_bias, 0xfff - ((127 - 15) << 23)); // adjust exponent and add mantissa rounding
|
|
|
|
__m128 f = _mm_loadu_ps(input);
|
|
__m128 msign = _mm_castsi128_ps(STBIR__CONSTI(mask_sign));
|
|
__m128 justsign = _mm_and_ps(msign, f);
|
|
__m128 absf = _mm_xor_ps(f, justsign);
|
|
__m128i absf_int = _mm_castps_si128(absf); // the cast is "free" (extra bypass latency, but no thruput hit)
|
|
__m128i f16max = STBIR__CONSTI(c_f16max);
|
|
__m128 b_isnan = _mm_cmpunord_ps(absf, absf); // is this a NaN?
|
|
__m128i b_isregular = _mm_cmpgt_epi32(f16max, absf_int); // (sub)normalized or special?
|
|
__m128i nanbit = _mm_and_si128(_mm_castps_si128(b_isnan), STBIR__CONSTI(c_nanbit));
|
|
__m128i inf_or_nan = _mm_or_si128(nanbit, STBIR__CONSTI(c_infty_as_fp16)); // output for specials
|
|
|
|
__m128i min_normal = STBIR__CONSTI(c_min_normal);
|
|
__m128i b_issub = _mm_cmpgt_epi32(min_normal, absf_int);
|
|
|
|
// "result is subnormal" path
|
|
__m128 subnorm1 = _mm_add_ps(absf, _mm_castsi128_ps(STBIR__CONSTI(c_subnorm_magic))); // magic value to round output mantissa
|
|
__m128i subnorm2 = _mm_sub_epi32(_mm_castps_si128(subnorm1), STBIR__CONSTI(c_subnorm_magic)); // subtract out bias
|
|
|
|
// "result is normal" path
|
|
__m128i mantoddbit = _mm_slli_epi32(absf_int, 31 - 13); // shift bit 13 (mantissa LSB) to sign
|
|
__m128i mantodd = _mm_srai_epi32(mantoddbit, 31); // -1 if FP16 mantissa odd, else 0
|
|
|
|
__m128i round1 = _mm_add_epi32(absf_int, STBIR__CONSTI(c_normal_bias));
|
|
__m128i round2 = _mm_sub_epi32(round1, mantodd); // if mantissa LSB odd, bias towards rounding up (RTNE)
|
|
__m128i normal = _mm_srli_epi32(round2, 13); // rounded result
|
|
|
|
// combine the two non-specials
|
|
__m128i nonspecial = _mm_or_si128(_mm_and_si128(subnorm2, b_issub), _mm_andnot_si128(b_issub, normal));
|
|
|
|
// merge in specials as well
|
|
__m128i joined = _mm_or_si128(_mm_and_si128(nonspecial, b_isregular), _mm_andnot_si128(b_isregular, inf_or_nan));
|
|
|
|
__m128i sign_shift = _mm_srai_epi32(_mm_castps_si128(justsign), 16);
|
|
__m128i final2, final= _mm_or_si128(joined, sign_shift);
|
|
|
|
f = _mm_loadu_ps(input+4);
|
|
justsign = _mm_and_ps(msign, f);
|
|
absf = _mm_xor_ps(f, justsign);
|
|
absf_int = _mm_castps_si128(absf); // the cast is "free" (extra bypass latency, but no thruput hit)
|
|
b_isnan = _mm_cmpunord_ps(absf, absf); // is this a NaN?
|
|
b_isregular = _mm_cmpgt_epi32(f16max, absf_int); // (sub)normalized or special?
|
|
nanbit = _mm_and_si128(_mm_castps_si128(b_isnan), c_nanbit);
|
|
inf_or_nan = _mm_or_si128(nanbit, STBIR__CONSTI(c_infty_as_fp16)); // output for specials
|
|
|
|
b_issub = _mm_cmpgt_epi32(min_normal, absf_int);
|
|
|
|
// "result is subnormal" path
|
|
subnorm1 = _mm_add_ps(absf, _mm_castsi128_ps(STBIR__CONSTI(c_subnorm_magic))); // magic value to round output mantissa
|
|
subnorm2 = _mm_sub_epi32(_mm_castps_si128(subnorm1), STBIR__CONSTI(c_subnorm_magic)); // subtract out bias
|
|
|
|
// "result is normal" path
|
|
mantoddbit = _mm_slli_epi32(absf_int, 31 - 13); // shift bit 13 (mantissa LSB) to sign
|
|
mantodd = _mm_srai_epi32(mantoddbit, 31); // -1 if FP16 mantissa odd, else 0
|
|
|
|
round1 = _mm_add_epi32(absf_int, STBIR__CONSTI(c_normal_bias));
|
|
round2 = _mm_sub_epi32(round1, mantodd); // if mantissa LSB odd, bias towards rounding up (RTNE)
|
|
normal = _mm_srli_epi32(round2, 13); // rounded result
|
|
|
|
// combine the two non-specials
|
|
nonspecial = _mm_or_si128(_mm_and_si128(subnorm2, b_issub), _mm_andnot_si128(b_issub, normal));
|
|
|
|
// merge in specials as well
|
|
joined = _mm_or_si128(_mm_and_si128(nonspecial, b_isregular), _mm_andnot_si128(b_isregular, inf_or_nan));
|
|
|
|
sign_shift = _mm_srai_epi32(_mm_castps_si128(justsign), 16);
|
|
final2 = _mm_or_si128(joined, sign_shift);
|
|
final = _mm_packs_epi32(final, final2);
|
|
stbir__simdi_store( output,final );
|
|
}
|
|
|
|
#elif defined(STBIR_WASM) || (defined(STBIR_NEON) && defined(_MSC_VER) && defined(_M_ARM)) // WASM or 32-bit ARM on MSVC/clang
|
|
|
|
static stbir__inline void stbir__half_to_float_SIMD(float * output, stbir__FP16 const * input)
|
|
{
|
|
for (int i=0; i<8; i++)
|
|
{
|
|
output[i] = stbir__half_to_float(input[i]);
|
|
}
|
|
}
|
|
|
|
static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 * output, float const * input)
|
|
{
|
|
for (int i=0; i<8; i++)
|
|
{
|
|
output[i] = stbir__float_to_half(input[i]);
|
|
}
|
|
}
|
|
|
|
#elif defined(STBIR_NEON) && defined(_MSC_VER) && defined(_M_ARM64) && !defined(__clang__) // 64-bit ARM on MSVC (not clang)
|
|
|
|
static stbir__inline void stbir__half_to_float_SIMD(float * output, stbir__FP16 const * input)
|
|
{
|
|
float16x4_t in0 = vld1_f16(input + 0);
|
|
float16x4_t in1 = vld1_f16(input + 4);
|
|
vst1q_f32(output + 0, vcvt_f32_f16(in0));
|
|
vst1q_f32(output + 4, vcvt_f32_f16(in1));
|
|
}
|
|
|
|
static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 * output, float const * input)
|
|
{
|
|
float16x4_t out0 = vcvt_f16_f32(vld1q_f32(input + 0));
|
|
float16x4_t out1 = vcvt_f16_f32(vld1q_f32(input + 4));
|
|
vst1_f16(output+0, out0);
|
|
vst1_f16(output+4, out1);
|
|
}
|
|
|
|
static stbir__inline float stbir__half_to_float( stbir__FP16 h )
|
|
{
|
|
return vgetq_lane_f32(vcvt_f32_f16(vld1_dup_f16(&h)), 0);
|
|
}
|
|
|
|
static stbir__inline stbir__FP16 stbir__float_to_half( float f )
|
|
{
|
|
return vget_lane_f16(vcvt_f16_f32(vdupq_n_f32(f)), 0).n16_u16[0];
|
|
}
|
|
|
|
#elif defined(STBIR_NEON) // 64-bit ARM
|
|
|
|
static stbir__inline void stbir__half_to_float_SIMD(float * output, stbir__FP16 const * input)
|
|
{
|
|
float16x8_t in = vld1q_f16(input);
|
|
vst1q_f32(output + 0, vcvt_f32_f16(vget_low_f16(in)));
|
|
vst1q_f32(output + 4, vcvt_f32_f16(vget_high_f16(in)));
|
|
}
|
|
|
|
static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 * output, float const * input)
|
|
{
|
|
float16x4_t out0 = vcvt_f16_f32(vld1q_f32(input + 0));
|
|
float16x4_t out1 = vcvt_f16_f32(vld1q_f32(input + 4));
|
|
vst1q_f16(output, vcombine_f16(out0, out1));
|
|
}
|
|
|
|
static stbir__inline float stbir__half_to_float( stbir__FP16 h )
|
|
{
|
|
return vgetq_lane_f32(vcvt_f32_f16(vdup_n_f16(h)), 0);
|
|
}
|
|
|
|
static stbir__inline stbir__FP16 stbir__float_to_half( float f )
|
|
{
|
|
return vget_lane_f16(vcvt_f16_f32(vdupq_n_f32(f)), 0);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#define stbir__simdf_0123to3333( out, reg ) (out) = stbir__simdf_swiz( reg, 3,3,3,3 )
|
|
#define stbir__simdf_0123to2222( out, reg ) (out) = stbir__simdf_swiz( reg, 2,2,2,2 )
|
|
#define stbir__simdf_0123to1111( out, reg ) (out) = stbir__simdf_swiz( reg, 1,1,1,1 )
|
|
#define stbir__simdf_0123to0000( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,0,0 )
|
|
#define stbir__simdf_0123to0003( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,0,3 )
|
|
#define stbir__simdf_0123to0001( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,0,1 )
|
|
#define stbir__simdf_0123to1122( out, reg ) (out) = stbir__simdf_swiz( reg, 1,1,2,2 )
|
|
#define stbir__simdf_0123to2333( out, reg ) (out) = stbir__simdf_swiz( reg, 2,3,3,3 )
|
|
#define stbir__simdf_0123to0023( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,2,3 )
|
|
#define stbir__simdf_0123to1230( out, reg ) (out) = stbir__simdf_swiz( reg, 1,2,3,0 )
|
|
#define stbir__simdf_0123to2103( out, reg ) (out) = stbir__simdf_swiz( reg, 2,1,0,3 )
|
|
#define stbir__simdf_0123to3210( out, reg ) (out) = stbir__simdf_swiz( reg, 3,2,1,0 )
|
|
#define stbir__simdf_0123to2301( out, reg ) (out) = stbir__simdf_swiz( reg, 2,3,0,1 )
|
|
#define stbir__simdf_0123to3012( out, reg ) (out) = stbir__simdf_swiz( reg, 3,0,1,2 )
|
|
#define stbir__simdf_0123to0011( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,1,1 )
|
|
#define stbir__simdf_0123to1100( out, reg ) (out) = stbir__simdf_swiz( reg, 1,1,0,0 )
|
|
#define stbir__simdf_0123to2233( out, reg ) (out) = stbir__simdf_swiz( reg, 2,2,3,3 )
|
|
#define stbir__simdf_0123to1133( out, reg ) (out) = stbir__simdf_swiz( reg, 1,1,3,3 )
|
|
#define stbir__simdf_0123to0022( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,2,2 )
|
|
#define stbir__simdf_0123to1032( out, reg ) (out) = stbir__simdf_swiz( reg, 1,0,3,2 )
|
|
|
|
typedef union stbir__simdi_u32
|
|
{
|
|
stbir_uint32 m128i_u32[4];
|
|
int m128i_i32[4];
|
|
stbir__simdi m128i_i128;
|
|
} stbir__simdi_u32;
|
|
|
|
static const int STBIR_mask[9] = { 0,0,0,-1,-1,-1,0,0,0 };
|
|
|
|
static const STBIR__SIMDF_CONST(STBIR_max_uint8_as_float, stbir__max_uint8_as_float);
|
|
static const STBIR__SIMDF_CONST(STBIR_max_uint16_as_float, stbir__max_uint16_as_float);
|
|
static const STBIR__SIMDF_CONST(STBIR_max_uint8_as_float_inverted, stbir__max_uint8_as_float_inverted);
|
|
static const STBIR__SIMDF_CONST(STBIR_max_uint16_as_float_inverted, stbir__max_uint16_as_float_inverted);
|
|
|
|
static const STBIR__SIMDF_CONST(STBIR_simd_point5, 0.5f);
|
|
static const STBIR__SIMDF_CONST(STBIR_ones, 1.0f);
|
|
static const STBIR__SIMDI_CONST(STBIR_almost_zero, (127 - 13) << 23);
|
|
static const STBIR__SIMDI_CONST(STBIR_almost_one, 0x3f7fffff);
|
|
static const STBIR__SIMDI_CONST(STBIR_mastissa_mask, 0xff);
|
|
static const STBIR__SIMDI_CONST(STBIR_topscale, 0x02000000);
|
|
|
|
// Basically, in simd mode, we unroll the proper amount, and we don't want
|
|
// the non-simd remnant loops to be unroll because they only run a few times
|
|
// Adding this switch saves about 5K on clang which is Captain Unroll the 3rd.
|
|
#define STBIR_SIMD_STREAMOUT_PTR( star ) STBIR_STREAMOUT_PTR( star )
|
|
#define STBIR_SIMD_NO_UNROLL(ptr) STBIR_NO_UNROLL(ptr)
|
|
|
|
#ifdef STBIR_MEMCPY
|
|
#undef STBIR_MEMCPY
|
|
#define STBIR_MEMCPY stbir_simd_memcpy
|
|
#endif
|
|
|
|
// override normal use of memcpy with much simpler copy (faster and smaller with our sized copies)
|
|
static void stbir_simd_memcpy( void * dest, void const * src, size_t bytes )
|
|
{
|
|
char STBIR_SIMD_STREAMOUT_PTR (*) d = (char*) dest;
|
|
char STBIR_SIMD_STREAMOUT_PTR( * ) d_end = ((char*) dest) + bytes;
|
|
ptrdiff_t ofs_to_src = (char*)src - (char*)dest;
|
|
|
|
// check overlaps
|
|
STBIR_ASSERT( ( ( d >= ( (char*)src) + bytes ) ) || ( ( d + bytes ) <= (char*)src ) );
|
|
|
|
if ( bytes < (16*stbir__simdfX_float_count) )
|
|
{
|
|
if ( bytes < 16 )
|
|
{
|
|
if ( bytes )
|
|
{
|
|
do
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(d);
|
|
d[ 0 ] = d[ ofs_to_src ];
|
|
++d;
|
|
} while ( d < d_end );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
stbir__simdf x;
|
|
// do one unaligned to get us aligned for the stream out below
|
|
stbir__simdf_load( x, ( d + ofs_to_src ) );
|
|
stbir__simdf_store( d, x );
|
|
d = (char*)( ( ( (ptrdiff_t)d ) + 16 ) & ~15 );
|
|
|
|
for(;;)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(d);
|
|
|
|
if ( d > ( d_end - 16 ) )
|
|
{
|
|
if ( d == d_end )
|
|
return;
|
|
d = d_end - 16;
|
|
}
|
|
|
|
stbir__simdf_load( x, ( d + ofs_to_src ) );
|
|
stbir__simdf_store( d, x );
|
|
d += 16;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
stbir__simdfX x0,x1,x2,x3;
|
|
|
|
// do one unaligned to get us aligned for the stream out below
|
|
stbir__simdfX_load( x0, ( d + ofs_to_src ) + 0*stbir__simdfX_float_count );
|
|
stbir__simdfX_load( x1, ( d + ofs_to_src ) + 4*stbir__simdfX_float_count );
|
|
stbir__simdfX_load( x2, ( d + ofs_to_src ) + 8*stbir__simdfX_float_count );
|
|
stbir__simdfX_load( x3, ( d + ofs_to_src ) + 12*stbir__simdfX_float_count );
|
|
stbir__simdfX_store( d + 0*stbir__simdfX_float_count, x0 );
|
|
stbir__simdfX_store( d + 4*stbir__simdfX_float_count, x1 );
|
|
stbir__simdfX_store( d + 8*stbir__simdfX_float_count, x2 );
|
|
stbir__simdfX_store( d + 12*stbir__simdfX_float_count, x3 );
|
|
d = (char*)( ( ( (ptrdiff_t)d ) + (16*stbir__simdfX_float_count) ) & ~((16*stbir__simdfX_float_count)-1) );
|
|
|
|
for(;;)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(d);
|
|
|
|
if ( d > ( d_end - (16*stbir__simdfX_float_count) ) )
|
|
{
|
|
if ( d == d_end )
|
|
return;
|
|
d = d_end - (16*stbir__simdfX_float_count);
|
|
}
|
|
|
|
stbir__simdfX_load( x0, ( d + ofs_to_src ) + 0*stbir__simdfX_float_count );
|
|
stbir__simdfX_load( x1, ( d + ofs_to_src ) + 4*stbir__simdfX_float_count );
|
|
stbir__simdfX_load( x2, ( d + ofs_to_src ) + 8*stbir__simdfX_float_count );
|
|
stbir__simdfX_load( x3, ( d + ofs_to_src ) + 12*stbir__simdfX_float_count );
|
|
stbir__simdfX_store( d + 0*stbir__simdfX_float_count, x0 );
|
|
stbir__simdfX_store( d + 4*stbir__simdfX_float_count, x1 );
|
|
stbir__simdfX_store( d + 8*stbir__simdfX_float_count, x2 );
|
|
stbir__simdfX_store( d + 12*stbir__simdfX_float_count, x3 );
|
|
d += (16*stbir__simdfX_float_count);
|
|
}
|
|
}
|
|
}
|
|
|
|
// memcpy that is specically intentionally overlapping (src is smaller then dest, so can be
|
|
// a normal forward copy, bytes is divisible by 4 and bytes is greater than or equal to
|
|
// the diff between dest and src)
|
|
static void stbir_overlapping_memcpy( void * dest, void const * src, size_t bytes )
|
|
{
|
|
char STBIR_SIMD_STREAMOUT_PTR (*) sd = (char*) src;
|
|
char STBIR_SIMD_STREAMOUT_PTR( * ) s_end = ((char*) src) + bytes;
|
|
ptrdiff_t ofs_to_dest = (char*)dest - (char*)src;
|
|
|
|
if ( ofs_to_dest >= 16 ) // is the overlap more than 16 away?
|
|
{
|
|
char STBIR_SIMD_STREAMOUT_PTR( * ) s_end16 = ((char*) src) + (bytes&~15);
|
|
do
|
|
{
|
|
stbir__simdf x;
|
|
STBIR_SIMD_NO_UNROLL(sd);
|
|
stbir__simdf_load( x, sd );
|
|
stbir__simdf_store( ( sd + ofs_to_dest ), x );
|
|
sd += 16;
|
|
} while ( sd < s_end16 );
|
|
|
|
if ( sd == s_end )
|
|
return;
|
|
}
|
|
|
|
do
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(sd);
|
|
*(int*)( sd + ofs_to_dest ) = *(int*) sd;
|
|
sd += 4;
|
|
} while ( sd < s_end );
|
|
}
|
|
|
|
#else // no SSE2
|
|
|
|
// when in scalar mode, we let unrolling happen, so this macro just does the __restrict
|
|
#define STBIR_SIMD_STREAMOUT_PTR( star ) STBIR_STREAMOUT_PTR( star )
|
|
#define STBIR_SIMD_NO_UNROLL(ptr)
|
|
|
|
#endif // SSE2
|
|
|
|
|
|
#ifdef STBIR_PROFILE
|
|
|
|
#if defined(_x86_64) || defined( __x86_64__ ) || defined( _M_X64 ) || defined(__x86_64) || defined(__SSE2__) || defined(STBIR_SSE) || defined( _M_IX86_FP ) || defined(__i386) || defined( __i386__ ) || defined( _M_IX86 ) || defined( _X86_ )
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
STBIRDEF stbir_uint64 __rdtsc();
|
|
#define STBIR_PROFILE_FUNC() __rdtsc()
|
|
|
|
#else // non msvc
|
|
|
|
static stbir__inline stbir_uint64 STBIR_PROFILE_FUNC()
|
|
{
|
|
stbir_uint32 lo, hi;
|
|
asm volatile ("rdtsc" : "=a" (lo), "=d" (hi) );
|
|
return ( ( (stbir_uint64) hi ) << 32 ) | ( (stbir_uint64) lo );
|
|
}
|
|
|
|
#endif // msvc
|
|
|
|
#elif defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ ) || defined(__ARM_NEON__)
|
|
|
|
#if defined( _MSC_VER ) && !defined(__clang__)
|
|
|
|
#define STBIR_PROFILE_FUNC() _ReadStatusReg(ARM64_CNTVCT)
|
|
|
|
#else
|
|
|
|
static stbir__inline stbir_uint64 STBIR_PROFILE_FUNC()
|
|
{
|
|
stbir_uint64 tsc;
|
|
asm volatile("mrs %0, cntvct_el0" : "=r" (tsc));
|
|
return tsc;
|
|
}
|
|
|
|
#endif
|
|
|
|
#else // x64, arm
|
|
|
|
#error Unknown platform for profiling.
|
|
|
|
#endif //x64 and
|
|
|
|
|
|
#define STBIR_ONLY_PROFILE_GET_SPLIT_INFO ,stbir__per_split_info * split_info
|
|
#define STBIR_ONLY_PROFILE_SET_SPLIT_INFO ,split_info
|
|
|
|
#define STBIR_ONLY_PROFILE_BUILD_GET_INFO ,stbir__info * profile_info
|
|
#define STBIR_ONLY_PROFILE_BUILD_SET_INFO ,profile_info
|
|
|
|
// super light-weight micro profiler
|
|
#define STBIR_PROFILE_START_ll( info, wh ) { stbir_uint64 wh##thiszonetime = STBIR_PROFILE_FUNC(); stbir_uint64 * wh##save_parent_excluded_ptr = info->current_zone_excluded_ptr; stbir_uint64 wh##current_zone_excluded = 0; info->current_zone_excluded_ptr = &wh##current_zone_excluded;
|
|
#define STBIR_PROFILE_END_ll( info, wh ) wh##thiszonetime = STBIR_PROFILE_FUNC() - wh##thiszonetime; info->profile.named.wh += wh##thiszonetime - wh##current_zone_excluded; *wh##save_parent_excluded_ptr += wh##thiszonetime; info->current_zone_excluded_ptr = wh##save_parent_excluded_ptr; }
|
|
#define STBIR_PROFILE_FIRST_START_ll( info, wh ) { int i; info->current_zone_excluded_ptr = &info->profile.named.total; for(i=0;i<STBIR__ARRAY_SIZE(info->profile.array);i++) info->profile.array[i]=0; } STBIR_PROFILE_START_ll( info, wh );
|
|
#define STBIR_PROFILE_CLEAR_EXTRAS_ll( info, num ) { int extra; for(extra=1;extra<(num);extra++) { int i; for(i=0;i<STBIR__ARRAY_SIZE((info)->profile.array);i++) (info)[extra].profile.array[i]=0; } }
|
|
|
|
// for thread data
|
|
#define STBIR_PROFILE_START( wh ) STBIR_PROFILE_START_ll( split_info, wh )
|
|
#define STBIR_PROFILE_END( wh ) STBIR_PROFILE_END_ll( split_info, wh )
|
|
#define STBIR_PROFILE_FIRST_START( wh ) STBIR_PROFILE_FIRST_START_ll( split_info, wh )
|
|
#define STBIR_PROFILE_CLEAR_EXTRAS() STBIR_PROFILE_CLEAR_EXTRAS_ll( split_info, split_count )
|
|
|
|
// for build data
|
|
#define STBIR_PROFILE_BUILD_START( wh ) STBIR_PROFILE_START_ll( profile_info, wh )
|
|
#define STBIR_PROFILE_BUILD_END( wh ) STBIR_PROFILE_END_ll( profile_info, wh )
|
|
#define STBIR_PROFILE_BUILD_FIRST_START( wh ) STBIR_PROFILE_FIRST_START_ll( profile_info, wh )
|
|
#define STBIR_PROFILE_BUILD_CLEAR( info ) { int i; for(i=0;i<STBIR__ARRAY_SIZE(info->profile.array);i++) info->profile.array[i]=0; }
|
|
|
|
#else // no profile
|
|
|
|
#define STBIR_ONLY_PROFILE_GET_SPLIT_INFO
|
|
#define STBIR_ONLY_PROFILE_SET_SPLIT_INFO
|
|
|
|
#define STBIR_ONLY_PROFILE_BUILD_GET_INFO
|
|
#define STBIR_ONLY_PROFILE_BUILD_SET_INFO
|
|
|
|
#define STBIR_PROFILE_START( wh )
|
|
#define STBIR_PROFILE_END( wh )
|
|
#define STBIR_PROFILE_FIRST_START( wh )
|
|
#define STBIR_PROFILE_CLEAR_EXTRAS( )
|
|
|
|
#define STBIR_PROFILE_BUILD_START( wh )
|
|
#define STBIR_PROFILE_BUILD_END( wh )
|
|
#define STBIR_PROFILE_BUILD_FIRST_START( wh )
|
|
#define STBIR_PROFILE_BUILD_CLEAR( info )
|
|
|
|
#endif // stbir_profile
|
|
|
|
#ifndef STBIR_CEILF
|
|
#include <math.h>
|
|
#if _MSC_VER <= 1200 // support VC6 for Sean
|
|
#define STBIR_CEILF(x) ((float)ceil((float)(x)))
|
|
#define STBIR_FLOORF(x) ((float)floor((float)(x)))
|
|
#else
|
|
#define STBIR_CEILF(x) ceilf(x)
|
|
#define STBIR_FLOORF(x) floorf(x)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef STBIR_MEMCPY
|
|
// For memcpy
|
|
#include <string.h>
|
|
#define STBIR_MEMCPY( dest, src, len ) memcpy( dest, src, len )
|
|
#endif
|
|
|
|
#ifndef STBIR_SIMD
|
|
|
|
// memcpy that is specically intentionally overlapping (src is smaller then dest, so can be
|
|
// a normal forward copy, bytes is divisible by 4 and bytes is greater than or equal to
|
|
// the diff between dest and src)
|
|
static void stbir_overlapping_memcpy( void * dest, void const * src, size_t bytes )
|
|
{
|
|
char STBIR_SIMD_STREAMOUT_PTR (*) sd = (char*) src;
|
|
char STBIR_SIMD_STREAMOUT_PTR( * ) s_end = ((char*) src) + bytes;
|
|
ptrdiff_t ofs_to_dest = (char*)dest - (char*)src;
|
|
|
|
if ( ofs_to_dest >= 8 ) // is the overlap more than 8 away?
|
|
{
|
|
char STBIR_SIMD_STREAMOUT_PTR( * ) s_end8 = ((char*) src) + (bytes&~7);
|
|
do
|
|
{
|
|
STBIR_NO_UNROLL(sd);
|
|
*(stbir_uint64*)( sd + ofs_to_dest ) = *(stbir_uint64*) sd;
|
|
sd += 8;
|
|
} while ( sd < s_end8 );
|
|
|
|
if ( sd == s_end )
|
|
return;
|
|
}
|
|
|
|
do
|
|
{
|
|
STBIR_NO_UNROLL(sd);
|
|
*(int*)( sd + ofs_to_dest ) = *(int*) sd;
|
|
sd += 4;
|
|
} while ( sd < s_end );
|
|
}
|
|
|
|
#endif
|
|
|
|
static float stbir__filter_trapezoid(float x, float scale, void * user_data)
|
|
{
|
|
float halfscale = scale / 2;
|
|
float t = 0.5f + halfscale;
|
|
STBIR_ASSERT(scale <= 1);
|
|
STBIR__UNUSED(user_data);
|
|
|
|
if ( x < 0.0f ) x = -x;
|
|
|
|
if (x >= t)
|
|
return 0.0f;
|
|
else
|
|
{
|
|
float r = 0.5f - halfscale;
|
|
if (x <= r)
|
|
return 1.0f;
|
|
else
|
|
return (t - x) / scale;
|
|
}
|
|
}
|
|
|
|
static float stbir__support_trapezoid(float scale, void * user_data)
|
|
{
|
|
STBIR__UNUSED(user_data);
|
|
return 0.5f + scale / 2.0f;
|
|
}
|
|
|
|
static float stbir__filter_triangle(float x, float s, void * user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
|
|
if ( x < 0.0f ) x = -x;
|
|
|
|
if (x <= 1.0f)
|
|
return 1.0f - x;
|
|
else
|
|
return 0.0f;
|
|
}
|
|
|
|
static float stbir__filter_point(float x, float s, void * user_data)
|
|
{
|
|
STBIR__UNUSED(x);
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
|
|
return 1.0f;
|
|
}
|
|
|
|
static float stbir__filter_cubic(float x, float s, void * user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
|
|
if ( x < 0.0f ) x = -x;
|
|
|
|
if (x < 1.0f)
|
|
return (4.0f + x*x*(3.0f*x - 6.0f))/6.0f;
|
|
else if (x < 2.0f)
|
|
return (8.0f + x*(-12.0f + x*(6.0f - x)))/6.0f;
|
|
|
|
return (0.0f);
|
|
}
|
|
|
|
static float stbir__filter_catmullrom(float x, float s, void * user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
|
|
if ( x < 0.0f ) x = -x;
|
|
|
|
if (x < 1.0f)
|
|
return 1.0f - x*x*(2.5f - 1.5f*x);
|
|
else if (x < 2.0f)
|
|
return 2.0f - x*(4.0f + x*(0.5f*x - 2.5f));
|
|
|
|
return (0.0f);
|
|
}
|
|
|
|
static float stbir__filter_mitchell(float x, float s, void * user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
|
|
if ( x < 0.0f ) x = -x;
|
|
|
|
if (x < 1.0f)
|
|
return (16.0f + x*x*(21.0f * x - 36.0f))/18.0f;
|
|
else if (x < 2.0f)
|
|
return (32.0f + x*(-60.0f + x*(36.0f - 7.0f*x)))/18.0f;
|
|
|
|
return (0.0f);
|
|
}
|
|
|
|
static float stbir__support_zero(float s, void * user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
return 0;
|
|
}
|
|
|
|
static float stbir__support_zeropoint5(float s, void * user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
return 0.5f;
|
|
}
|
|
|
|
static float stbir__support_one(float s, void * user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
return 1;
|
|
}
|
|
|
|
static float stbir__support_two(float s, void * user_data)
|
|
{
|
|
STBIR__UNUSED(s);
|
|
STBIR__UNUSED(user_data);
|
|
return 2;
|
|
}
|
|
|
|
// This is the maximum number of input samples that can affect an output sample
|
|
// with the given filter from the output pixel's perspective
|
|
static int stbir__get_filter_pixel_width(stbir__support_callback * support, float scale, void * user_data)
|
|
{
|
|
STBIR_ASSERT(support != 0);
|
|
|
|
if ( scale >= ( 1.0f-stbir__small_float ) ) // upscale
|
|
return (int)STBIR_CEILF(support(1.0f/scale,user_data) * 2.0f);
|
|
else
|
|
return (int)STBIR_CEILF(support(scale,user_data) * 2.0f / scale);
|
|
}
|
|
|
|
// this is how many coefficents per run of the filter (which is different
|
|
// from the filter_pixel_width depending on if we are scattering or gathering)
|
|
static int stbir__get_coefficient_width(stbir__sampler * samp, int is_gather, void * user_data)
|
|
{
|
|
float scale = samp->scale_info.scale;
|
|
stbir__support_callback * support = samp->filter_support;
|
|
|
|
switch( is_gather )
|
|
{
|
|
case 1:
|
|
return (int)STBIR_CEILF(support(1.0f / scale, user_data) * 2.0f);
|
|
case 2:
|
|
return (int)STBIR_CEILF(support(scale, user_data) * 2.0f / scale);
|
|
case 0:
|
|
return (int)STBIR_CEILF(support(scale, user_data) * 2.0f);
|
|
default:
|
|
STBIR_ASSERT( (is_gather >= 0 ) && (is_gather <= 2 ) );
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int stbir__get_contributors(stbir__sampler * samp, int is_gather)
|
|
{
|
|
if (is_gather)
|
|
return samp->scale_info.output_sub_size;
|
|
else
|
|
return (samp->scale_info.input_full_size + samp->filter_pixel_margin * 2);
|
|
}
|
|
|
|
static int stbir__edge_zero_full( int n, int max )
|
|
{
|
|
STBIR__UNUSED(n);
|
|
STBIR__UNUSED(max);
|
|
return 0; // NOTREACHED
|
|
}
|
|
|
|
static int stbir__edge_clamp_full( int n, int max )
|
|
{
|
|
if (n < 0)
|
|
return 0;
|
|
|
|
if (n >= max)
|
|
return max - 1;
|
|
|
|
return n; // NOTREACHED
|
|
}
|
|
|
|
static int stbir__edge_reflect_full( int n, int max )
|
|
{
|
|
if (n < 0)
|
|
{
|
|
if (n > -max)
|
|
return -n;
|
|
else
|
|
return max - 1;
|
|
}
|
|
|
|
if (n >= max)
|
|
{
|
|
int max2 = max * 2;
|
|
if (n >= max2)
|
|
return 0;
|
|
else
|
|
return max2 - n - 1;
|
|
}
|
|
|
|
return n; // NOTREACHED
|
|
}
|
|
|
|
static int stbir__edge_wrap_full( int n, int max )
|
|
{
|
|
if (n >= 0)
|
|
return (n % max);
|
|
else
|
|
{
|
|
int m = (-n) % max;
|
|
|
|
if (m != 0)
|
|
m = max - m;
|
|
|
|
return (m);
|
|
}
|
|
}
|
|
|
|
typedef int stbir__edge_wrap_func( int n, int max );
|
|
static stbir__edge_wrap_func * stbir__edge_wrap_slow[] =
|
|
{
|
|
stbir__edge_clamp_full, // STBIR_EDGE_CLAMP
|
|
stbir__edge_reflect_full, // STBIR_EDGE_REFLECT
|
|
stbir__edge_wrap_full, // STBIR_EDGE_WRAP
|
|
stbir__edge_zero_full, // STBIR_EDGE_ZERO
|
|
};
|
|
|
|
stbir__inline static int stbir__edge_wrap(stbir_edge edge, int n, int max)
|
|
{
|
|
// avoid per-pixel switch
|
|
if (n >= 0 && n < max)
|
|
return n;
|
|
return stbir__edge_wrap_slow[edge]( n, max );
|
|
}
|
|
|
|
#define STBIR__MERGE_RUNS_PIXEL_THRESHOLD 16
|
|
|
|
// get information on the extents of a sampler
|
|
static void stbir__get_extents( stbir__sampler * samp, stbir__extents * scanline_extents )
|
|
{
|
|
int j, stop;
|
|
int left_margin, right_margin;
|
|
int min_n = 0x7fffffff, max_n = -0x7fffffff;
|
|
int min_left = 0x7fffffff, max_left = -0x7fffffff;
|
|
int min_right = 0x7fffffff, max_right = -0x7fffffff;
|
|
stbir_edge edge = samp->edge;
|
|
stbir__contributors* contributors = samp->contributors;
|
|
int output_sub_size = samp->scale_info.output_sub_size;
|
|
int input_full_size = samp->scale_info.input_full_size;
|
|
int filter_pixel_margin = samp->filter_pixel_margin;
|
|
|
|
STBIR_ASSERT( samp->is_gather );
|
|
|
|
stop = output_sub_size;
|
|
for (j = 0; j < stop; j++ )
|
|
{
|
|
STBIR_ASSERT( contributors[j].n1 >= contributors[j].n0 );
|
|
if ( contributors[j].n0 < min_n )
|
|
{
|
|
min_n = contributors[j].n0;
|
|
stop = j + filter_pixel_margin; // if we find a new min, only scan another filter width
|
|
if ( stop > output_sub_size ) stop = output_sub_size;
|
|
}
|
|
}
|
|
|
|
stop = 0;
|
|
for (j = output_sub_size - 1; j >= stop; j-- )
|
|
{
|
|
STBIR_ASSERT( contributors[j].n1 >= contributors[j].n0 );
|
|
if ( contributors[j].n1 > max_n )
|
|
{
|
|
max_n = contributors[j].n1;
|
|
stop = j - filter_pixel_margin; // if we find a new max, only scan another filter width
|
|
if (stop<0) stop = 0;
|
|
}
|
|
}
|
|
|
|
STBIR_ASSERT( scanline_extents->conservative.n0 <= min_n );
|
|
STBIR_ASSERT( scanline_extents->conservative.n1 >= max_n );
|
|
|
|
// now calculate how much into the margins we really read
|
|
left_margin = 0;
|
|
if ( min_n < 0 )
|
|
{
|
|
left_margin = -min_n;
|
|
min_n = 0;
|
|
}
|
|
|
|
right_margin = 0;
|
|
if ( max_n >= input_full_size )
|
|
{
|
|
right_margin = max_n - input_full_size + 1;
|
|
max_n = input_full_size - 1;
|
|
}
|
|
|
|
// index 1 is margin pixel extents (how many pixels we hang over the edge)
|
|
scanline_extents->edge_sizes[0] = left_margin;
|
|
scanline_extents->edge_sizes[1] = right_margin;
|
|
|
|
// index 2 is pixels read from the input
|
|
scanline_extents->spans[0].n0 = min_n;
|
|
scanline_extents->spans[0].n1 = max_n;
|
|
scanline_extents->spans[0].pixel_offset_for_input = min_n;
|
|
|
|
// default to no other input range
|
|
scanline_extents->spans[1].n0 = 0;
|
|
scanline_extents->spans[1].n1 = -1;
|
|
scanline_extents->spans[1].pixel_offset_for_input = 0;
|
|
|
|
// don't have to do edge calc for zero clamp
|
|
if ( edge == STBIR_EDGE_ZERO )
|
|
return;
|
|
|
|
// convert margin pixels to the pixels within the input (min and max)
|
|
for( j = -left_margin ; j < 0 ; j++ )
|
|
{
|
|
int p = stbir__edge_wrap( edge, j, input_full_size );
|
|
if ( p < min_left )
|
|
min_left = p;
|
|
if ( p > max_left )
|
|
max_left = p;
|
|
}
|
|
|
|
for( j = input_full_size ; j < (input_full_size + right_margin) ; j++ )
|
|
{
|
|
int p = stbir__edge_wrap( edge, j, input_full_size );
|
|
if ( p < min_right )
|
|
min_right = p;
|
|
if ( p > max_right )
|
|
max_right = p;
|
|
}
|
|
|
|
// merge the left margin pixel region if it connects within 4 pixels of main pixel region
|
|
if ( min_left != 0x7fffffff )
|
|
{
|
|
if ( ( ( min_left <= min_n ) && ( ( max_left + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= min_n ) ) ||
|
|
( ( min_n <= min_left ) && ( ( max_n + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= max_left ) ) )
|
|
{
|
|
scanline_extents->spans[0].n0 = min_n = stbir__min( min_n, min_left );
|
|
scanline_extents->spans[0].n1 = max_n = stbir__max( max_n, max_left );
|
|
scanline_extents->spans[0].pixel_offset_for_input = min_n;
|
|
left_margin = 0;
|
|
}
|
|
}
|
|
|
|
// merge the right margin pixel region if it connects within 4 pixels of main pixel region
|
|
if ( min_right != 0x7fffffff )
|
|
{
|
|
if ( ( ( min_right <= min_n ) && ( ( max_right + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= min_n ) ) ||
|
|
( ( min_n <= min_right ) && ( ( max_n + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= max_right ) ) )
|
|
{
|
|
scanline_extents->spans[0].n0 = min_n = stbir__min( min_n, min_right );
|
|
scanline_extents->spans[0].n1 = max_n = stbir__max( max_n, max_right );
|
|
scanline_extents->spans[0].pixel_offset_for_input = min_n;
|
|
right_margin = 0;
|
|
}
|
|
}
|
|
|
|
STBIR_ASSERT( scanline_extents->conservative.n0 <= min_n );
|
|
STBIR_ASSERT( scanline_extents->conservative.n1 >= max_n );
|
|
|
|
// you get two ranges when you have the WRAP edge mode and you are doing just the a piece of the resize
|
|
// so you need to get a second run of pixels from the opposite side of the scanline (which you
|
|
// wouldn't need except for WRAP)
|
|
|
|
|
|
// if we can't merge the min_left range, add it as a second range
|
|
if ( ( left_margin ) && ( min_left != 0x7fffffff ) )
|
|
{
|
|
stbir__span * newspan = scanline_extents->spans + 1;
|
|
STBIR_ASSERT( right_margin == 0 );
|
|
if ( min_left < scanline_extents->spans[0].n0 )
|
|
{
|
|
scanline_extents->spans[1].pixel_offset_for_input = scanline_extents->spans[0].n0;
|
|
scanline_extents->spans[1].n0 = scanline_extents->spans[0].n0;
|
|
scanline_extents->spans[1].n1 = scanline_extents->spans[0].n1;
|
|
--newspan;
|
|
}
|
|
newspan->pixel_offset_for_input = min_left;
|
|
newspan->n0 = -left_margin;
|
|
newspan->n1 = ( max_left - min_left ) - left_margin;
|
|
scanline_extents->edge_sizes[0] = 0; // don't need to copy the left margin, since we are directly decoding into the margin
|
|
return;
|
|
}
|
|
|
|
// if we can't merge the min_left range, add it as a second range
|
|
if ( ( right_margin ) && ( min_right != 0x7fffffff ) )
|
|
{
|
|
stbir__span * newspan = scanline_extents->spans + 1;
|
|
if ( min_right < scanline_extents->spans[0].n0 )
|
|
{
|
|
scanline_extents->spans[1].pixel_offset_for_input = scanline_extents->spans[0].n0;
|
|
scanline_extents->spans[1].n0 = scanline_extents->spans[0].n0;
|
|
scanline_extents->spans[1].n1 = scanline_extents->spans[0].n1;
|
|
--newspan;
|
|
}
|
|
newspan->pixel_offset_for_input = min_right;
|
|
newspan->n0 = scanline_extents->spans[1].n1 + 1;
|
|
newspan->n1 = scanline_extents->spans[1].n1 + 1 + ( max_right - min_right );
|
|
scanline_extents->edge_sizes[1] = 0; // don't need to copy the right margin, since we are directly decoding into the margin
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void stbir__calculate_in_pixel_range( int * first_pixel, int * last_pixel, float out_pixel_center, float out_filter_radius, float inv_scale, float out_shift, int input_size, stbir_edge edge )
|
|
{
|
|
int first, last;
|
|
float out_pixel_influence_lowerbound = out_pixel_center - out_filter_radius;
|
|
float out_pixel_influence_upperbound = out_pixel_center + out_filter_radius;
|
|
|
|
float in_pixel_influence_lowerbound = (out_pixel_influence_lowerbound + out_shift) * inv_scale;
|
|
float in_pixel_influence_upperbound = (out_pixel_influence_upperbound + out_shift) * inv_scale;
|
|
|
|
first = (int)(STBIR_FLOORF(in_pixel_influence_lowerbound + 0.5f));
|
|
last = (int)(STBIR_FLOORF(in_pixel_influence_upperbound - 0.5f));
|
|
|
|
if ( edge == STBIR_EDGE_WRAP )
|
|
{
|
|
if ( first < -input_size )
|
|
first = -input_size;
|
|
if ( last >= (input_size*2))
|
|
last = (input_size*2) - 1;
|
|
}
|
|
|
|
*first_pixel = first;
|
|
*last_pixel = last;
|
|
}
|
|
|
|
static void stbir__calculate_coefficients_for_gather_upsample( float out_filter_radius, stbir__kernel_callback * kernel, stbir__scale_info * scale_info, int num_contributors, stbir__contributors* contributors, float* coefficient_group, int coefficient_width, stbir_edge edge, void * user_data )
|
|
{
|
|
int n, end;
|
|
float inv_scale = scale_info->inv_scale;
|
|
float out_shift = scale_info->pixel_shift;
|
|
int input_size = scale_info->input_full_size;
|
|
int numerator = scale_info->scale_numerator;
|
|
int polyphase = ( ( scale_info->scale_is_rational ) && ( numerator < num_contributors ) );
|
|
|
|
// Looping through out pixels
|
|
end = num_contributors; if ( polyphase ) end = numerator;
|
|
for (n = 0; n < end; n++)
|
|
{
|
|
int i;
|
|
int last_non_zero;
|
|
float out_pixel_center = (float)n + 0.5f;
|
|
float in_center_of_out = (out_pixel_center + out_shift) * inv_scale;
|
|
|
|
int in_first_pixel, in_last_pixel;
|
|
|
|
stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, out_pixel_center, out_filter_radius, inv_scale, out_shift, input_size, edge );
|
|
|
|
last_non_zero = -1;
|
|
for (i = 0; i <= in_last_pixel - in_first_pixel; i++)
|
|
{
|
|
float in_pixel_center = (float)(i + in_first_pixel) + 0.5f;
|
|
float coeff = kernel(in_center_of_out - in_pixel_center, inv_scale, user_data);
|
|
|
|
// kill denormals
|
|
if ( ( ( coeff < stbir__small_float ) && ( coeff > -stbir__small_float ) ) )
|
|
{
|
|
if ( i == 0 ) // if we're at the front, just eat zero contributors
|
|
{
|
|
STBIR_ASSERT ( ( in_last_pixel - in_first_pixel ) != 0 ); // there should be at least one contrib
|
|
++in_first_pixel;
|
|
i--;
|
|
continue;
|
|
}
|
|
coeff = 0; // make sure is fully zero (should keep denormals away)
|
|
}
|
|
else
|
|
last_non_zero = i;
|
|
|
|
coefficient_group[i] = coeff;
|
|
}
|
|
|
|
in_last_pixel = last_non_zero+in_first_pixel; // kills trailing zeros
|
|
contributors->n0 = in_first_pixel;
|
|
contributors->n1 = in_last_pixel;
|
|
|
|
STBIR_ASSERT(contributors->n1 >= contributors->n0);
|
|
|
|
++contributors;
|
|
coefficient_group += coefficient_width;
|
|
}
|
|
}
|
|
|
|
static void stbir__insert_coeff( stbir__contributors * contribs, float * coeffs, int new_pixel, float new_coeff )
|
|
{
|
|
if ( new_pixel <= contribs->n1 ) // before the end
|
|
{
|
|
if ( new_pixel < contribs->n0 ) // before the front?
|
|
{
|
|
int j, o = contribs->n0 - new_pixel;
|
|
for ( j = contribs->n1 - contribs->n0 ; j <= 0 ; j-- )
|
|
coeffs[ j + o ] = coeffs[ j ];
|
|
for ( j = 1 ; j < o ; j-- )
|
|
coeffs[ j ] = coeffs[ 0 ];
|
|
coeffs[ 0 ] = new_coeff;
|
|
contribs->n0 = new_pixel;
|
|
}
|
|
else
|
|
{
|
|
coeffs[ new_pixel - contribs->n0 ] += new_coeff;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int j, e = new_pixel - contribs->n0;
|
|
for( j = ( contribs->n1 - contribs->n0 ) + 1 ; j < e ; j++ ) // clear in-betweens coeffs if there are any
|
|
coeffs[j] = 0;
|
|
|
|
coeffs[ e ] = new_coeff;
|
|
contribs->n1 = new_pixel;
|
|
}
|
|
}
|
|
|
|
static void stbir__calculate_out_pixel_range( int * first_pixel, int * last_pixel, float in_pixel_center, float in_pixels_radius, float scale, float out_shift, int out_size )
|
|
{
|
|
float in_pixel_influence_lowerbound = in_pixel_center - in_pixels_radius;
|
|
float in_pixel_influence_upperbound = in_pixel_center + in_pixels_radius;
|
|
float out_pixel_influence_lowerbound = in_pixel_influence_lowerbound * scale - out_shift;
|
|
float out_pixel_influence_upperbound = in_pixel_influence_upperbound * scale - out_shift;
|
|
int out_first_pixel = (int)(STBIR_FLOORF(out_pixel_influence_lowerbound + 0.5f));
|
|
int out_last_pixel = (int)(STBIR_FLOORF(out_pixel_influence_upperbound - 0.5f));
|
|
|
|
if ( out_first_pixel < 0 )
|
|
out_first_pixel = 0;
|
|
if ( out_last_pixel >= out_size )
|
|
out_last_pixel = out_size - 1;
|
|
*first_pixel = out_first_pixel;
|
|
*last_pixel = out_last_pixel;
|
|
}
|
|
|
|
static void stbir__calculate_coefficients_for_gather_downsample( int start, int end, float in_pixels_radius, stbir__kernel_callback * kernel, stbir__scale_info * scale_info, int coefficient_width, int num_contributors, stbir__contributors * contributors, float * coefficient_group, void * user_data )
|
|
{
|
|
int in_pixel;
|
|
int i;
|
|
int first_out_inited = -1;
|
|
float scale = scale_info->scale;
|
|
float out_shift = scale_info->pixel_shift;
|
|
int out_size = scale_info->output_sub_size;
|
|
int numerator = scale_info->scale_numerator;
|
|
int polyphase = ( ( scale_info->scale_is_rational ) && ( numerator < out_size ) );
|
|
|
|
STBIR__UNUSED(num_contributors);
|
|
|
|
// Loop through the input pixels
|
|
for (in_pixel = start; in_pixel < end; in_pixel++)
|
|
{
|
|
float in_pixel_center = (float)in_pixel + 0.5f;
|
|
float out_center_of_in = in_pixel_center * scale - out_shift;
|
|
int out_first_pixel, out_last_pixel;
|
|
|
|
stbir__calculate_out_pixel_range( &out_first_pixel, &out_last_pixel, in_pixel_center, in_pixels_radius, scale, out_shift, out_size );
|
|
|
|
if ( out_first_pixel > out_last_pixel )
|
|
continue;
|
|
|
|
// clamp or exit if we are using polyphase filtering, and the limit is up
|
|
if ( polyphase )
|
|
{
|
|
// when polyphase, you only have to do coeffs up to the numerator count
|
|
if ( out_first_pixel == numerator )
|
|
break;
|
|
|
|
// don't do any extra work, clamp last pixel at numerator too
|
|
if ( out_last_pixel >= numerator )
|
|
out_last_pixel = numerator - 1;
|
|
}
|
|
|
|
for (i = 0; i <= out_last_pixel - out_first_pixel; i++)
|
|
{
|
|
float out_pixel_center = (float)(i + out_first_pixel) + 0.5f;
|
|
float x = out_pixel_center - out_center_of_in;
|
|
float coeff = kernel(x, scale, user_data) * scale;
|
|
|
|
// kill the coeff if it's too small (avoid denormals)
|
|
if ( ( ( coeff < stbir__small_float ) && ( coeff > -stbir__small_float ) ) )
|
|
coeff = 0.0f;
|
|
|
|
{
|
|
int out = i + out_first_pixel;
|
|
float * coeffs = coefficient_group + out * coefficient_width;
|
|
stbir__contributors * contribs = contributors + out;
|
|
|
|
// is this the first time this output pixel has been seen? Init it.
|
|
if ( out > first_out_inited )
|
|
{
|
|
STBIR_ASSERT( out == ( first_out_inited + 1 ) ); // ensure we have only advanced one at time
|
|
first_out_inited = out;
|
|
contribs->n0 = in_pixel;
|
|
contribs->n1 = in_pixel;
|
|
coeffs[0] = coeff;
|
|
}
|
|
else
|
|
{
|
|
// insert on end (always in order)
|
|
if ( coeffs[0] == 0.0f ) // if the first coefficent is zero, then zap it for this coeffs
|
|
{
|
|
STBIR_ASSERT( ( in_pixel - contribs->n0 ) == 1 ); // ensure that when we zap, we're at the 2nd pos
|
|
contribs->n0 = in_pixel;
|
|
}
|
|
contribs->n1 = in_pixel;
|
|
STBIR_ASSERT( ( in_pixel - contribs->n0 ) < coefficient_width );
|
|
coeffs[in_pixel - contribs->n0] = coeff;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void stbir__cleanup_gathered_coefficients( stbir_edge edge, stbir__filter_extent_info* filter_info, stbir__scale_info * scale_info, int num_contributors, stbir__contributors* contributors, float * coefficient_group, int coefficient_width )
|
|
{
|
|
int input_size = scale_info->input_full_size;
|
|
int input_last_n1 = input_size - 1;
|
|
int n, end;
|
|
int lowest = 0x7fffffff;
|
|
int highest = -0x7fffffff;
|
|
int widest = -1;
|
|
int numerator = scale_info->scale_numerator;
|
|
int denominator = scale_info->scale_denominator;
|
|
int polyphase = ( ( scale_info->scale_is_rational ) && ( numerator < num_contributors ) );
|
|
float * coeffs;
|
|
stbir__contributors * contribs;
|
|
|
|
// weight all the coeffs for each sample
|
|
coeffs = coefficient_group;
|
|
contribs = contributors;
|
|
end = num_contributors; if ( polyphase ) end = numerator;
|
|
for (n = 0; n < end; n++)
|
|
{
|
|
int i;
|
|
float filter_scale, total_filter = 0;
|
|
int e;
|
|
|
|
// add all contribs
|
|
e = contribs->n1 - contribs->n0;
|
|
for( i = 0 ; i <= e ; i++ )
|
|
{
|
|
total_filter += coeffs[i];
|
|
STBIR_ASSERT( ( coeffs[i] >= -2.0f ) && ( coeffs[i] <= 2.0f ) ); // check for wonky weights
|
|
}
|
|
|
|
// rescale
|
|
if ( ( total_filter < stbir__small_float ) && ( total_filter > -stbir__small_float ) )
|
|
{
|
|
// all coeffs are extremely small, just zero it
|
|
contribs->n1 = contribs->n0;
|
|
coeffs[0] = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
// if the total isn't 1.0, rescale everything
|
|
if ( ( total_filter < (1.0f-stbir__small_float) ) || ( total_filter > (1.0f+stbir__small_float) ) )
|
|
{
|
|
filter_scale = 1.0f / total_filter;
|
|
// scale them all
|
|
for (i = 0; i <= e; i++)
|
|
coeffs[i] *= filter_scale;
|
|
}
|
|
}
|
|
++contribs;
|
|
coeffs += coefficient_width;
|
|
}
|
|
|
|
// if we have a rational for the scale, we can exploit the polyphaseness to not calculate
|
|
// most of the coefficients, so we copy them here
|
|
if ( polyphase )
|
|
{
|
|
stbir__contributors * prev_contribs = contributors;
|
|
stbir__contributors * cur_contribs = contributors + numerator;
|
|
|
|
for( n = numerator ; n < num_contributors ; n++ )
|
|
{
|
|
cur_contribs->n0 = prev_contribs->n0 + denominator;
|
|
cur_contribs->n1 = prev_contribs->n1 + denominator;
|
|
++cur_contribs;
|
|
++prev_contribs;
|
|
}
|
|
stbir_overlapping_memcpy( coefficient_group + numerator * coefficient_width, coefficient_group, ( num_contributors - numerator ) * coefficient_width * sizeof( coeffs[ 0 ] ) );
|
|
}
|
|
|
|
coeffs = coefficient_group;
|
|
contribs = contributors;
|
|
for (n = 0; n < num_contributors; n++)
|
|
{
|
|
int i;
|
|
|
|
// in zero edge mode, just remove out of bounds contribs completely (since their weights are accounted for now)
|
|
if ( edge == STBIR_EDGE_ZERO )
|
|
{
|
|
// shrink the right side if necessary
|
|
if ( contribs->n1 > input_last_n1 )
|
|
contribs->n1 = input_last_n1;
|
|
|
|
// shrink the left side
|
|
if ( contribs->n0 < 0 )
|
|
{
|
|
int j, left, skips = 0;
|
|
|
|
skips = -contribs->n0;
|
|
contribs->n0 = 0;
|
|
|
|
// now move down the weights
|
|
left = contribs->n1 - contribs->n0 + 1;
|
|
if ( left > 0 )
|
|
{
|
|
for( j = 0 ; j < left ; j++ )
|
|
coeffs[ j ] = coeffs[ j + skips ];
|
|
}
|
|
}
|
|
}
|
|
else if ( ( edge == STBIR_EDGE_CLAMP ) || ( edge == STBIR_EDGE_REFLECT ) )
|
|
{
|
|
// for clamp and reflect, calculate the true inbounds position (based on edge type) and just add that to the existing weight
|
|
|
|
// right hand side first
|
|
if ( contribs->n1 > input_last_n1 )
|
|
{
|
|
int start = contribs->n0;
|
|
int endi = contribs->n1;
|
|
contribs->n1 = input_last_n1;
|
|
for( i = input_size; i <= endi; i++ )
|
|
stbir__insert_coeff( contribs, coeffs, stbir__edge_wrap_slow[edge]( i, input_size ), coeffs[i-start] );
|
|
}
|
|
|
|
// now check left hand edge
|
|
if ( contribs->n0 < 0 )
|
|
{
|
|
int save_n0;
|
|
float save_n0_coeff;
|
|
float * c = coeffs - ( contribs->n0 + 1 );
|
|
|
|
// reinsert the coeffs with it reflected or clamped (insert accumulates, if the coeffs exist)
|
|
for( i = -1 ; i > contribs->n0 ; i-- )
|
|
stbir__insert_coeff( contribs, coeffs, stbir__edge_wrap_slow[edge]( i, input_size ), *c-- );
|
|
save_n0 = contribs->n0;
|
|
save_n0_coeff = c[0]; // save it, since we didn't do the final one (i==n0), because there might be too many coeffs to hold (before we resize)!
|
|
|
|
// now slide all the coeffs down (since we have accumulated them in the positive contribs) and reset the first contrib
|
|
contribs->n0 = 0;
|
|
for(i = 0 ; i <= contribs->n1 ; i++ )
|
|
coeffs[i] = coeffs[i-save_n0];
|
|
|
|
// now that we have shrunk down the contribs, we insert the first one safely
|
|
stbir__insert_coeff( contribs, coeffs, stbir__edge_wrap_slow[edge]( save_n0, input_size ), save_n0_coeff );
|
|
}
|
|
}
|
|
|
|
if ( contribs->n0 <= contribs->n1 )
|
|
{
|
|
int diff = contribs->n1 - contribs->n0 + 1;
|
|
while ( diff && ( coeffs[ diff-1 ] == 0.0f ) )
|
|
--diff;
|
|
contribs->n1 = contribs->n0 + diff - 1;
|
|
|
|
if ( contribs->n0 <= contribs->n1 )
|
|
{
|
|
if ( contribs->n0 < lowest )
|
|
lowest = contribs->n0;
|
|
if ( contribs->n1 > highest )
|
|
highest = contribs->n1;
|
|
if ( diff > widest )
|
|
widest = diff;
|
|
}
|
|
|
|
// re-zero out unused coefficients (if any)
|
|
for( i = diff ; i < coefficient_width ; i++ )
|
|
coeffs[i] = 0.0f;
|
|
}
|
|
|
|
++contribs;
|
|
coeffs += coefficient_width;
|
|
}
|
|
filter_info->lowest = lowest;
|
|
filter_info->highest = highest;
|
|
filter_info->widest = widest;
|
|
}
|
|
|
|
static int stbir__pack_coefficients( int num_contributors, stbir__contributors* contributors, float * coefficents, int coefficient_width, int widest, int row0, int row1 )
|
|
{
|
|
#define STBIR_MOVE_1( dest, src ) { STBIR_NO_UNROLL(dest); ((stbir_uint32*)(dest))[0] = ((stbir_uint32*)(src))[0]; }
|
|
#define STBIR_MOVE_2( dest, src ) { STBIR_NO_UNROLL(dest); ((stbir_uint64*)(dest))[0] = ((stbir_uint64*)(src))[0]; }
|
|
#ifdef STBIR_SIMD
|
|
#define STBIR_MOVE_4( dest, src ) { stbir__simdf t; STBIR_NO_UNROLL(dest); stbir__simdf_load( t, src ); stbir__simdf_store( dest, t ); }
|
|
#else
|
|
#define STBIR_MOVE_4( dest, src ) { STBIR_NO_UNROLL(dest); ((stbir_uint64*)(dest))[0] = ((stbir_uint64*)(src))[0]; ((stbir_uint64*)(dest))[1] = ((stbir_uint64*)(src))[1]; }
|
|
#endif
|
|
STBIR__UNUSED( row0 ); // only used in an assert
|
|
|
|
int row_end = row1 + 1;
|
|
|
|
if ( coefficient_width != widest )
|
|
{
|
|
float * pc = coefficents;
|
|
float * coeffs = coefficents;
|
|
float * pc_end = coefficents + num_contributors * widest;
|
|
switch( widest )
|
|
{
|
|
case 1:
|
|
do {
|
|
STBIR_MOVE_1( pc, coeffs );
|
|
++pc;
|
|
coeffs += coefficient_width;
|
|
} while ( pc < pc_end );
|
|
break;
|
|
case 2:
|
|
do {
|
|
STBIR_MOVE_2( pc, coeffs );
|
|
pc += 2;
|
|
coeffs += coefficient_width;
|
|
} while ( pc < pc_end );
|
|
break;
|
|
case 3:
|
|
do {
|
|
STBIR_MOVE_2( pc, coeffs );
|
|
STBIR_MOVE_1( pc+2, coeffs+2 );
|
|
pc += 3;
|
|
coeffs += coefficient_width;
|
|
} while ( pc < pc_end );
|
|
break;
|
|
case 4:
|
|
do {
|
|
STBIR_MOVE_4( pc, coeffs );
|
|
pc += 4;
|
|
coeffs += coefficient_width;
|
|
} while ( pc < pc_end );
|
|
break;
|
|
case 5:
|
|
do {
|
|
STBIR_MOVE_4( pc, coeffs );
|
|
STBIR_MOVE_1( pc+4, coeffs+4 );
|
|
pc += 5;
|
|
coeffs += coefficient_width;
|
|
} while ( pc < pc_end );
|
|
break;
|
|
case 6:
|
|
do {
|
|
STBIR_MOVE_4( pc, coeffs );
|
|
STBIR_MOVE_2( pc+4, coeffs+4 );
|
|
pc += 6;
|
|
coeffs += coefficient_width;
|
|
} while ( pc < pc_end );
|
|
break;
|
|
case 7:
|
|
do {
|
|
STBIR_MOVE_4( pc, coeffs );
|
|
STBIR_MOVE_2( pc+4, coeffs+4 );
|
|
STBIR_MOVE_1( pc+6, coeffs+6 );
|
|
pc += 7;
|
|
coeffs += coefficient_width;
|
|
} while ( pc < pc_end );
|
|
break;
|
|
case 8:
|
|
do {
|
|
STBIR_MOVE_4( pc, coeffs );
|
|
STBIR_MOVE_4( pc+4, coeffs+4 );
|
|
pc += 8;
|
|
coeffs += coefficient_width;
|
|
} while ( pc < pc_end );
|
|
break;
|
|
case 9:
|
|
do {
|
|
STBIR_MOVE_4( pc, coeffs );
|
|
STBIR_MOVE_4( pc+4, coeffs+4 );
|
|
STBIR_MOVE_1( pc+8, coeffs+8 );
|
|
pc += 9;
|
|
coeffs += coefficient_width;
|
|
} while ( pc < pc_end );
|
|
break;
|
|
case 10:
|
|
do {
|
|
STBIR_MOVE_4( pc, coeffs );
|
|
STBIR_MOVE_4( pc+4, coeffs+4 );
|
|
STBIR_MOVE_2( pc+8, coeffs+8 );
|
|
pc += 10;
|
|
coeffs += coefficient_width;
|
|
} while ( pc < pc_end );
|
|
break;
|
|
case 11:
|
|
do {
|
|
STBIR_MOVE_4( pc, coeffs );
|
|
STBIR_MOVE_4( pc+4, coeffs+4 );
|
|
STBIR_MOVE_2( pc+8, coeffs+8 );
|
|
STBIR_MOVE_1( pc+10, coeffs+10 );
|
|
pc += 11;
|
|
coeffs += coefficient_width;
|
|
} while ( pc < pc_end );
|
|
break;
|
|
case 12:
|
|
do {
|
|
STBIR_MOVE_4( pc, coeffs );
|
|
STBIR_MOVE_4( pc+4, coeffs+4 );
|
|
STBIR_MOVE_4( pc+8, coeffs+8 );
|
|
pc += 12;
|
|
coeffs += coefficient_width;
|
|
} while ( pc < pc_end );
|
|
break;
|
|
default:
|
|
do {
|
|
float * copy_end = pc + widest - 4;
|
|
float * c = coeffs;
|
|
do {
|
|
STBIR_NO_UNROLL( pc );
|
|
STBIR_MOVE_4( pc, c );
|
|
pc += 4;
|
|
c += 4;
|
|
} while ( pc <= copy_end );
|
|
copy_end += 4;
|
|
while ( pc < copy_end )
|
|
{
|
|
STBIR_MOVE_1( pc, c );
|
|
++pc; ++c;
|
|
}
|
|
coeffs += coefficient_width;
|
|
} while ( pc < pc_end );
|
|
break;
|
|
}
|
|
}
|
|
|
|
// some horizontal routines read one float off the end (which is then masked off), so put in a sentinal so we don't read an snan or denormal
|
|
coefficents[ widest * num_contributors ] = 8888.0f;
|
|
|
|
// the minimum we might read for unrolled filters widths is 12. So, we need to
|
|
// make sure we never read outside the decode buffer, by possibly moving
|
|
// the sample area back into the scanline, and putting zeros weights first.
|
|
// we start on the right edge and check until we're well past the possible
|
|
// clip area (2*widest).
|
|
{
|
|
stbir__contributors * contribs = contributors + num_contributors - 1;
|
|
float * coeffs = coefficents + widest * ( num_contributors - 1 );
|
|
|
|
// go until no chance of clipping (this is usually less than 8 lops)
|
|
while ( ( contribs >= contributors ) && ( ( contribs->n0 + widest*2 ) >= row_end ) )
|
|
{
|
|
// might we clip??
|
|
if ( ( contribs->n0 + widest ) > row_end )
|
|
{
|
|
int stop_range = widest;
|
|
|
|
// if range is larger than 12, it will be handled by generic loops that can terminate on the exact length
|
|
// of this contrib n1, instead of a fixed widest amount - so calculate this
|
|
if ( widest > 12 )
|
|
{
|
|
int mod;
|
|
|
|
// how far will be read in the n_coeff loop (which depends on the widest count mod4);
|
|
mod = widest & 3;
|
|
stop_range = ( ( ( contribs->n1 - contribs->n0 + 1 ) - mod + 3 ) & ~3 ) + mod;
|
|
|
|
// the n_coeff loops do a minimum amount of coeffs, so factor that in!
|
|
if ( stop_range < ( 8 + mod ) ) stop_range = 8 + mod;
|
|
}
|
|
|
|
// now see if we still clip with the refined range
|
|
if ( ( contribs->n0 + stop_range ) > row_end )
|
|
{
|
|
int new_n0 = row_end - stop_range;
|
|
int num = contribs->n1 - contribs->n0 + 1;
|
|
int backup = contribs->n0 - new_n0;
|
|
float * from_co = coeffs + num - 1;
|
|
float * to_co = from_co + backup;
|
|
|
|
STBIR_ASSERT( ( new_n0 >= row0 ) && ( new_n0 < contribs->n0 ) );
|
|
|
|
// move the coeffs over
|
|
while( num )
|
|
{
|
|
*to_co-- = *from_co--;
|
|
--num;
|
|
}
|
|
// zero new positions
|
|
while ( to_co >= coeffs )
|
|
*to_co-- = 0;
|
|
// set new start point
|
|
contribs->n0 = new_n0;
|
|
if ( widest > 12 )
|
|
{
|
|
int mod;
|
|
|
|
// how far will be read in the n_coeff loop (which depends on the widest count mod4);
|
|
mod = widest & 3;
|
|
stop_range = ( ( ( contribs->n1 - contribs->n0 + 1 ) - mod + 3 ) & ~3 ) + mod;
|
|
|
|
// the n_coeff loops do a minimum amount of coeffs, so factor that in!
|
|
if ( stop_range < ( 8 + mod ) ) stop_range = 8 + mod;
|
|
}
|
|
}
|
|
}
|
|
--contribs;
|
|
coeffs -= widest;
|
|
}
|
|
}
|
|
|
|
return widest;
|
|
#undef STBIR_MOVE_1
|
|
#undef STBIR_MOVE_2
|
|
#undef STBIR_MOVE_4
|
|
}
|
|
|
|
static void stbir__calculate_filters( stbir__sampler * samp, stbir__sampler * other_axis_for_pivot, void * user_data STBIR_ONLY_PROFILE_BUILD_GET_INFO )
|
|
{
|
|
int n;
|
|
float scale = samp->scale_info.scale;
|
|
stbir__kernel_callback * kernel = samp->filter_kernel;
|
|
stbir__support_callback * support = samp->filter_support;
|
|
float inv_scale = samp->scale_info.inv_scale;
|
|
int input_full_size = samp->scale_info.input_full_size;
|
|
int gather_num_contributors = samp->num_contributors;
|
|
stbir__contributors* gather_contributors = samp->contributors;
|
|
float * gather_coeffs = samp->coefficients;
|
|
int gather_coefficient_width = samp->coefficient_width;
|
|
|
|
switch ( samp->is_gather )
|
|
{
|
|
case 1: // gather upsample
|
|
{
|
|
float out_pixels_radius = support(inv_scale,user_data) * scale;
|
|
|
|
stbir__calculate_coefficients_for_gather_upsample( out_pixels_radius, kernel, &samp->scale_info, gather_num_contributors, gather_contributors, gather_coeffs, gather_coefficient_width, samp->edge, user_data );
|
|
|
|
STBIR_PROFILE_BUILD_START( cleanup );
|
|
stbir__cleanup_gathered_coefficients( samp->edge, &samp->extent_info, &samp->scale_info, gather_num_contributors, gather_contributors, gather_coeffs, gather_coefficient_width );
|
|
STBIR_PROFILE_BUILD_END( cleanup );
|
|
}
|
|
break;
|
|
|
|
case 0: // scatter downsample (only on vertical)
|
|
case 2: // gather downsample
|
|
{
|
|
float in_pixels_radius = support(scale,user_data) * inv_scale;
|
|
int filter_pixel_margin = samp->filter_pixel_margin;
|
|
int input_end = input_full_size + filter_pixel_margin;
|
|
|
|
// if this is a scatter, we do a downsample gather to get the coeffs, and then pivot after
|
|
if ( !samp->is_gather )
|
|
{
|
|
// check if we are using the same gather downsample on the horizontal as this vertical,
|
|
// if so, then we don't have to generate them, we can just pivot from the horizontal.
|
|
if ( other_axis_for_pivot )
|
|
{
|
|
gather_contributors = other_axis_for_pivot->contributors;
|
|
gather_coeffs = other_axis_for_pivot->coefficients;
|
|
gather_coefficient_width = other_axis_for_pivot->coefficient_width;
|
|
gather_num_contributors = other_axis_for_pivot->num_contributors;
|
|
samp->extent_info.lowest = other_axis_for_pivot->extent_info.lowest;
|
|
samp->extent_info.highest = other_axis_for_pivot->extent_info.highest;
|
|
samp->extent_info.widest = other_axis_for_pivot->extent_info.widest;
|
|
goto jump_right_to_pivot;
|
|
}
|
|
|
|
gather_contributors = samp->gather_prescatter_contributors;
|
|
gather_coeffs = samp->gather_prescatter_coefficients;
|
|
gather_coefficient_width = samp->gather_prescatter_coefficient_width;
|
|
gather_num_contributors = samp->gather_prescatter_num_contributors;
|
|
}
|
|
|
|
stbir__calculate_coefficients_for_gather_downsample( -filter_pixel_margin, input_end, in_pixels_radius, kernel, &samp->scale_info, gather_coefficient_width, gather_num_contributors, gather_contributors, gather_coeffs, user_data );
|
|
|
|
STBIR_PROFILE_BUILD_START( cleanup );
|
|
stbir__cleanup_gathered_coefficients( samp->edge, &samp->extent_info, &samp->scale_info, gather_num_contributors, gather_contributors, gather_coeffs, gather_coefficient_width );
|
|
STBIR_PROFILE_BUILD_END( cleanup );
|
|
|
|
if ( !samp->is_gather )
|
|
{
|
|
// if this is a scatter (vertical only), then we need to pivot the coeffs
|
|
stbir__contributors * scatter_contributors;
|
|
int highest_set;
|
|
|
|
jump_right_to_pivot:
|
|
|
|
STBIR_PROFILE_BUILD_START( pivot );
|
|
|
|
highest_set = (-filter_pixel_margin) - 1;
|
|
for (n = 0; n < gather_num_contributors; n++)
|
|
{
|
|
int k;
|
|
int gn0 = gather_contributors->n0, gn1 = gather_contributors->n1;
|
|
int scatter_coefficient_width = samp->coefficient_width;
|
|
float * scatter_coeffs = samp->coefficients + ( gn0 + filter_pixel_margin ) * scatter_coefficient_width;
|
|
float * g_coeffs = gather_coeffs;
|
|
scatter_contributors = samp->contributors + ( gn0 + filter_pixel_margin );
|
|
|
|
for (k = gn0 ; k <= gn1 ; k++ )
|
|
{
|
|
float gc = *g_coeffs++;
|
|
if ( ( k > highest_set ) || ( scatter_contributors->n0 > scatter_contributors->n1 ) )
|
|
{
|
|
{
|
|
// if we are skipping over several contributors, we need to clear the skipped ones
|
|
stbir__contributors * clear_contributors = samp->contributors + ( highest_set + filter_pixel_margin + 1);
|
|
while ( clear_contributors < scatter_contributors )
|
|
{
|
|
clear_contributors->n0 = 0;
|
|
clear_contributors->n1 = -1;
|
|
++clear_contributors;
|
|
}
|
|
}
|
|
scatter_contributors->n0 = n;
|
|
scatter_contributors->n1 = n;
|
|
scatter_coeffs[0] = gc;
|
|
highest_set = k;
|
|
}
|
|
else
|
|
{
|
|
stbir__insert_coeff( scatter_contributors, scatter_coeffs, n, gc );
|
|
}
|
|
++scatter_contributors;
|
|
scatter_coeffs += scatter_coefficient_width;
|
|
}
|
|
|
|
++gather_contributors;
|
|
gather_coeffs += gather_coefficient_width;
|
|
}
|
|
|
|
// now clear any unset contribs
|
|
{
|
|
stbir__contributors * clear_contributors = samp->contributors + ( highest_set + filter_pixel_margin + 1);
|
|
stbir__contributors * end_contributors = samp->contributors + samp->num_contributors;
|
|
while ( clear_contributors < end_contributors )
|
|
{
|
|
clear_contributors->n0 = 0;
|
|
clear_contributors->n1 = -1;
|
|
++clear_contributors;
|
|
}
|
|
}
|
|
|
|
STBIR_PROFILE_BUILD_END( pivot );
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
//========================================================================================================
|
|
// scanline decoders and encoders
|
|
|
|
#define stbir__coder_min_num 1
|
|
#define STB_IMAGE_RESIZE_DO_CODERS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define stbir__decode_suffix BGRA
|
|
#define stbir__decode_swizzle
|
|
#define stbir__decode_order0 2
|
|
#define stbir__decode_order1 1
|
|
#define stbir__decode_order2 0
|
|
#define stbir__decode_order3 3
|
|
#define stbir__encode_order0 2
|
|
#define stbir__encode_order1 1
|
|
#define stbir__encode_order2 0
|
|
#define stbir__encode_order3 3
|
|
#define stbir__coder_min_num 4
|
|
#define STB_IMAGE_RESIZE_DO_CODERS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define stbir__decode_suffix ARGB
|
|
#define stbir__decode_swizzle
|
|
#define stbir__decode_order0 1
|
|
#define stbir__decode_order1 2
|
|
#define stbir__decode_order2 3
|
|
#define stbir__decode_order3 0
|
|
#define stbir__encode_order0 3
|
|
#define stbir__encode_order1 0
|
|
#define stbir__encode_order2 1
|
|
#define stbir__encode_order3 2
|
|
#define stbir__coder_min_num 4
|
|
#define STB_IMAGE_RESIZE_DO_CODERS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define stbir__decode_suffix ABGR
|
|
#define stbir__decode_swizzle
|
|
#define stbir__decode_order0 3
|
|
#define stbir__decode_order1 2
|
|
#define stbir__decode_order2 1
|
|
#define stbir__decode_order3 0
|
|
#define stbir__encode_order0 3
|
|
#define stbir__encode_order1 2
|
|
#define stbir__encode_order2 1
|
|
#define stbir__encode_order3 0
|
|
#define stbir__coder_min_num 4
|
|
#define STB_IMAGE_RESIZE_DO_CODERS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define stbir__decode_suffix AR
|
|
#define stbir__decode_swizzle
|
|
#define stbir__decode_order0 1
|
|
#define stbir__decode_order1 0
|
|
#define stbir__decode_order2 3
|
|
#define stbir__decode_order3 2
|
|
#define stbir__encode_order0 1
|
|
#define stbir__encode_order1 0
|
|
#define stbir__encode_order2 3
|
|
#define stbir__encode_order3 2
|
|
#define stbir__coder_min_num 2
|
|
#define STB_IMAGE_RESIZE_DO_CODERS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
|
|
// fancy alpha means we expand to keep both premultipied and non-premultiplied color channels
|
|
static void stbir__fancy_alpha_weight_4ch( float * out_buffer, int width_times_channels )
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) out = out_buffer;
|
|
float const * end_decode = out_buffer + ( width_times_channels / 4 ) * 7; // decode buffer aligned to end of out_buffer
|
|
float STBIR_STREAMOUT_PTR(*) decode = (float*)end_decode - width_times_channels;
|
|
|
|
// fancy alpha is stored internally as R G B A Rpm Gpm Bpm
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#ifdef STBIR_SIMD8
|
|
decode += 16;
|
|
while ( decode <= end_decode )
|
|
{
|
|
stbir__simdf8 d0,d1,a0,a1,p0,p1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdf8_load( d0, decode-16 );
|
|
stbir__simdf8_load( d1, decode-16+8 );
|
|
stbir__simdf8_0123to33333333( a0, d0 );
|
|
stbir__simdf8_0123to33333333( a1, d1 );
|
|
stbir__simdf8_mult( p0, a0, d0 );
|
|
stbir__simdf8_mult( p1, a1, d1 );
|
|
stbir__simdf8_bot4s( a0, d0, p0 );
|
|
stbir__simdf8_bot4s( a1, d1, p1 );
|
|
stbir__simdf8_top4s( d0, d0, p0 );
|
|
stbir__simdf8_top4s( d1, d1, p1 );
|
|
stbir__simdf8_store ( out, a0 );
|
|
stbir__simdf8_store ( out+7, d0 );
|
|
stbir__simdf8_store ( out+14, a1 );
|
|
stbir__simdf8_store ( out+21, d1 );
|
|
decode += 16;
|
|
out += 28;
|
|
}
|
|
decode -= 16;
|
|
#else
|
|
decode += 8;
|
|
while ( decode <= end_decode )
|
|
{
|
|
stbir__simdf d0,a0,d1,a1,p0,p1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdf_load( d0, decode-8 );
|
|
stbir__simdf_load( d1, decode-8+4 );
|
|
stbir__simdf_0123to3333( a0, d0 );
|
|
stbir__simdf_0123to3333( a1, d1 );
|
|
stbir__simdf_mult( p0, a0, d0 );
|
|
stbir__simdf_mult( p1, a1, d1 );
|
|
stbir__simdf_store ( out, d0 );
|
|
stbir__simdf_store ( out+4, p0 );
|
|
stbir__simdf_store ( out+7, d1 );
|
|
stbir__simdf_store ( out+7+4, p1 );
|
|
decode += 8;
|
|
out += 14;
|
|
}
|
|
decode -= 8;
|
|
#endif
|
|
|
|
// might be one last odd pixel
|
|
#ifdef STBIR_SIMD8
|
|
while ( decode < end_decode )
|
|
#else
|
|
if ( decode < end_decode )
|
|
#endif
|
|
{
|
|
stbir__simdf d,a,p;
|
|
stbir__simdf_load( d, decode );
|
|
stbir__simdf_0123to3333( a, d );
|
|
stbir__simdf_mult( p, a, d );
|
|
stbir__simdf_store ( out, d );
|
|
stbir__simdf_store ( out+4, p );
|
|
decode += 4;
|
|
out += 7;
|
|
}
|
|
|
|
#else
|
|
|
|
while( decode < end_decode )
|
|
{
|
|
float r = decode[0], g = decode[1], b = decode[2], alpha = decode[3];
|
|
out[0] = r;
|
|
out[1] = g;
|
|
out[2] = b;
|
|
out[3] = alpha;
|
|
out[4] = r * alpha;
|
|
out[5] = g * alpha;
|
|
out[6] = b * alpha;
|
|
out += 7;
|
|
decode += 4;
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
static void stbir__fancy_alpha_weight_2ch( float * out_buffer, int width_times_channels )
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) out = out_buffer;
|
|
float const * end_decode = out_buffer + ( width_times_channels / 2 ) * 3;
|
|
float STBIR_STREAMOUT_PTR(*) decode = (float*)end_decode - width_times_channels;
|
|
|
|
// for fancy alpha, turns into: [X A Xpm][X A Xpm],etc
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
decode += 8;
|
|
if ( decode <= end_decode )
|
|
{
|
|
do {
|
|
#ifdef STBIR_SIMD8
|
|
stbir__simdf8 d0,a0,p0;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdf8_load( d0, decode-8 );
|
|
stbir__simdf8_0123to11331133( p0, d0 );
|
|
stbir__simdf8_0123to00220022( a0, d0 );
|
|
stbir__simdf8_mult( p0, p0, a0 );
|
|
|
|
stbir__simdf_store2( out, stbir__if_simdf8_cast_to_simdf4( d0 ) );
|
|
stbir__simdf_store( out+2, stbir__if_simdf8_cast_to_simdf4( p0 ) );
|
|
stbir__simdf_store2h( out+3, stbir__if_simdf8_cast_to_simdf4( d0 ) );
|
|
|
|
stbir__simdf_store2( out+6, stbir__simdf8_gettop4( d0 ) );
|
|
stbir__simdf_store( out+8, stbir__simdf8_gettop4( p0 ) );
|
|
stbir__simdf_store2h( out+9, stbir__simdf8_gettop4( d0 ) );
|
|
#else
|
|
stbir__simdf d0,a0,d1,a1,p0,p1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdf_load( d0, decode-8 );
|
|
stbir__simdf_load( d1, decode-8+4 );
|
|
stbir__simdf_0123to1133( p0, d0 );
|
|
stbir__simdf_0123to1133( p1, d1 );
|
|
stbir__simdf_0123to0022( a0, d0 );
|
|
stbir__simdf_0123to0022( a1, d1 );
|
|
stbir__simdf_mult( p0, p0, a0 );
|
|
stbir__simdf_mult( p1, p1, a1 );
|
|
|
|
stbir__simdf_store2( out, d0 );
|
|
stbir__simdf_store( out+2, p0 );
|
|
stbir__simdf_store2h( out+3, d0 );
|
|
|
|
stbir__simdf_store2( out+6, d1 );
|
|
stbir__simdf_store( out+8, p1 );
|
|
stbir__simdf_store2h( out+9, d1 );
|
|
#endif
|
|
decode += 8;
|
|
out += 12;
|
|
} while ( decode <= end_decode );
|
|
}
|
|
decode -= 8;
|
|
#endif
|
|
|
|
while( decode < end_decode )
|
|
{
|
|
float x = decode[0], y = decode[1];
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
out[0] = x;
|
|
out[1] = y;
|
|
out[2] = x * y;
|
|
out += 3;
|
|
decode += 2;
|
|
}
|
|
}
|
|
|
|
static void stbir__fancy_alpha_unweight_4ch( float * encode_buffer, int width_times_channels )
|
|
{
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) input = encode_buffer;
|
|
float const * end_output = encode_buffer + width_times_channels;
|
|
|
|
// fancy RGBA is stored internally as R G B A Rpm Gpm Bpm
|
|
|
|
do {
|
|
float alpha = input[3];
|
|
#ifdef STBIR_SIMD
|
|
stbir__simdf i,ia;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
if ( alpha < stbir__small_float )
|
|
{
|
|
stbir__simdf_load( i, input );
|
|
stbir__simdf_store( encode, i );
|
|
}
|
|
else
|
|
{
|
|
stbir__simdf_load1frep4( ia, 1.0f / alpha );
|
|
stbir__simdf_load( i, input+4 );
|
|
stbir__simdf_mult( i, i, ia );
|
|
stbir__simdf_store( encode, i );
|
|
encode[3] = alpha;
|
|
}
|
|
#else
|
|
if ( alpha < stbir__small_float )
|
|
{
|
|
encode[0] = input[0];
|
|
encode[1] = input[1];
|
|
encode[2] = input[2];
|
|
}
|
|
else
|
|
{
|
|
float ialpha = 1.0f / alpha;
|
|
encode[0] = input[4] * ialpha;
|
|
encode[1] = input[5] * ialpha;
|
|
encode[2] = input[6] * ialpha;
|
|
}
|
|
encode[3] = alpha;
|
|
#endif
|
|
|
|
input += 7;
|
|
encode += 4;
|
|
} while ( encode < end_output );
|
|
}
|
|
|
|
// format: [X A Xpm][X A Xpm] etc
|
|
static void stbir__fancy_alpha_unweight_2ch( float * encode_buffer, int width_times_channels )
|
|
{
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer;
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) input = encode_buffer;
|
|
float const * end_output = encode_buffer + width_times_channels;
|
|
|
|
do {
|
|
float alpha = input[1];
|
|
encode[0] = input[0];
|
|
if ( alpha >= stbir__small_float )
|
|
encode[0] = input[2] / alpha;
|
|
encode[1] = alpha;
|
|
|
|
input += 3;
|
|
encode += 2;
|
|
} while ( encode < end_output );
|
|
}
|
|
|
|
static void stbir__simple_alpha_weight_4ch( float * decode_buffer, int width_times_channels )
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) decode = decode_buffer;
|
|
float const * end_decode = decode_buffer + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
{
|
|
decode += 2 * stbir__simdfX_float_count;
|
|
while ( decode <= end_decode )
|
|
{
|
|
stbir__simdfX d0,a0,d1,a1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdfX_load( d0, decode-2*stbir__simdfX_float_count );
|
|
stbir__simdfX_load( d1, decode-2*stbir__simdfX_float_count+stbir__simdfX_float_count );
|
|
stbir__simdfX_aaa1( a0, d0, STBIR_onesX );
|
|
stbir__simdfX_aaa1( a1, d1, STBIR_onesX );
|
|
stbir__simdfX_mult( d0, d0, a0 );
|
|
stbir__simdfX_mult( d1, d1, a1 );
|
|
stbir__simdfX_store ( decode-2*stbir__simdfX_float_count, d0 );
|
|
stbir__simdfX_store ( decode-2*stbir__simdfX_float_count+stbir__simdfX_float_count, d1 );
|
|
decode += 2 * stbir__simdfX_float_count;
|
|
}
|
|
decode -= 2 * stbir__simdfX_float_count;
|
|
|
|
// few last pixels remnants
|
|
#ifdef STBIR_SIMD8
|
|
while ( decode < end_decode )
|
|
#else
|
|
if ( decode < end_decode )
|
|
#endif
|
|
{
|
|
stbir__simdf d,a;
|
|
stbir__simdf_load( d, decode );
|
|
stbir__simdf_aaa1( a, d, STBIR__CONSTF(STBIR_ones) );
|
|
stbir__simdf_mult( d, d, a );
|
|
stbir__simdf_store ( decode, d );
|
|
decode += 4;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
while( decode < end_decode )
|
|
{
|
|
float alpha = decode[3];
|
|
decode[0] *= alpha;
|
|
decode[1] *= alpha;
|
|
decode[2] *= alpha;
|
|
decode += 4;
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
static void stbir__simple_alpha_weight_2ch( float * decode_buffer, int width_times_channels )
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) decode = decode_buffer;
|
|
float const * end_decode = decode_buffer + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
decode += 2 * stbir__simdfX_float_count;
|
|
while ( decode <= end_decode )
|
|
{
|
|
stbir__simdfX d0,a0,d1,a1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdfX_load( d0, decode-2*stbir__simdfX_float_count );
|
|
stbir__simdfX_load( d1, decode-2*stbir__simdfX_float_count+stbir__simdfX_float_count );
|
|
stbir__simdfX_a1a1( a0, d0, STBIR_onesX );
|
|
stbir__simdfX_a1a1( a1, d1, STBIR_onesX );
|
|
stbir__simdfX_mult( d0, d0, a0 );
|
|
stbir__simdfX_mult( d1, d1, a1 );
|
|
stbir__simdfX_store ( decode-2*stbir__simdfX_float_count, d0 );
|
|
stbir__simdfX_store ( decode-2*stbir__simdfX_float_count+stbir__simdfX_float_count, d1 );
|
|
decode += 2 * stbir__simdfX_float_count;
|
|
}
|
|
decode -= 2 * stbir__simdfX_float_count;
|
|
#endif
|
|
|
|
while( decode < end_decode )
|
|
{
|
|
float alpha = decode[1];
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
decode[0] *= alpha;
|
|
decode += 2;
|
|
}
|
|
}
|
|
|
|
static void stbir__simple_alpha_unweight_4ch( float * encode_buffer, int width_times_channels )
|
|
{
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer;
|
|
float const * end_output = encode_buffer + width_times_channels;
|
|
|
|
do {
|
|
float alpha = encode[3];
|
|
|
|
#ifdef STBIR_SIMD
|
|
stbir__simdf i,ia;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
if ( alpha >= stbir__small_float )
|
|
{
|
|
stbir__simdf_load1frep4( ia, 1.0f / alpha );
|
|
stbir__simdf_load( i, encode );
|
|
stbir__simdf_mult( i, i, ia );
|
|
stbir__simdf_store( encode, i );
|
|
encode[3] = alpha;
|
|
}
|
|
#else
|
|
if ( alpha >= stbir__small_float )
|
|
{
|
|
float ialpha = 1.0f / alpha;
|
|
encode[0] *= ialpha;
|
|
encode[1] *= ialpha;
|
|
encode[2] *= ialpha;
|
|
}
|
|
#endif
|
|
encode += 4;
|
|
} while ( encode < end_output );
|
|
}
|
|
|
|
static void stbir__simple_alpha_unweight_2ch( float * encode_buffer, int width_times_channels )
|
|
{
|
|
float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer;
|
|
float const * end_output = encode_buffer + width_times_channels;
|
|
|
|
do {
|
|
float alpha = encode[1];
|
|
if ( alpha >= stbir__small_float )
|
|
encode[0] /= alpha;
|
|
encode += 2;
|
|
} while ( encode < end_output );
|
|
}
|
|
|
|
|
|
// only used in RGB->BGR or BGR->RGB
|
|
static void stbir__simple_flip_3ch( float * decode_buffer, int width_times_channels )
|
|
{
|
|
float STBIR_STREAMOUT_PTR(*) decode = decode_buffer;
|
|
float const * end_decode = decode_buffer + width_times_channels;
|
|
|
|
decode += 12;
|
|
while( decode <= end_decode )
|
|
{
|
|
float t0,t1,t2,t3;
|
|
STBIR_NO_UNROLL(decode);
|
|
t0 = decode[0]; t1 = decode[3]; t2 = decode[6]; t3 = decode[9];
|
|
decode[0] = decode[2]; decode[3] = decode[5]; decode[6] = decode[8]; decode[9] = decode[11];
|
|
decode[2] = t0; decode[5] = t1; decode[8] = t2; decode[11] = t3;
|
|
decode += 12;
|
|
}
|
|
decode -= 12;
|
|
|
|
while( decode < end_decode )
|
|
{
|
|
float t = decode[0];
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = decode[2];
|
|
decode[2] = t;
|
|
decode += 3;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void stbir__decode_scanline(stbir__info const * stbir_info, int n, float * output_buffer STBIR_ONLY_PROFILE_GET_SPLIT_INFO )
|
|
{
|
|
int channels = stbir_info->channels;
|
|
int effective_channels = stbir_info->effective_channels;
|
|
int input_sample_in_bytes = stbir__type_size[stbir_info->input_type] * channels;
|
|
stbir_edge edge_horizontal = stbir_info->horizontal.edge;
|
|
stbir_edge edge_vertical = stbir_info->vertical.edge;
|
|
int row = stbir__edge_wrap(edge_vertical, n, stbir_info->vertical.scale_info.input_full_size);
|
|
const void* input_plane_data = ( (char *) stbir_info->input_data ) + (ptrdiff_t)row * (ptrdiff_t) stbir_info->input_stride_bytes;
|
|
stbir__span const * spans = stbir_info->scanline_extents.spans;
|
|
float* full_decode_buffer = output_buffer - stbir_info->scanline_extents.conservative.n0 * effective_channels;
|
|
|
|
// if we are on edge_zero, and we get in here with an out of bounds n, then the calculate filters has failed
|
|
STBIR_ASSERT( !(edge_vertical == STBIR_EDGE_ZERO && (n < 0 || n >= stbir_info->vertical.scale_info.input_full_size)) );
|
|
|
|
do
|
|
{
|
|
float * decode_buffer;
|
|
void const * input_data;
|
|
float * end_decode;
|
|
int width_times_channels;
|
|
int width;
|
|
|
|
if ( spans->n1 < spans->n0 )
|
|
break;
|
|
|
|
width = spans->n1 + 1 - spans->n0;
|
|
decode_buffer = full_decode_buffer + spans->n0 * effective_channels;
|
|
end_decode = full_decode_buffer + ( spans->n1 + 1 ) * effective_channels;
|
|
width_times_channels = width * channels;
|
|
|
|
// read directly out of input plane by default
|
|
input_data = ( (char*)input_plane_data ) + spans->pixel_offset_for_input * input_sample_in_bytes;
|
|
|
|
// if we have an input callback, call it to get the input data
|
|
if ( stbir_info->in_pixels_cb )
|
|
{
|
|
// call the callback with a temp buffer (that they can choose to use or not). the temp is just right aligned memory in the decode_buffer itself
|
|
input_data = stbir_info->in_pixels_cb( ( (char*) end_decode ) - ( width * input_sample_in_bytes ), input_plane_data, width, spans->pixel_offset_for_input, row, stbir_info->user_data );
|
|
}
|
|
|
|
STBIR_PROFILE_START( decode );
|
|
// convert the pixels info the float decode_buffer, (we index from end_decode, so that when channels<effective_channels, we are right justified in the buffer)
|
|
stbir_info->decode_pixels( (float*)end_decode - width_times_channels, width_times_channels, input_data );
|
|
STBIR_PROFILE_END( decode );
|
|
|
|
if (stbir_info->alpha_weight)
|
|
{
|
|
STBIR_PROFILE_START( alpha );
|
|
stbir_info->alpha_weight( decode_buffer, width_times_channels );
|
|
STBIR_PROFILE_END( alpha );
|
|
}
|
|
|
|
++spans;
|
|
} while ( spans <= ( &stbir_info->scanline_extents.spans[1] ) );
|
|
|
|
// handle the edge_wrap filter (all other types are handled back out at the calculate_filter stage)
|
|
// basically the idea here is that if we have the whole scanline in memory, we don't redecode the
|
|
// wrapped edge pixels, and instead just memcpy them from the scanline into the edge positions
|
|
if ( ( edge_horizontal == STBIR_EDGE_WRAP ) && ( stbir_info->scanline_extents.edge_sizes[0] | stbir_info->scanline_extents.edge_sizes[1] ) )
|
|
{
|
|
// this code only runs if we're in edge_wrap, and we're doing the entire scanline
|
|
int e, start_x[2];
|
|
int input_full_size = stbir_info->horizontal.scale_info.input_full_size;
|
|
|
|
start_x[0] = -stbir_info->scanline_extents.edge_sizes[0]; // left edge start x
|
|
start_x[1] = input_full_size; // right edge
|
|
|
|
for( e = 0; e < 2 ; e++ )
|
|
{
|
|
// do each margin
|
|
int margin = stbir_info->scanline_extents.edge_sizes[e];
|
|
if ( margin )
|
|
{
|
|
int x = start_x[e];
|
|
float * marg = full_decode_buffer + x * effective_channels;
|
|
float const * src = full_decode_buffer + stbir__edge_wrap(edge_horizontal, x, input_full_size) * effective_channels;
|
|
STBIR_MEMCPY( marg, src, margin * effective_channels * sizeof(float) );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//=================
|
|
// Do 1 channel horizontal routines
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#define stbir__1_coeff_only() \
|
|
stbir__simdf tot,c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1( c, hc ); \
|
|
stbir__simdf_mult1_mem( tot, c, decode );
|
|
|
|
#define stbir__2_coeff_only() \
|
|
stbir__simdf tot,c,d; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2z( c, hc ); \
|
|
stbir__simdf_load2( d, decode ); \
|
|
stbir__simdf_mult( tot, c, d ); \
|
|
stbir__simdf_0123to1230( c, tot ); \
|
|
stbir__simdf_add1( tot, tot, c );
|
|
|
|
#define stbir__3_coeff_only() \
|
|
stbir__simdf tot,c,t; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( c, hc ); \
|
|
stbir__simdf_mult_mem( tot, c, decode ); \
|
|
stbir__simdf_0123to1230( c, tot ); \
|
|
stbir__simdf_0123to2301( t, tot ); \
|
|
stbir__simdf_add1( tot, tot, c ); \
|
|
stbir__simdf_add1( tot, tot, t );
|
|
|
|
#define stbir__store_output_tiny() \
|
|
stbir__simdf_store1( output, tot ); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 1;
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf tot,c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( c, hc ); \
|
|
stbir__simdf_mult_mem( tot, c, decode ); \
|
|
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( c, hc + (ofs) ); \
|
|
stbir__simdf_madd_mem( tot, tot, c, decode+(ofs) );
|
|
|
|
#define stbir__1_coeff_remnant( ofs ) \
|
|
{ stbir__simdf d; \
|
|
stbir__simdf_load1z( c, hc + (ofs) ); \
|
|
stbir__simdf_load1( d, decode + (ofs) ); \
|
|
stbir__simdf_madd( tot, tot, d, c ); }
|
|
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
{ stbir__simdf d; \
|
|
stbir__simdf_load2z( c, hc+(ofs) ); \
|
|
stbir__simdf_load2( d, decode+(ofs) ); \
|
|
stbir__simdf_madd( tot, tot, d, c ); }
|
|
|
|
#define stbir__3_coeff_setup() \
|
|
stbir__simdf mask; \
|
|
stbir__simdf_load( mask, STBIR_mask + 3 );
|
|
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
stbir__simdf_load( c, hc+(ofs) ); \
|
|
stbir__simdf_and( c, c, mask ); \
|
|
stbir__simdf_madd_mem( tot, tot, c, decode+(ofs) );
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf_0123to2301( c, tot ); \
|
|
stbir__simdf_add( tot, tot, c ); \
|
|
stbir__simdf_0123to1230( c, tot ); \
|
|
stbir__simdf_add1( tot, tot, c ); \
|
|
stbir__simdf_store1( output, tot ); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 1;
|
|
|
|
#else
|
|
|
|
#define stbir__1_coeff_only() \
|
|
float tot; \
|
|
tot = decode[0]*hc[0];
|
|
|
|
#define stbir__2_coeff_only() \
|
|
float tot; \
|
|
tot = decode[0] * hc[0]; \
|
|
tot += decode[1] * hc[1];
|
|
|
|
#define stbir__3_coeff_only() \
|
|
float tot; \
|
|
tot = decode[0] * hc[0]; \
|
|
tot += decode[1] * hc[1]; \
|
|
tot += decode[2] * hc[2];
|
|
|
|
#define stbir__store_output_tiny() \
|
|
output[0] = tot; \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 1;
|
|
|
|
#define stbir__4_coeff_start() \
|
|
float tot0,tot1,tot2,tot3; \
|
|
tot0 = decode[0] * hc[0]; \
|
|
tot1 = decode[1] * hc[1]; \
|
|
tot2 = decode[2] * hc[2]; \
|
|
tot3 = decode[3] * hc[3];
|
|
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
tot0 += decode[0+(ofs)] * hc[0+(ofs)]; \
|
|
tot1 += decode[1+(ofs)] * hc[1+(ofs)]; \
|
|
tot2 += decode[2+(ofs)] * hc[2+(ofs)]; \
|
|
tot3 += decode[3+(ofs)] * hc[3+(ofs)];
|
|
|
|
#define stbir__1_coeff_remnant( ofs ) \
|
|
tot0 += decode[0+(ofs)] * hc[0+(ofs)];
|
|
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
tot0 += decode[0+(ofs)] * hc[0+(ofs)]; \
|
|
tot1 += decode[1+(ofs)] * hc[1+(ofs)]; \
|
|
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
tot0 += decode[0+(ofs)] * hc[0+(ofs)]; \
|
|
tot1 += decode[1+(ofs)] * hc[1+(ofs)]; \
|
|
tot2 += decode[2+(ofs)] * hc[2+(ofs)];
|
|
|
|
#define stbir__store_output() \
|
|
output[0] = (tot0+tot2)+(tot1+tot3); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 1;
|
|
|
|
#endif
|
|
|
|
#define STBIR__horizontal_channels 1
|
|
#define STB_IMAGE_RESIZE_DO_HORIZONTALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
|
|
//=================
|
|
// Do 2 channel horizontal routines
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#define stbir__1_coeff_only() \
|
|
stbir__simdf tot,c,d; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1z( c, hc ); \
|
|
stbir__simdf_0123to0011( c, c ); \
|
|
stbir__simdf_load2( d, decode ); \
|
|
stbir__simdf_mult( tot, d, c );
|
|
|
|
#define stbir__2_coeff_only() \
|
|
stbir__simdf tot,c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2( c, hc ); \
|
|
stbir__simdf_0123to0011( c, c ); \
|
|
stbir__simdf_mult_mem( tot, c, decode );
|
|
|
|
#define stbir__3_coeff_only() \
|
|
stbir__simdf tot,c,cs,d; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc ); \
|
|
stbir__simdf_0123to0011( c, cs ); \
|
|
stbir__simdf_mult_mem( tot, c, decode ); \
|
|
stbir__simdf_0123to2222( c, cs ); \
|
|
stbir__simdf_load2z( d, decode+4 ); \
|
|
stbir__simdf_madd( tot, tot, d, c );
|
|
|
|
#define stbir__store_output_tiny() \
|
|
stbir__simdf_0123to2301( c, tot ); \
|
|
stbir__simdf_add( tot, tot, c ); \
|
|
stbir__simdf_store2( output, tot ); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 2;
|
|
|
|
#ifdef STBIR_SIMD8
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf8 tot0,c,cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b( cs, hc ); \
|
|
stbir__simdf8_0123to00112233( c, cs ); \
|
|
stbir__simdf8_mult_mem( tot0, c, decode );
|
|
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b( cs, hc + (ofs) ); \
|
|
stbir__simdf8_0123to00112233( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*2 );
|
|
|
|
#define stbir__1_coeff_remnant( ofs ) \
|
|
{ stbir__simdf t; \
|
|
stbir__simdf_load1z( t, hc + (ofs) ); \
|
|
stbir__simdf_0123to0011( t, t ); \
|
|
stbir__simdf_mult_mem( t, t, decode+(ofs)*2 ); \
|
|
stbir__simdf8_add4( tot0, tot0, t ); }
|
|
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
{ stbir__simdf t; \
|
|
stbir__simdf_load2( t, hc + (ofs) ); \
|
|
stbir__simdf_0123to0011( t, t ); \
|
|
stbir__simdf_mult_mem( t, t, decode+(ofs)*2 ); \
|
|
stbir__simdf8_add4( tot0, tot0, t ); }
|
|
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
{ stbir__simdf8 d; \
|
|
stbir__simdf8_load4b( cs, hc + (ofs) ); \
|
|
stbir__simdf8_0123to00112233( c, cs ); \
|
|
stbir__simdf8_load6z( d, decode+(ofs)*2 ); \
|
|
stbir__simdf8_madd( tot0, tot0, c, d ); }
|
|
|
|
#define stbir__store_output() \
|
|
{ stbir__simdf t,d; \
|
|
stbir__simdf8_add4halves( t, stbir__if_simdf8_cast_to_simdf4(tot0), tot0 ); \
|
|
stbir__simdf_0123to2301( d, t ); \
|
|
stbir__simdf_add( t, t, d ); \
|
|
stbir__simdf_store2( output, t ); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 2; }
|
|
|
|
#else
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf tot0,tot1,c,cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc ); \
|
|
stbir__simdf_0123to0011( c, cs ); \
|
|
stbir__simdf_mult_mem( tot0, c, decode ); \
|
|
stbir__simdf_0123to2233( c, cs ); \
|
|
stbir__simdf_mult_mem( tot1, c, decode+4 );
|
|
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc + (ofs) ); \
|
|
stbir__simdf_0123to0011( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*2 ); \
|
|
stbir__simdf_0123to2233( c, cs ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*2+4 );
|
|
|
|
#define stbir__1_coeff_remnant( ofs ) \
|
|
{ stbir__simdf d; \
|
|
stbir__simdf_load1z( cs, hc + (ofs) ); \
|
|
stbir__simdf_0123to0011( c, cs ); \
|
|
stbir__simdf_load2( d, decode + (ofs) * 2 ); \
|
|
stbir__simdf_madd( tot0, tot0, d, c ); }
|
|
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
stbir__simdf_load2( cs, hc + (ofs) ); \
|
|
stbir__simdf_0123to0011( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*2 );
|
|
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
{ stbir__simdf d; \
|
|
stbir__simdf_load( cs, hc + (ofs) ); \
|
|
stbir__simdf_0123to0011( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*2 ); \
|
|
stbir__simdf_0123to2222( c, cs ); \
|
|
stbir__simdf_load2z( d, decode + (ofs) * 2 + 4 ); \
|
|
stbir__simdf_madd( tot1, tot1, d, c ); }
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf_add( tot0, tot0, tot1 ); \
|
|
stbir__simdf_0123to2301( c, tot0 ); \
|
|
stbir__simdf_add( tot0, tot0, c ); \
|
|
stbir__simdf_store2( output, tot0 ); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 2;
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
#define stbir__1_coeff_only() \
|
|
float tota,totb,c; \
|
|
c = hc[0]; \
|
|
tota = decode[0]*c; \
|
|
totb = decode[1]*c;
|
|
|
|
#define stbir__2_coeff_only() \
|
|
float tota,totb,c; \
|
|
c = hc[0]; \
|
|
tota = decode[0]*c; \
|
|
totb = decode[1]*c; \
|
|
c = hc[1]; \
|
|
tota += decode[2]*c; \
|
|
totb += decode[3]*c;
|
|
|
|
// this weird order of add matches the simd
|
|
#define stbir__3_coeff_only() \
|
|
float tota,totb,c; \
|
|
c = hc[0]; \
|
|
tota = decode[0]*c; \
|
|
totb = decode[1]*c; \
|
|
c = hc[2]; \
|
|
tota += decode[4]*c; \
|
|
totb += decode[5]*c; \
|
|
c = hc[1]; \
|
|
tota += decode[2]*c; \
|
|
totb += decode[3]*c;
|
|
|
|
#define stbir__store_output_tiny() \
|
|
output[0] = tota; \
|
|
output[1] = totb; \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 2;
|
|
|
|
#define stbir__4_coeff_start() \
|
|
float tota0,tota1,tota2,tota3,totb0,totb1,totb2,totb3,c; \
|
|
c = hc[0]; \
|
|
tota0 = decode[0]*c; \
|
|
totb0 = decode[1]*c; \
|
|
c = hc[1]; \
|
|
tota1 = decode[2]*c; \
|
|
totb1 = decode[3]*c; \
|
|
c = hc[2]; \
|
|
tota2 = decode[4]*c; \
|
|
totb2 = decode[5]*c; \
|
|
c = hc[3]; \
|
|
tota3 = decode[6]*c; \
|
|
totb3 = decode[7]*c;
|
|
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
c = hc[0+(ofs)]; \
|
|
tota0 += decode[0+(ofs)*2]*c; \
|
|
totb0 += decode[1+(ofs)*2]*c; \
|
|
c = hc[1+(ofs)]; \
|
|
tota1 += decode[2+(ofs)*2]*c; \
|
|
totb1 += decode[3+(ofs)*2]*c; \
|
|
c = hc[2+(ofs)]; \
|
|
tota2 += decode[4+(ofs)*2]*c; \
|
|
totb2 += decode[5+(ofs)*2]*c; \
|
|
c = hc[3+(ofs)]; \
|
|
tota3 += decode[6+(ofs)*2]*c; \
|
|
totb3 += decode[7+(ofs)*2]*c;
|
|
|
|
#define stbir__1_coeff_remnant( ofs ) \
|
|
c = hc[0+(ofs)]; \
|
|
tota0 += decode[0+(ofs)*2] * c; \
|
|
totb0 += decode[1+(ofs)*2] * c;
|
|
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
c = hc[0+(ofs)]; \
|
|
tota0 += decode[0+(ofs)*2] * c; \
|
|
totb0 += decode[1+(ofs)*2] * c; \
|
|
c = hc[1+(ofs)]; \
|
|
tota1 += decode[2+(ofs)*2] * c; \
|
|
totb1 += decode[3+(ofs)*2] * c;
|
|
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
c = hc[0+(ofs)]; \
|
|
tota0 += decode[0+(ofs)*2] * c; \
|
|
totb0 += decode[1+(ofs)*2] * c; \
|
|
c = hc[1+(ofs)]; \
|
|
tota1 += decode[2+(ofs)*2] * c; \
|
|
totb1 += decode[3+(ofs)*2] * c; \
|
|
c = hc[2+(ofs)]; \
|
|
tota2 += decode[4+(ofs)*2] * c; \
|
|
totb2 += decode[5+(ofs)*2] * c;
|
|
|
|
#define stbir__store_output() \
|
|
output[0] = (tota0+tota2)+(tota1+tota3); \
|
|
output[1] = (totb0+totb2)+(totb1+totb3); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 2;
|
|
|
|
#endif
|
|
|
|
#define STBIR__horizontal_channels 2
|
|
#define STB_IMAGE_RESIZE_DO_HORIZONTALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
|
|
//=================
|
|
// Do 3 channel horizontal routines
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#define stbir__1_coeff_only() \
|
|
stbir__simdf tot,c,d; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1z( c, hc ); \
|
|
stbir__simdf_0123to0001( c, c ); \
|
|
stbir__simdf_load( d, decode ); \
|
|
stbir__simdf_mult( tot, d, c );
|
|
|
|
#define stbir__2_coeff_only() \
|
|
stbir__simdf tot,c,cs,d; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2( cs, hc ); \
|
|
stbir__simdf_0123to0000( c, cs ); \
|
|
stbir__simdf_load( d, decode ); \
|
|
stbir__simdf_mult( tot, d, c ); \
|
|
stbir__simdf_0123to1111( c, cs ); \
|
|
stbir__simdf_load( d, decode+3 ); \
|
|
stbir__simdf_madd( tot, tot, d, c );
|
|
|
|
#define stbir__3_coeff_only() \
|
|
stbir__simdf tot,c,d,cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc ); \
|
|
stbir__simdf_0123to0000( c, cs ); \
|
|
stbir__simdf_load( d, decode ); \
|
|
stbir__simdf_mult( tot, d, c ); \
|
|
stbir__simdf_0123to1111( c, cs ); \
|
|
stbir__simdf_load( d, decode+3 ); \
|
|
stbir__simdf_madd( tot, tot, d, c ); \
|
|
stbir__simdf_0123to2222( c, cs ); \
|
|
stbir__simdf_load( d, decode+6 ); \
|
|
stbir__simdf_madd( tot, tot, d, c );
|
|
|
|
#define stbir__store_output_tiny() \
|
|
stbir__simdf_store2( output, tot ); \
|
|
stbir__simdf_0123to2301( tot, tot ); \
|
|
stbir__simdf_store1( output+2, tot ); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 3;
|
|
|
|
#ifdef STBIR_SIMD8
|
|
|
|
// we're loading from the XXXYYY decode by -1 to get the XXXYYY into different halves of the AVX reg fyi
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf8 tot0,tot1,c,cs; stbir__simdf t; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b( cs, hc ); \
|
|
stbir__simdf8_0123to00001111( c, cs ); \
|
|
stbir__simdf8_mult_mem( tot0, c, decode - 1 ); \
|
|
stbir__simdf8_0123to22223333( c, cs ); \
|
|
stbir__simdf8_mult_mem( tot1, c, decode+6 - 1 );
|
|
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b( cs, hc + (ofs) ); \
|
|
stbir__simdf8_0123to00001111( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*3 - 1 ); \
|
|
stbir__simdf8_0123to22223333( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*3 + 6 - 1 );
|
|
|
|
#define stbir__1_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1rep4( t, hc + (ofs) ); \
|
|
stbir__simdf8_madd_mem4( tot0, tot0, t, decode+(ofs)*3 - 1 );
|
|
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b( cs, hc + (ofs) - 2 ); \
|
|
stbir__simdf8_0123to22223333( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*3 - 1 );
|
|
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b( cs, hc + (ofs) ); \
|
|
stbir__simdf8_0123to00001111( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*3 - 1 ); \
|
|
stbir__simdf8_0123to2222( t, cs ); \
|
|
stbir__simdf8_madd_mem4( tot1, tot1, t, decode+(ofs)*3 + 6 - 1 );
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf8_add( tot0, tot0, tot1 ); \
|
|
stbir__simdf_0123to1230( t, stbir__if_simdf8_cast_to_simdf4( tot0 ) ); \
|
|
stbir__simdf8_add4halves( t, t, tot0 ); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 3; \
|
|
if ( output < output_end ) \
|
|
{ \
|
|
stbir__simdf_store( output-3, t ); \
|
|
continue; \
|
|
} \
|
|
{ stbir__simdf tt; stbir__simdf_0123to2301( tt, t ); \
|
|
stbir__simdf_store2( output-3, t ); \
|
|
stbir__simdf_store1( output+2-3, tt ); } \
|
|
break;
|
|
|
|
|
|
#else
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf tot0,tot1,tot2,c,cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc ); \
|
|
stbir__simdf_0123to0001( c, cs ); \
|
|
stbir__simdf_mult_mem( tot0, c, decode ); \
|
|
stbir__simdf_0123to1122( c, cs ); \
|
|
stbir__simdf_mult_mem( tot1, c, decode+4 ); \
|
|
stbir__simdf_0123to2333( c, cs ); \
|
|
stbir__simdf_mult_mem( tot2, c, decode+8 );
|
|
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc + (ofs) ); \
|
|
stbir__simdf_0123to0001( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*3 ); \
|
|
stbir__simdf_0123to1122( c, cs ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*3+4 ); \
|
|
stbir__simdf_0123to2333( c, cs ); \
|
|
stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*3+8 );
|
|
|
|
#define stbir__1_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1z( c, hc + (ofs) ); \
|
|
stbir__simdf_0123to0001( c, c ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*3 );
|
|
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
{ stbir__simdf d; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2z( cs, hc + (ofs) ); \
|
|
stbir__simdf_0123to0001( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*3 ); \
|
|
stbir__simdf_0123to1122( c, cs ); \
|
|
stbir__simdf_load2z( d, decode+(ofs)*3+4 ); \
|
|
stbir__simdf_madd( tot1, tot1, c, d ); }
|
|
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
{ stbir__simdf d; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc + (ofs) ); \
|
|
stbir__simdf_0123to0001( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*3 ); \
|
|
stbir__simdf_0123to1122( c, cs ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*3+4 ); \
|
|
stbir__simdf_0123to2222( c, cs ); \
|
|
stbir__simdf_load1z( d, decode+(ofs)*3+8 ); \
|
|
stbir__simdf_madd( tot2, tot2, c, d ); }
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf_0123ABCDto3ABx( c, tot0, tot1 ); \
|
|
stbir__simdf_0123ABCDto23Ax( cs, tot1, tot2 ); \
|
|
stbir__simdf_0123to1230( tot2, tot2 ); \
|
|
stbir__simdf_add( tot0, tot0, cs ); \
|
|
stbir__simdf_add( c, c, tot2 ); \
|
|
stbir__simdf_add( tot0, tot0, c ); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 3; \
|
|
if ( output < output_end ) \
|
|
{ \
|
|
stbir__simdf_store( output-3, tot0 ); \
|
|
continue; \
|
|
} \
|
|
stbir__simdf_0123to2301( tot1, tot0 ); \
|
|
stbir__simdf_store2( output-3, tot0 ); \
|
|
stbir__simdf_store1( output+2-3, tot1 ); \
|
|
break;
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
#define stbir__1_coeff_only() \
|
|
float tot0, tot1, tot2, c; \
|
|
c = hc[0]; \
|
|
tot0 = decode[0]*c; \
|
|
tot1 = decode[1]*c; \
|
|
tot2 = decode[2]*c;
|
|
|
|
#define stbir__2_coeff_only() \
|
|
float tot0, tot1, tot2, c; \
|
|
c = hc[0]; \
|
|
tot0 = decode[0]*c; \
|
|
tot1 = decode[1]*c; \
|
|
tot2 = decode[2]*c; \
|
|
c = hc[1]; \
|
|
tot0 += decode[3]*c; \
|
|
tot1 += decode[4]*c; \
|
|
tot2 += decode[5]*c;
|
|
|
|
#define stbir__3_coeff_only() \
|
|
float tot0, tot1, tot2, c; \
|
|
c = hc[0]; \
|
|
tot0 = decode[0]*c; \
|
|
tot1 = decode[1]*c; \
|
|
tot2 = decode[2]*c; \
|
|
c = hc[1]; \
|
|
tot0 += decode[3]*c; \
|
|
tot1 += decode[4]*c; \
|
|
tot2 += decode[5]*c; \
|
|
c = hc[2]; \
|
|
tot0 += decode[6]*c; \
|
|
tot1 += decode[7]*c; \
|
|
tot2 += decode[8]*c;
|
|
|
|
#define stbir__store_output_tiny() \
|
|
output[0] = tot0; \
|
|
output[1] = tot1; \
|
|
output[2] = tot2; \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 3;
|
|
|
|
#define stbir__4_coeff_start() \
|
|
float tota0,tota1,tota2,totb0,totb1,totb2,totc0,totc1,totc2,totd0,totd1,totd2,c; \
|
|
c = hc[0]; \
|
|
tota0 = decode[0]*c; \
|
|
tota1 = decode[1]*c; \
|
|
tota2 = decode[2]*c; \
|
|
c = hc[1]; \
|
|
totb0 = decode[3]*c; \
|
|
totb1 = decode[4]*c; \
|
|
totb2 = decode[5]*c; \
|
|
c = hc[2]; \
|
|
totc0 = decode[6]*c; \
|
|
totc1 = decode[7]*c; \
|
|
totc2 = decode[8]*c; \
|
|
c = hc[3]; \
|
|
totd0 = decode[9]*c; \
|
|
totd1 = decode[10]*c; \
|
|
totd2 = decode[11]*c;
|
|
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
c = hc[0+(ofs)]; \
|
|
tota0 += decode[0+(ofs)*3]*c; \
|
|
tota1 += decode[1+(ofs)*3]*c; \
|
|
tota2 += decode[2+(ofs)*3]*c; \
|
|
c = hc[1+(ofs)]; \
|
|
totb0 += decode[3+(ofs)*3]*c; \
|
|
totb1 += decode[4+(ofs)*3]*c; \
|
|
totb2 += decode[5+(ofs)*3]*c; \
|
|
c = hc[2+(ofs)]; \
|
|
totc0 += decode[6+(ofs)*3]*c; \
|
|
totc1 += decode[7+(ofs)*3]*c; \
|
|
totc2 += decode[8+(ofs)*3]*c; \
|
|
c = hc[3+(ofs)]; \
|
|
totd0 += decode[9+(ofs)*3]*c; \
|
|
totd1 += decode[10+(ofs)*3]*c; \
|
|
totd2 += decode[11+(ofs)*3]*c;
|
|
|
|
#define stbir__1_coeff_remnant( ofs ) \
|
|
c = hc[0+(ofs)]; \
|
|
tota0 += decode[0+(ofs)*3]*c; \
|
|
tota1 += decode[1+(ofs)*3]*c; \
|
|
tota2 += decode[2+(ofs)*3]*c;
|
|
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
c = hc[0+(ofs)]; \
|
|
tota0 += decode[0+(ofs)*3]*c; \
|
|
tota1 += decode[1+(ofs)*3]*c; \
|
|
tota2 += decode[2+(ofs)*3]*c; \
|
|
c = hc[1+(ofs)]; \
|
|
totb0 += decode[3+(ofs)*3]*c; \
|
|
totb1 += decode[4+(ofs)*3]*c; \
|
|
totb2 += decode[5+(ofs)*3]*c; \
|
|
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
c = hc[0+(ofs)]; \
|
|
tota0 += decode[0+(ofs)*3]*c; \
|
|
tota1 += decode[1+(ofs)*3]*c; \
|
|
tota2 += decode[2+(ofs)*3]*c; \
|
|
c = hc[1+(ofs)]; \
|
|
totb0 += decode[3+(ofs)*3]*c; \
|
|
totb1 += decode[4+(ofs)*3]*c; \
|
|
totb2 += decode[5+(ofs)*3]*c; \
|
|
c = hc[2+(ofs)]; \
|
|
totc0 += decode[6+(ofs)*3]*c; \
|
|
totc1 += decode[7+(ofs)*3]*c; \
|
|
totc2 += decode[8+(ofs)*3]*c;
|
|
|
|
#define stbir__store_output() \
|
|
output[0] = (tota0+totc0)+(totb0+totd0); \
|
|
output[1] = (tota1+totc1)+(totb1+totd1); \
|
|
output[2] = (tota2+totc2)+(totb2+totd2); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 3;
|
|
|
|
#endif
|
|
|
|
#define STBIR__horizontal_channels 3
|
|
#define STB_IMAGE_RESIZE_DO_HORIZONTALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
//=================
|
|
// Do 4 channel horizontal routines
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#define stbir__1_coeff_only() \
|
|
stbir__simdf tot,c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1( c, hc ); \
|
|
stbir__simdf_0123to0000( c, c ); \
|
|
stbir__simdf_mult_mem( tot, c, decode );
|
|
|
|
#define stbir__2_coeff_only() \
|
|
stbir__simdf tot,c,cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2( cs, hc ); \
|
|
stbir__simdf_0123to0000( c, cs ); \
|
|
stbir__simdf_mult_mem( tot, c, decode ); \
|
|
stbir__simdf_0123to1111( c, cs ); \
|
|
stbir__simdf_madd_mem( tot, tot, c, decode+4 );
|
|
|
|
#define stbir__3_coeff_only() \
|
|
stbir__simdf tot,c,cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc ); \
|
|
stbir__simdf_0123to0000( c, cs ); \
|
|
stbir__simdf_mult_mem( tot, c, decode ); \
|
|
stbir__simdf_0123to1111( c, cs ); \
|
|
stbir__simdf_madd_mem( tot, tot, c, decode+4 ); \
|
|
stbir__simdf_0123to2222( c, cs ); \
|
|
stbir__simdf_madd_mem( tot, tot, c, decode+8 );
|
|
|
|
#define stbir__store_output_tiny() \
|
|
stbir__simdf_store( output, tot ); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 4;
|
|
|
|
#ifdef STBIR_SIMD8
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf8 tot0,c,cs; stbir__simdf t; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b( cs, hc ); \
|
|
stbir__simdf8_0123to00001111( c, cs ); \
|
|
stbir__simdf8_mult_mem( tot0, c, decode ); \
|
|
stbir__simdf8_0123to22223333( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+8 );
|
|
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b( cs, hc + (ofs) ); \
|
|
stbir__simdf8_0123to00001111( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \
|
|
stbir__simdf8_0123to22223333( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*4+8 );
|
|
|
|
#define stbir__1_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1rep4( t, hc + (ofs) ); \
|
|
stbir__simdf8_madd_mem4( tot0, tot0, t, decode+(ofs)*4 );
|
|
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b( cs, hc + (ofs) - 2 ); \
|
|
stbir__simdf8_0123to22223333( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*4 );
|
|
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b( cs, hc + (ofs) ); \
|
|
stbir__simdf8_0123to00001111( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \
|
|
stbir__simdf8_0123to2222( t, cs ); \
|
|
stbir__simdf8_madd_mem4( tot0, tot0, t, decode+(ofs)*4+8 );
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf8_add4halves( t, stbir__if_simdf8_cast_to_simdf4(tot0), tot0 ); \
|
|
stbir__simdf_store( output, t ); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 4;
|
|
|
|
#else
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf tot0,tot1,c,cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc ); \
|
|
stbir__simdf_0123to0000( c, cs ); \
|
|
stbir__simdf_mult_mem( tot0, c, decode ); \
|
|
stbir__simdf_0123to1111( c, cs ); \
|
|
stbir__simdf_mult_mem( tot1, c, decode+4 ); \
|
|
stbir__simdf_0123to2222( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+8 ); \
|
|
stbir__simdf_0123to3333( c, cs ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+12 );
|
|
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc + (ofs) ); \
|
|
stbir__simdf_0123to0000( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \
|
|
stbir__simdf_0123to1111( c, cs ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*4+4 ); \
|
|
stbir__simdf_0123to2222( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4+8 ); \
|
|
stbir__simdf_0123to3333( c, cs ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*4+12 );
|
|
|
|
#define stbir__1_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1( c, hc + (ofs) ); \
|
|
stbir__simdf_0123to0000( c, c ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4 );
|
|
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2( cs, hc + (ofs) ); \
|
|
stbir__simdf_0123to0000( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \
|
|
stbir__simdf_0123to1111( c, cs ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*4+4 );
|
|
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc + (ofs) ); \
|
|
stbir__simdf_0123to0000( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \
|
|
stbir__simdf_0123to1111( c, cs ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*4+4 ); \
|
|
stbir__simdf_0123to2222( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4+8 );
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf_add( tot0, tot0, tot1 ); \
|
|
stbir__simdf_store( output, tot0 ); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 4;
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
#define stbir__1_coeff_only() \
|
|
float p0,p1,p2,p3,c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0]; \
|
|
p0 = decode[0] * c; \
|
|
p1 = decode[1] * c; \
|
|
p2 = decode[2] * c; \
|
|
p3 = decode[3] * c;
|
|
|
|
#define stbir__2_coeff_only() \
|
|
float p0,p1,p2,p3,c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0]; \
|
|
p0 = decode[0] * c; \
|
|
p1 = decode[1] * c; \
|
|
p2 = decode[2] * c; \
|
|
p3 = decode[3] * c; \
|
|
c = hc[1]; \
|
|
p0 += decode[4] * c; \
|
|
p1 += decode[5] * c; \
|
|
p2 += decode[6] * c; \
|
|
p3 += decode[7] * c;
|
|
|
|
#define stbir__3_coeff_only() \
|
|
float p0,p1,p2,p3,c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0]; \
|
|
p0 = decode[0] * c; \
|
|
p1 = decode[1] * c; \
|
|
p2 = decode[2] * c; \
|
|
p3 = decode[3] * c; \
|
|
c = hc[1]; \
|
|
p0 += decode[4] * c; \
|
|
p1 += decode[5] * c; \
|
|
p2 += decode[6] * c; \
|
|
p3 += decode[7] * c; \
|
|
c = hc[2]; \
|
|
p0 += decode[8] * c; \
|
|
p1 += decode[9] * c; \
|
|
p2 += decode[10] * c; \
|
|
p3 += decode[11] * c;
|
|
|
|
#define stbir__store_output_tiny() \
|
|
output[0] = p0; \
|
|
output[1] = p1; \
|
|
output[2] = p2; \
|
|
output[3] = p3; \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 4;
|
|
|
|
#define stbir__4_coeff_start() \
|
|
float x0,x1,x2,x3,y0,y1,y2,y3,c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0]; \
|
|
x0 = decode[0] * c; \
|
|
x1 = decode[1] * c; \
|
|
x2 = decode[2] * c; \
|
|
x3 = decode[3] * c; \
|
|
c = hc[1]; \
|
|
y0 = decode[4] * c; \
|
|
y1 = decode[5] * c; \
|
|
y2 = decode[6] * c; \
|
|
y3 = decode[7] * c; \
|
|
c = hc[2]; \
|
|
x0 += decode[8] * c; \
|
|
x1 += decode[9] * c; \
|
|
x2 += decode[10] * c; \
|
|
x3 += decode[11] * c; \
|
|
c = hc[3]; \
|
|
y0 += decode[12] * c; \
|
|
y1 += decode[13] * c; \
|
|
y2 += decode[14] * c; \
|
|
y3 += decode[15] * c;
|
|
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0+(ofs)]; \
|
|
x0 += decode[0+(ofs)*4] * c; \
|
|
x1 += decode[1+(ofs)*4] * c; \
|
|
x2 += decode[2+(ofs)*4] * c; \
|
|
x3 += decode[3+(ofs)*4] * c; \
|
|
c = hc[1+(ofs)]; \
|
|
y0 += decode[4+(ofs)*4] * c; \
|
|
y1 += decode[5+(ofs)*4] * c; \
|
|
y2 += decode[6+(ofs)*4] * c; \
|
|
y3 += decode[7+(ofs)*4] * c; \
|
|
c = hc[2+(ofs)]; \
|
|
x0 += decode[8+(ofs)*4] * c; \
|
|
x1 += decode[9+(ofs)*4] * c; \
|
|
x2 += decode[10+(ofs)*4] * c; \
|
|
x3 += decode[11+(ofs)*4] * c; \
|
|
c = hc[3+(ofs)]; \
|
|
y0 += decode[12+(ofs)*4] * c; \
|
|
y1 += decode[13+(ofs)*4] * c; \
|
|
y2 += decode[14+(ofs)*4] * c; \
|
|
y3 += decode[15+(ofs)*4] * c;
|
|
|
|
#define stbir__1_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0+(ofs)]; \
|
|
x0 += decode[0+(ofs)*4] * c; \
|
|
x1 += decode[1+(ofs)*4] * c; \
|
|
x2 += decode[2+(ofs)*4] * c; \
|
|
x3 += decode[3+(ofs)*4] * c;
|
|
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0+(ofs)]; \
|
|
x0 += decode[0+(ofs)*4] * c; \
|
|
x1 += decode[1+(ofs)*4] * c; \
|
|
x2 += decode[2+(ofs)*4] * c; \
|
|
x3 += decode[3+(ofs)*4] * c; \
|
|
c = hc[1+(ofs)]; \
|
|
y0 += decode[4+(ofs)*4] * c; \
|
|
y1 += decode[5+(ofs)*4] * c; \
|
|
y2 += decode[6+(ofs)*4] * c; \
|
|
y3 += decode[7+(ofs)*4] * c;
|
|
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0+(ofs)]; \
|
|
x0 += decode[0+(ofs)*4] * c; \
|
|
x1 += decode[1+(ofs)*4] * c; \
|
|
x2 += decode[2+(ofs)*4] * c; \
|
|
x3 += decode[3+(ofs)*4] * c; \
|
|
c = hc[1+(ofs)]; \
|
|
y0 += decode[4+(ofs)*4] * c; \
|
|
y1 += decode[5+(ofs)*4] * c; \
|
|
y2 += decode[6+(ofs)*4] * c; \
|
|
y3 += decode[7+(ofs)*4] * c; \
|
|
c = hc[2+(ofs)]; \
|
|
x0 += decode[8+(ofs)*4] * c; \
|
|
x1 += decode[9+(ofs)*4] * c; \
|
|
x2 += decode[10+(ofs)*4] * c; \
|
|
x3 += decode[11+(ofs)*4] * c;
|
|
|
|
#define stbir__store_output() \
|
|
output[0] = x0 + y0; \
|
|
output[1] = x1 + y1; \
|
|
output[2] = x2 + y2; \
|
|
output[3] = x3 + y3; \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 4;
|
|
|
|
#endif
|
|
|
|
#define STBIR__horizontal_channels 4
|
|
#define STB_IMAGE_RESIZE_DO_HORIZONTALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
|
|
|
|
//=================
|
|
// Do 7 channel horizontal routines
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#define stbir__1_coeff_only() \
|
|
stbir__simdf tot0,tot1,c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1( c, hc ); \
|
|
stbir__simdf_0123to0000( c, c ); \
|
|
stbir__simdf_mult_mem( tot0, c, decode ); \
|
|
stbir__simdf_mult_mem( tot1, c, decode+3 );
|
|
|
|
#define stbir__2_coeff_only() \
|
|
stbir__simdf tot0,tot1,c,cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2( cs, hc ); \
|
|
stbir__simdf_0123to0000( c, cs ); \
|
|
stbir__simdf_mult_mem( tot0, c, decode ); \
|
|
stbir__simdf_mult_mem( tot1, c, decode+3 ); \
|
|
stbir__simdf_0123to1111( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+7 ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c,decode+10 );
|
|
|
|
#define stbir__3_coeff_only() \
|
|
stbir__simdf tot0,tot1,c,cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc ); \
|
|
stbir__simdf_0123to0000( c, cs ); \
|
|
stbir__simdf_mult_mem( tot0, c, decode ); \
|
|
stbir__simdf_mult_mem( tot1, c, decode+3 ); \
|
|
stbir__simdf_0123to1111( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+7 ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+10 ); \
|
|
stbir__simdf_0123to2222( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+14 ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+17 );
|
|
|
|
#define stbir__store_output_tiny() \
|
|
stbir__simdf_store( output+3, tot1 ); \
|
|
stbir__simdf_store( output, tot0 ); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 7;
|
|
|
|
#ifdef STBIR_SIMD8
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf8 tot0,tot1,c,cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b( cs, hc ); \
|
|
stbir__simdf8_0123to00000000( c, cs ); \
|
|
stbir__simdf8_mult_mem( tot0, c, decode ); \
|
|
stbir__simdf8_0123to11111111( c, cs ); \
|
|
stbir__simdf8_mult_mem( tot1, c, decode+7 ); \
|
|
stbir__simdf8_0123to22222222( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+14 ); \
|
|
stbir__simdf8_0123to33333333( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot1, tot1, c, decode+21 );
|
|
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b( cs, hc + (ofs) ); \
|
|
stbir__simdf8_0123to00000000( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \
|
|
stbir__simdf8_0123to11111111( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*7+7 ); \
|
|
stbir__simdf8_0123to22222222( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7+14 ); \
|
|
stbir__simdf8_0123to33333333( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*7+21 );
|
|
|
|
#define stbir__1_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load1b( c, hc + (ofs) ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7 );
|
|
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load1b( c, hc + (ofs) ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \
|
|
stbir__simdf8_load1b( c, hc + (ofs)+1 ); \
|
|
stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*7+7 );
|
|
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf8_load4b( cs, hc + (ofs) ); \
|
|
stbir__simdf8_0123to00000000( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \
|
|
stbir__simdf8_0123to11111111( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*7+7 ); \
|
|
stbir__simdf8_0123to22222222( c, cs ); \
|
|
stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7+14 );
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf8_add( tot0, tot0, tot1 ); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 7; \
|
|
if ( output < output_end ) \
|
|
{ \
|
|
stbir__simdf8_store( output-7, tot0 ); \
|
|
continue; \
|
|
} \
|
|
stbir__simdf_store( output-7+3, stbir__simdf_swiz(stbir__simdf8_gettop4(tot0),0,0,1,2) ); \
|
|
stbir__simdf_store( output-7, stbir__if_simdf8_cast_to_simdf4(tot0) ); \
|
|
break;
|
|
|
|
#else
|
|
|
|
#define stbir__4_coeff_start() \
|
|
stbir__simdf tot0,tot1,tot2,tot3,c,cs; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc ); \
|
|
stbir__simdf_0123to0000( c, cs ); \
|
|
stbir__simdf_mult_mem( tot0, c, decode ); \
|
|
stbir__simdf_mult_mem( tot1, c, decode+3 ); \
|
|
stbir__simdf_0123to1111( c, cs ); \
|
|
stbir__simdf_mult_mem( tot2, c, decode+7 ); \
|
|
stbir__simdf_mult_mem( tot3, c, decode+10 ); \
|
|
stbir__simdf_0123to2222( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+14 ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+17 ); \
|
|
stbir__simdf_0123to3333( c, cs ); \
|
|
stbir__simdf_madd_mem( tot2, tot2, c, decode+21 ); \
|
|
stbir__simdf_madd_mem( tot3, tot3, c, decode+24 );
|
|
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc + (ofs) ); \
|
|
stbir__simdf_0123to0000( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+3 ); \
|
|
stbir__simdf_0123to1111( c, cs ); \
|
|
stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*7+7 ); \
|
|
stbir__simdf_madd_mem( tot3, tot3, c, decode+(ofs)*7+10 ); \
|
|
stbir__simdf_0123to2222( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7+14 ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+17 ); \
|
|
stbir__simdf_0123to3333( c, cs ); \
|
|
stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*7+21 ); \
|
|
stbir__simdf_madd_mem( tot3, tot3, c, decode+(ofs)*7+24 );
|
|
|
|
#define stbir__1_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load1( c, hc + (ofs) ); \
|
|
stbir__simdf_0123to0000( c, c ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+3 ); \
|
|
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load2( cs, hc + (ofs) ); \
|
|
stbir__simdf_0123to0000( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+3 ); \
|
|
stbir__simdf_0123to1111( c, cs ); \
|
|
stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*7+7 ); \
|
|
stbir__simdf_madd_mem( tot3, tot3, c, decode+(ofs)*7+10 );
|
|
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
stbir__simdf_load( cs, hc + (ofs) ); \
|
|
stbir__simdf_0123to0000( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+3 ); \
|
|
stbir__simdf_0123to1111( c, cs ); \
|
|
stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*7+7 ); \
|
|
stbir__simdf_madd_mem( tot3, tot3, c, decode+(ofs)*7+10 ); \
|
|
stbir__simdf_0123to2222( c, cs ); \
|
|
stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7+14 ); \
|
|
stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+17 );
|
|
|
|
#define stbir__store_output() \
|
|
stbir__simdf_add( tot0, tot0, tot2 ); \
|
|
stbir__simdf_add( tot1, tot1, tot3 ); \
|
|
stbir__simdf_store( output+3, tot1 ); \
|
|
stbir__simdf_store( output, tot0 ); \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 7;
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
#define stbir__1_coeff_only() \
|
|
float tot0, tot1, tot2, tot3, tot4, tot5, tot6, c; \
|
|
c = hc[0]; \
|
|
tot0 = decode[0]*c; \
|
|
tot1 = decode[1]*c; \
|
|
tot2 = decode[2]*c; \
|
|
tot3 = decode[3]*c; \
|
|
tot4 = decode[4]*c; \
|
|
tot5 = decode[5]*c; \
|
|
tot6 = decode[6]*c;
|
|
|
|
#define stbir__2_coeff_only() \
|
|
float tot0, tot1, tot2, tot3, tot4, tot5, tot6, c; \
|
|
c = hc[0]; \
|
|
tot0 = decode[0]*c; \
|
|
tot1 = decode[1]*c; \
|
|
tot2 = decode[2]*c; \
|
|
tot3 = decode[3]*c; \
|
|
tot4 = decode[4]*c; \
|
|
tot5 = decode[5]*c; \
|
|
tot6 = decode[6]*c; \
|
|
c = hc[1]; \
|
|
tot0 += decode[7]*c; \
|
|
tot1 += decode[8]*c; \
|
|
tot2 += decode[9]*c; \
|
|
tot3 += decode[10]*c; \
|
|
tot4 += decode[11]*c; \
|
|
tot5 += decode[12]*c; \
|
|
tot6 += decode[13]*c; \
|
|
|
|
#define stbir__3_coeff_only() \
|
|
float tot0, tot1, tot2, tot3, tot4, tot5, tot6, c; \
|
|
c = hc[0]; \
|
|
tot0 = decode[0]*c; \
|
|
tot1 = decode[1]*c; \
|
|
tot2 = decode[2]*c; \
|
|
tot3 = decode[3]*c; \
|
|
tot4 = decode[4]*c; \
|
|
tot5 = decode[5]*c; \
|
|
tot6 = decode[6]*c; \
|
|
c = hc[1]; \
|
|
tot0 += decode[7]*c; \
|
|
tot1 += decode[8]*c; \
|
|
tot2 += decode[9]*c; \
|
|
tot3 += decode[10]*c; \
|
|
tot4 += decode[11]*c; \
|
|
tot5 += decode[12]*c; \
|
|
tot6 += decode[13]*c; \
|
|
c = hc[2]; \
|
|
tot0 += decode[14]*c; \
|
|
tot1 += decode[15]*c; \
|
|
tot2 += decode[16]*c; \
|
|
tot3 += decode[17]*c; \
|
|
tot4 += decode[18]*c; \
|
|
tot5 += decode[19]*c; \
|
|
tot6 += decode[20]*c; \
|
|
|
|
#define stbir__store_output_tiny() \
|
|
output[0] = tot0; \
|
|
output[1] = tot1; \
|
|
output[2] = tot2; \
|
|
output[3] = tot3; \
|
|
output[4] = tot4; \
|
|
output[5] = tot5; \
|
|
output[6] = tot6; \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 7;
|
|
|
|
#define stbir__4_coeff_start() \
|
|
float x0,x1,x2,x3,x4,x5,x6,y0,y1,y2,y3,y4,y5,y6,c; \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0]; \
|
|
x0 = decode[0] * c; \
|
|
x1 = decode[1] * c; \
|
|
x2 = decode[2] * c; \
|
|
x3 = decode[3] * c; \
|
|
x4 = decode[4] * c; \
|
|
x5 = decode[5] * c; \
|
|
x6 = decode[6] * c; \
|
|
c = hc[1]; \
|
|
y0 = decode[7] * c; \
|
|
y1 = decode[8] * c; \
|
|
y2 = decode[9] * c; \
|
|
y3 = decode[10] * c; \
|
|
y4 = decode[11] * c; \
|
|
y5 = decode[12] * c; \
|
|
y6 = decode[13] * c; \
|
|
c = hc[2]; \
|
|
x0 += decode[14] * c; \
|
|
x1 += decode[15] * c; \
|
|
x2 += decode[16] * c; \
|
|
x3 += decode[17] * c; \
|
|
x4 += decode[18] * c; \
|
|
x5 += decode[19] * c; \
|
|
x6 += decode[20] * c; \
|
|
c = hc[3]; \
|
|
y0 += decode[21] * c; \
|
|
y1 += decode[22] * c; \
|
|
y2 += decode[23] * c; \
|
|
y3 += decode[24] * c; \
|
|
y4 += decode[25] * c; \
|
|
y5 += decode[26] * c; \
|
|
y6 += decode[27] * c;
|
|
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0+(ofs)]; \
|
|
x0 += decode[0+(ofs)*7] * c; \
|
|
x1 += decode[1+(ofs)*7] * c; \
|
|
x2 += decode[2+(ofs)*7] * c; \
|
|
x3 += decode[3+(ofs)*7] * c; \
|
|
x4 += decode[4+(ofs)*7] * c; \
|
|
x5 += decode[5+(ofs)*7] * c; \
|
|
x6 += decode[6+(ofs)*7] * c; \
|
|
c = hc[1+(ofs)]; \
|
|
y0 += decode[7+(ofs)*7] * c; \
|
|
y1 += decode[8+(ofs)*7] * c; \
|
|
y2 += decode[9+(ofs)*7] * c; \
|
|
y3 += decode[10+(ofs)*7] * c; \
|
|
y4 += decode[11+(ofs)*7] * c; \
|
|
y5 += decode[12+(ofs)*7] * c; \
|
|
y6 += decode[13+(ofs)*7] * c; \
|
|
c = hc[2+(ofs)]; \
|
|
x0 += decode[14+(ofs)*7] * c; \
|
|
x1 += decode[15+(ofs)*7] * c; \
|
|
x2 += decode[16+(ofs)*7] * c; \
|
|
x3 += decode[17+(ofs)*7] * c; \
|
|
x4 += decode[18+(ofs)*7] * c; \
|
|
x5 += decode[19+(ofs)*7] * c; \
|
|
x6 += decode[20+(ofs)*7] * c; \
|
|
c = hc[3+(ofs)]; \
|
|
y0 += decode[21+(ofs)*7] * c; \
|
|
y1 += decode[22+(ofs)*7] * c; \
|
|
y2 += decode[23+(ofs)*7] * c; \
|
|
y3 += decode[24+(ofs)*7] * c; \
|
|
y4 += decode[25+(ofs)*7] * c; \
|
|
y5 += decode[26+(ofs)*7] * c; \
|
|
y6 += decode[27+(ofs)*7] * c;
|
|
|
|
#define stbir__1_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0+(ofs)]; \
|
|
x0 += decode[0+(ofs)*7] * c; \
|
|
x1 += decode[1+(ofs)*7] * c; \
|
|
x2 += decode[2+(ofs)*7] * c; \
|
|
x3 += decode[3+(ofs)*7] * c; \
|
|
x4 += decode[4+(ofs)*7] * c; \
|
|
x5 += decode[5+(ofs)*7] * c; \
|
|
x6 += decode[6+(ofs)*7] * c; \
|
|
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0+(ofs)]; \
|
|
x0 += decode[0+(ofs)*7] * c; \
|
|
x1 += decode[1+(ofs)*7] * c; \
|
|
x2 += decode[2+(ofs)*7] * c; \
|
|
x3 += decode[3+(ofs)*7] * c; \
|
|
x4 += decode[4+(ofs)*7] * c; \
|
|
x5 += decode[5+(ofs)*7] * c; \
|
|
x6 += decode[6+(ofs)*7] * c; \
|
|
c = hc[1+(ofs)]; \
|
|
y0 += decode[7+(ofs)*7] * c; \
|
|
y1 += decode[8+(ofs)*7] * c; \
|
|
y2 += decode[9+(ofs)*7] * c; \
|
|
y3 += decode[10+(ofs)*7] * c; \
|
|
y4 += decode[11+(ofs)*7] * c; \
|
|
y5 += decode[12+(ofs)*7] * c; \
|
|
y6 += decode[13+(ofs)*7] * c; \
|
|
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
STBIR_SIMD_NO_UNROLL(decode); \
|
|
c = hc[0+(ofs)]; \
|
|
x0 += decode[0+(ofs)*7] * c; \
|
|
x1 += decode[1+(ofs)*7] * c; \
|
|
x2 += decode[2+(ofs)*7] * c; \
|
|
x3 += decode[3+(ofs)*7] * c; \
|
|
x4 += decode[4+(ofs)*7] * c; \
|
|
x5 += decode[5+(ofs)*7] * c; \
|
|
x6 += decode[6+(ofs)*7] * c; \
|
|
c = hc[1+(ofs)]; \
|
|
y0 += decode[7+(ofs)*7] * c; \
|
|
y1 += decode[8+(ofs)*7] * c; \
|
|
y2 += decode[9+(ofs)*7] * c; \
|
|
y3 += decode[10+(ofs)*7] * c; \
|
|
y4 += decode[11+(ofs)*7] * c; \
|
|
y5 += decode[12+(ofs)*7] * c; \
|
|
y6 += decode[13+(ofs)*7] * c; \
|
|
c = hc[2+(ofs)]; \
|
|
x0 += decode[14+(ofs)*7] * c; \
|
|
x1 += decode[15+(ofs)*7] * c; \
|
|
x2 += decode[16+(ofs)*7] * c; \
|
|
x3 += decode[17+(ofs)*7] * c; \
|
|
x4 += decode[18+(ofs)*7] * c; \
|
|
x5 += decode[19+(ofs)*7] * c; \
|
|
x6 += decode[20+(ofs)*7] * c; \
|
|
|
|
#define stbir__store_output() \
|
|
output[0] = x0 + y0; \
|
|
output[1] = x1 + y1; \
|
|
output[2] = x2 + y2; \
|
|
output[3] = x3 + y3; \
|
|
output[4] = x4 + y4; \
|
|
output[5] = x5 + y5; \
|
|
output[6] = x6 + y6; \
|
|
horizontal_coefficients += coefficient_width; \
|
|
++horizontal_contributors; \
|
|
output += 7;
|
|
|
|
#endif
|
|
|
|
#define STBIR__horizontal_channels 7
|
|
#define STB_IMAGE_RESIZE_DO_HORIZONTALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
|
|
// include all of the vertical resamplers (both scatter and gather versions)
|
|
|
|
#define STBIR__vertical_channels 1
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 1
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 2
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 2
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 3
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 3
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 4
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 4
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 5
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 5
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 6
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 6
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 7
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 7
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 8
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
#define STBIR__vertical_channels 8
|
|
#define STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#include STBIR__HEADER_FILENAME
|
|
|
|
typedef void STBIR_VERTICAL_GATHERFUNC( float * output, float const * coeffs, float const ** inputs, float const * input0_end );
|
|
|
|
static STBIR_VERTICAL_GATHERFUNC * stbir__vertical_gathers[ 8 ] =
|
|
{
|
|
stbir__vertical_gather_with_1_coeffs,stbir__vertical_gather_with_2_coeffs,stbir__vertical_gather_with_3_coeffs,stbir__vertical_gather_with_4_coeffs,stbir__vertical_gather_with_5_coeffs,stbir__vertical_gather_with_6_coeffs,stbir__vertical_gather_with_7_coeffs,stbir__vertical_gather_with_8_coeffs
|
|
};
|
|
|
|
static STBIR_VERTICAL_GATHERFUNC * stbir__vertical_gathers_continues[ 8 ] =
|
|
{
|
|
stbir__vertical_gather_with_1_coeffs_cont,stbir__vertical_gather_with_2_coeffs_cont,stbir__vertical_gather_with_3_coeffs_cont,stbir__vertical_gather_with_4_coeffs_cont,stbir__vertical_gather_with_5_coeffs_cont,stbir__vertical_gather_with_6_coeffs_cont,stbir__vertical_gather_with_7_coeffs_cont,stbir__vertical_gather_with_8_coeffs_cont
|
|
};
|
|
|
|
typedef void STBIR_VERTICAL_SCATTERFUNC( float ** outputs, float const * coeffs, float const * input, float const * input_end );
|
|
|
|
static STBIR_VERTICAL_SCATTERFUNC * stbir__vertical_scatter_sets[ 8 ] =
|
|
{
|
|
stbir__vertical_scatter_with_1_coeffs,stbir__vertical_scatter_with_2_coeffs,stbir__vertical_scatter_with_3_coeffs,stbir__vertical_scatter_with_4_coeffs,stbir__vertical_scatter_with_5_coeffs,stbir__vertical_scatter_with_6_coeffs,stbir__vertical_scatter_with_7_coeffs,stbir__vertical_scatter_with_8_coeffs
|
|
};
|
|
|
|
static STBIR_VERTICAL_SCATTERFUNC * stbir__vertical_scatter_blends[ 8 ] =
|
|
{
|
|
stbir__vertical_scatter_with_1_coeffs_cont,stbir__vertical_scatter_with_2_coeffs_cont,stbir__vertical_scatter_with_3_coeffs_cont,stbir__vertical_scatter_with_4_coeffs_cont,stbir__vertical_scatter_with_5_coeffs_cont,stbir__vertical_scatter_with_6_coeffs_cont,stbir__vertical_scatter_with_7_coeffs_cont,stbir__vertical_scatter_with_8_coeffs_cont
|
|
};
|
|
|
|
|
|
static void stbir__encode_scanline( stbir__info const * stbir_info, void *output_buffer_data, float * encode_buffer, int row STBIR_ONLY_PROFILE_GET_SPLIT_INFO )
|
|
{
|
|
int num_pixels = stbir_info->horizontal.scale_info.output_sub_size;
|
|
int channels = stbir_info->channels;
|
|
int width_times_channels = num_pixels * channels;
|
|
void * output_buffer;
|
|
|
|
// un-alpha weight if we need to
|
|
if ( stbir_info->alpha_unweight )
|
|
{
|
|
STBIR_PROFILE_START( unalpha );
|
|
stbir_info->alpha_unweight( encode_buffer, width_times_channels );
|
|
STBIR_PROFILE_END( unalpha );
|
|
}
|
|
|
|
// write directly into output by default
|
|
output_buffer = output_buffer_data;
|
|
|
|
// if we have an output callback, we first convert the decode buffer in place (and then hand that to the callback)
|
|
if ( stbir_info->out_pixels_cb )
|
|
output_buffer = encode_buffer;
|
|
|
|
STBIR_PROFILE_START( encode );
|
|
// convert into the output buffer
|
|
stbir_info->encode_pixels( output_buffer, width_times_channels, encode_buffer );
|
|
STBIR_PROFILE_END( encode );
|
|
|
|
// if we have an output callback, call it to send the data
|
|
if ( stbir_info->out_pixels_cb )
|
|
stbir_info->out_pixels_cb( output_buffer, num_pixels, row, stbir_info->user_data );
|
|
}
|
|
|
|
|
|
// Get the ring buffer pointer for an index
|
|
static float* stbir__get_ring_buffer_entry(stbir__info const * stbir_info, stbir__per_split_info const * split_info, int index )
|
|
{
|
|
STBIR_ASSERT( index < stbir_info->ring_buffer_num_entries );
|
|
|
|
#ifdef STBIR__SEPARATE_ALLOCATIONS
|
|
return split_info->ring_buffers[ index ];
|
|
#else
|
|
return (float*) ( ( (char*) split_info->ring_buffer ) + ( index * stbir_info->ring_buffer_length_bytes ) );
|
|
#endif
|
|
}
|
|
|
|
// Get the specified scan line from the ring buffer
|
|
static float* stbir__get_ring_buffer_scanline(stbir__info const * stbir_info, stbir__per_split_info const * split_info, int get_scanline)
|
|
{
|
|
int ring_buffer_index = (split_info->ring_buffer_begin_index + (get_scanline - split_info->ring_buffer_first_scanline)) % stbir_info->ring_buffer_num_entries;
|
|
return stbir__get_ring_buffer_entry( stbir_info, split_info, ring_buffer_index );
|
|
}
|
|
|
|
static void stbir__resample_horizontal_gather(stbir__info const * stbir_info, float* output_buffer, float const * input_buffer STBIR_ONLY_PROFILE_GET_SPLIT_INFO )
|
|
{
|
|
float const * decode_buffer = input_buffer - ( stbir_info->scanline_extents.conservative.n0 * stbir_info->effective_channels );
|
|
|
|
STBIR_PROFILE_START( horizontal );
|
|
if ( ( stbir_info->horizontal.filter_enum == STBIR_FILTER_POINT_SAMPLE ) && ( stbir_info->horizontal.scale_info.scale == 1.0f ) )
|
|
STBIR_MEMCPY( output_buffer, input_buffer, stbir_info->horizontal.scale_info.output_sub_size * sizeof( float ) * stbir_info->effective_channels );
|
|
else
|
|
stbir_info->horizontal_gather_channels( output_buffer, stbir_info->horizontal.scale_info.output_sub_size, decode_buffer, stbir_info->horizontal.contributors, stbir_info->horizontal.coefficients, stbir_info->horizontal.coefficient_width );
|
|
STBIR_PROFILE_END( horizontal );
|
|
}
|
|
|
|
static void stbir__resample_vertical_gather(stbir__info const * stbir_info, stbir__per_split_info* split_info, int n, int contrib_n0, int contrib_n1, float const * vertical_coefficients )
|
|
{
|
|
float* encode_buffer = split_info->vertical_buffer;
|
|
float* decode_buffer = split_info->decode_buffer;
|
|
int vertical_first = stbir_info->vertical_first;
|
|
int width = (vertical_first) ? ( stbir_info->scanline_extents.conservative.n1-stbir_info->scanline_extents.conservative.n0+1 ) : stbir_info->horizontal.scale_info.output_sub_size;
|
|
int width_times_channels = stbir_info->effective_channels * width;
|
|
|
|
STBIR_ASSERT( stbir_info->vertical.is_gather );
|
|
|
|
// loop over the contributing scanlines and scale into the buffer
|
|
STBIR_PROFILE_START( vertical );
|
|
{
|
|
int k = 0, total = contrib_n1 - contrib_n0 + 1;
|
|
STBIR_ASSERT( total > 0 );
|
|
do {
|
|
float const * inputs[8];
|
|
int i, cnt = total; if ( cnt > 8 ) cnt = 8;
|
|
for( i = 0 ; i < cnt ; i++ )
|
|
inputs[ i ] = stbir__get_ring_buffer_scanline(stbir_info, split_info, k+i+contrib_n0 );
|
|
|
|
// call the N scanlines at a time function (up to 8 scanlines of blending at once)
|
|
((k==0)?stbir__vertical_gathers:stbir__vertical_gathers_continues)[cnt-1]( (vertical_first) ? decode_buffer : encode_buffer, vertical_coefficients + k, inputs, inputs[0] + width_times_channels );
|
|
k += cnt;
|
|
total -= cnt;
|
|
} while ( total );
|
|
}
|
|
STBIR_PROFILE_END( vertical );
|
|
|
|
if ( vertical_first )
|
|
{
|
|
// Now resample the gathered vertical data in the horizontal axis into the encode buffer
|
|
stbir__resample_horizontal_gather(stbir_info, encode_buffer, decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO );
|
|
}
|
|
|
|
stbir__encode_scanline( stbir_info, ( (char *) stbir_info->output_data ) + ((ptrdiff_t)n * (ptrdiff_t)stbir_info->output_stride_bytes),
|
|
encode_buffer, n STBIR_ONLY_PROFILE_SET_SPLIT_INFO );
|
|
}
|
|
|
|
static void stbir__decode_and_resample_for_vertical_gather_loop(stbir__info const * stbir_info, stbir__per_split_info* split_info, int n)
|
|
{
|
|
int ring_buffer_index;
|
|
float* ring_buffer;
|
|
|
|
// Decode the nth scanline from the source image into the decode buffer.
|
|
stbir__decode_scanline( stbir_info, n, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO );
|
|
|
|
// update new end scanline
|
|
split_info->ring_buffer_last_scanline = n;
|
|
|
|
// get ring buffer
|
|
ring_buffer_index = (split_info->ring_buffer_begin_index + (split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline)) % stbir_info->ring_buffer_num_entries;
|
|
ring_buffer = stbir__get_ring_buffer_entry(stbir_info, split_info, ring_buffer_index);
|
|
|
|
// Now resample it into the ring buffer.
|
|
stbir__resample_horizontal_gather( stbir_info, ring_buffer, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO );
|
|
|
|
// Now it's sitting in the ring buffer ready to be used as source for the vertical sampling.
|
|
}
|
|
|
|
static void stbir__vertical_gather_loop( stbir__info const * stbir_info, stbir__per_split_info* split_info, int split_count )
|
|
{
|
|
int y, start_output_y, end_output_y;
|
|
stbir__contributors* vertical_contributors = stbir_info->vertical.contributors;
|
|
float const * vertical_coefficients = stbir_info->vertical.coefficients;
|
|
|
|
STBIR_ASSERT( stbir_info->vertical.is_gather );
|
|
|
|
start_output_y = split_info->start_output_y;
|
|
end_output_y = split_info[split_count-1].end_output_y;
|
|
|
|
vertical_contributors += start_output_y;
|
|
vertical_coefficients += start_output_y * stbir_info->vertical.coefficient_width;
|
|
|
|
// initialize the ring buffer for gathering
|
|
split_info->ring_buffer_begin_index = 0;
|
|
split_info->ring_buffer_first_scanline = stbir_info->vertical.extent_info.lowest;
|
|
split_info->ring_buffer_last_scanline = split_info->ring_buffer_first_scanline - 1; // means "empty"
|
|
|
|
for (y = start_output_y; y < end_output_y; y++)
|
|
{
|
|
int in_first_scanline, in_last_scanline;
|
|
|
|
in_first_scanline = vertical_contributors->n0;
|
|
in_last_scanline = vertical_contributors->n1;
|
|
|
|
// make sure the indexing hasn't broken
|
|
STBIR_ASSERT( in_first_scanline >= split_info->ring_buffer_first_scanline );
|
|
|
|
// Load in new scanlines
|
|
while (in_last_scanline > split_info->ring_buffer_last_scanline)
|
|
{
|
|
STBIR_ASSERT( ( split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline + 1 ) <= stbir_info->ring_buffer_num_entries );
|
|
|
|
// make sure there was room in the ring buffer when we add new scanlines
|
|
if ( ( split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline + 1 ) == stbir_info->ring_buffer_num_entries )
|
|
{
|
|
split_info->ring_buffer_first_scanline++;
|
|
split_info->ring_buffer_begin_index++;
|
|
}
|
|
|
|
if ( stbir_info->vertical_first )
|
|
{
|
|
float * ring_buffer = stbir__get_ring_buffer_scanline( stbir_info, split_info, ++split_info->ring_buffer_last_scanline );
|
|
// Decode the nth scanline from the source image into the decode buffer.
|
|
stbir__decode_scanline( stbir_info, split_info->ring_buffer_last_scanline, ring_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO );
|
|
}
|
|
else
|
|
{
|
|
stbir__decode_and_resample_for_vertical_gather_loop(stbir_info, split_info, split_info->ring_buffer_last_scanline + 1);
|
|
}
|
|
}
|
|
|
|
// Now all buffers should be ready to write a row of vertical sampling, so do it.
|
|
stbir__resample_vertical_gather(stbir_info, split_info, y, in_first_scanline, in_last_scanline, vertical_coefficients );
|
|
|
|
++vertical_contributors;
|
|
vertical_coefficients += stbir_info->vertical.coefficient_width;
|
|
}
|
|
}
|
|
|
|
#define STBIR__FLOAT_EMPTY_MARKER 3.0e+38F
|
|
#define STBIR__FLOAT_BUFFER_IS_EMPTY(ptr) ((ptr)[0]==STBIR__FLOAT_EMPTY_MARKER)
|
|
|
|
static void stbir__encode_first_scanline_from_scatter(stbir__info const * stbir_info, stbir__per_split_info* split_info)
|
|
{
|
|
// evict a scanline out into the output buffer
|
|
float* ring_buffer_entry = stbir__get_ring_buffer_entry(stbir_info, split_info, split_info->ring_buffer_begin_index );
|
|
|
|
// dump the scanline out
|
|
stbir__encode_scanline( stbir_info, ( (char *)stbir_info->output_data ) + ( (ptrdiff_t)split_info->ring_buffer_first_scanline * (ptrdiff_t)stbir_info->output_stride_bytes ), ring_buffer_entry, split_info->ring_buffer_first_scanline STBIR_ONLY_PROFILE_SET_SPLIT_INFO );
|
|
|
|
// mark it as empty
|
|
ring_buffer_entry[ 0 ] = STBIR__FLOAT_EMPTY_MARKER;
|
|
|
|
// advance the first scanline
|
|
split_info->ring_buffer_first_scanline++;
|
|
if ( ++split_info->ring_buffer_begin_index == stbir_info->ring_buffer_num_entries )
|
|
split_info->ring_buffer_begin_index = 0;
|
|
}
|
|
|
|
static void stbir__horizontal_resample_and_encode_first_scanline_from_scatter(stbir__info const * stbir_info, stbir__per_split_info* split_info)
|
|
{
|
|
// evict a scanline out into the output buffer
|
|
|
|
float* ring_buffer_entry = stbir__get_ring_buffer_entry(stbir_info, split_info, split_info->ring_buffer_begin_index );
|
|
|
|
// Now resample it into the buffer.
|
|
stbir__resample_horizontal_gather( stbir_info, split_info->vertical_buffer, ring_buffer_entry STBIR_ONLY_PROFILE_SET_SPLIT_INFO );
|
|
|
|
// dump the scanline out
|
|
stbir__encode_scanline( stbir_info, ( (char *)stbir_info->output_data ) + ( (ptrdiff_t)split_info->ring_buffer_first_scanline * (ptrdiff_t)stbir_info->output_stride_bytes ), split_info->vertical_buffer, split_info->ring_buffer_first_scanline STBIR_ONLY_PROFILE_SET_SPLIT_INFO );
|
|
|
|
// mark it as empty
|
|
ring_buffer_entry[ 0 ] = STBIR__FLOAT_EMPTY_MARKER;
|
|
|
|
// advance the first scanline
|
|
split_info->ring_buffer_first_scanline++;
|
|
if ( ++split_info->ring_buffer_begin_index == stbir_info->ring_buffer_num_entries )
|
|
split_info->ring_buffer_begin_index = 0;
|
|
}
|
|
|
|
static void stbir__resample_vertical_scatter(stbir__info const * stbir_info, stbir__per_split_info* split_info, int n0, int n1, float const * vertical_coefficients, float const * vertical_buffer, float const * vertical_buffer_end )
|
|
{
|
|
STBIR_ASSERT( !stbir_info->vertical.is_gather );
|
|
|
|
STBIR_PROFILE_START( vertical );
|
|
{
|
|
int k = 0, total = n1 - n0 + 1;
|
|
STBIR_ASSERT( total > 0 );
|
|
do {
|
|
float * outputs[8];
|
|
int i, n = total; if ( n > 8 ) n = 8;
|
|
for( i = 0 ; i < n ; i++ )
|
|
{
|
|
outputs[ i ] = stbir__get_ring_buffer_scanline(stbir_info, split_info, k+i+n0 );
|
|
if ( ( i ) && ( STBIR__FLOAT_BUFFER_IS_EMPTY( outputs[i] ) != STBIR__FLOAT_BUFFER_IS_EMPTY( outputs[0] ) ) ) // make sure runs are of the same type
|
|
{
|
|
n = i;
|
|
break;
|
|
}
|
|
}
|
|
// call the scatter to N scanlines at a time function (up to 8 scanlines of scattering at once)
|
|
((STBIR__FLOAT_BUFFER_IS_EMPTY( outputs[0] ))?stbir__vertical_scatter_sets:stbir__vertical_scatter_blends)[n-1]( outputs, vertical_coefficients + k, vertical_buffer, vertical_buffer_end );
|
|
k += n;
|
|
total -= n;
|
|
} while ( total );
|
|
}
|
|
|
|
STBIR_PROFILE_END( vertical );
|
|
}
|
|
|
|
typedef void stbir__handle_scanline_for_scatter_func(stbir__info const * stbir_info, stbir__per_split_info* split_info);
|
|
|
|
static void stbir__vertical_scatter_loop( stbir__info const * stbir_info, stbir__per_split_info* split_info, int split_count )
|
|
{
|
|
int y, start_output_y, end_output_y, start_input_y, end_input_y;
|
|
stbir__contributors* vertical_contributors = stbir_info->vertical.contributors;
|
|
float const * vertical_coefficients = stbir_info->vertical.coefficients;
|
|
stbir__handle_scanline_for_scatter_func * handle_scanline_for_scatter;
|
|
void * scanline_scatter_buffer;
|
|
void * scanline_scatter_buffer_end;
|
|
int on_first_input_y, last_input_y;
|
|
|
|
STBIR_ASSERT( !stbir_info->vertical.is_gather );
|
|
|
|
start_output_y = split_info->start_output_y;
|
|
end_output_y = split_info[split_count-1].end_output_y; // may do multiple split counts
|
|
|
|
start_input_y = split_info->start_input_y;
|
|
end_input_y = split_info[split_count-1].end_input_y;
|
|
|
|
// adjust for starting offset start_input_y
|
|
y = start_input_y + stbir_info->vertical.filter_pixel_margin;
|
|
vertical_contributors += y ;
|
|
vertical_coefficients += stbir_info->vertical.coefficient_width * y;
|
|
|
|
if ( stbir_info->vertical_first )
|
|
{
|
|
handle_scanline_for_scatter = stbir__horizontal_resample_and_encode_first_scanline_from_scatter;
|
|
scanline_scatter_buffer = split_info->decode_buffer;
|
|
scanline_scatter_buffer_end = ( (char*) scanline_scatter_buffer ) + sizeof( float ) * stbir_info->effective_channels * (stbir_info->scanline_extents.conservative.n1-stbir_info->scanline_extents.conservative.n0+1);
|
|
}
|
|
else
|
|
{
|
|
handle_scanline_for_scatter = stbir__encode_first_scanline_from_scatter;
|
|
scanline_scatter_buffer = split_info->vertical_buffer;
|
|
scanline_scatter_buffer_end = ( (char*) scanline_scatter_buffer ) + sizeof( float ) * stbir_info->effective_channels * stbir_info->horizontal.scale_info.output_sub_size;
|
|
}
|
|
|
|
// initialize the ring buffer for scattering
|
|
split_info->ring_buffer_first_scanline = start_output_y;
|
|
split_info->ring_buffer_last_scanline = -1;
|
|
split_info->ring_buffer_begin_index = -1;
|
|
|
|
// mark all the buffers as empty to start
|
|
for( y = 0 ; y < stbir_info->ring_buffer_num_entries ; y++ )
|
|
stbir__get_ring_buffer_entry( stbir_info, split_info, y )[0] = STBIR__FLOAT_EMPTY_MARKER; // only used on scatter
|
|
|
|
// do the loop in input space
|
|
on_first_input_y = 1; last_input_y = start_input_y;
|
|
for (y = start_input_y ; y < end_input_y; y++)
|
|
{
|
|
int out_first_scanline, out_last_scanline;
|
|
|
|
out_first_scanline = vertical_contributors->n0;
|
|
out_last_scanline = vertical_contributors->n1;
|
|
|
|
STBIR_ASSERT(out_last_scanline - out_first_scanline + 1 <= stbir_info->ring_buffer_num_entries);
|
|
|
|
if ( ( out_last_scanline >= out_first_scanline ) && ( ( ( out_first_scanline >= start_output_y ) && ( out_first_scanline < end_output_y ) ) || ( ( out_last_scanline >= start_output_y ) && ( out_last_scanline < end_output_y ) ) ) )
|
|
{
|
|
float const * vc = vertical_coefficients;
|
|
|
|
// keep track of the range actually seen for the next resize
|
|
last_input_y = y;
|
|
if ( ( on_first_input_y ) && ( y > start_input_y ) )
|
|
split_info->start_input_y = y;
|
|
on_first_input_y = 0;
|
|
|
|
// clip the region
|
|
if ( out_first_scanline < start_output_y )
|
|
{
|
|
vc += start_output_y - out_first_scanline;
|
|
out_first_scanline = start_output_y;
|
|
}
|
|
|
|
if ( out_last_scanline >= end_output_y )
|
|
out_last_scanline = end_output_y - 1;
|
|
|
|
// if very first scanline, init the index
|
|
if (split_info->ring_buffer_begin_index < 0)
|
|
split_info->ring_buffer_begin_index = out_first_scanline - start_output_y;
|
|
|
|
STBIR_ASSERT( split_info->ring_buffer_begin_index <= out_first_scanline );
|
|
|
|
// Decode the nth scanline from the source image into the decode buffer.
|
|
stbir__decode_scanline( stbir_info, y, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO );
|
|
|
|
// When horizontal first, we resample horizontally into the vertical buffer before we scatter it out
|
|
if ( !stbir_info->vertical_first )
|
|
stbir__resample_horizontal_gather( stbir_info, split_info->vertical_buffer, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO );
|
|
|
|
// Now it's sitting in the buffer ready to be distributed into the ring buffers.
|
|
|
|
// evict from the ringbuffer, if we need are full
|
|
if ( ( ( split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline + 1 ) == stbir_info->ring_buffer_num_entries ) &&
|
|
( out_last_scanline > split_info->ring_buffer_last_scanline ) )
|
|
handle_scanline_for_scatter( stbir_info, split_info );
|
|
|
|
// Now the horizontal buffer is ready to write to all ring buffer rows, so do it.
|
|
stbir__resample_vertical_scatter(stbir_info, split_info, out_first_scanline, out_last_scanline, vc, (float*)scanline_scatter_buffer, (float*)scanline_scatter_buffer_end );
|
|
|
|
// update the end of the buffer
|
|
if ( out_last_scanline > split_info->ring_buffer_last_scanline )
|
|
split_info->ring_buffer_last_scanline = out_last_scanline;
|
|
}
|
|
++vertical_contributors;
|
|
vertical_coefficients += stbir_info->vertical.coefficient_width;
|
|
}
|
|
|
|
// now evict the scanlines that are left over in the ring buffer
|
|
while ( split_info->ring_buffer_first_scanline < end_output_y )
|
|
handle_scanline_for_scatter(stbir_info, split_info);
|
|
|
|
// update the end_input_y if we do multiple resizes with the same data
|
|
++last_input_y;
|
|
for( y = 0 ; y < split_count; y++ )
|
|
if ( split_info[y].end_input_y > last_input_y )
|
|
split_info[y].end_input_y = last_input_y;
|
|
}
|
|
|
|
|
|
static stbir__kernel_callback * stbir__builtin_kernels[] = { 0, stbir__filter_trapezoid, stbir__filter_triangle, stbir__filter_cubic, stbir__filter_catmullrom, stbir__filter_mitchell, stbir__filter_point };
|
|
static stbir__support_callback * stbir__builtin_supports[] = { 0, stbir__support_trapezoid, stbir__support_one, stbir__support_two, stbir__support_two, stbir__support_two, stbir__support_zeropoint5 };
|
|
|
|
static void stbir__set_sampler(stbir__sampler * samp, stbir_filter filter, stbir__kernel_callback * kernel, stbir__support_callback * support, stbir_edge edge, stbir__scale_info * scale_info, int always_gather, void * user_data )
|
|
{
|
|
// set filter
|
|
if (filter == 0)
|
|
{
|
|
filter = STBIR_DEFAULT_FILTER_DOWNSAMPLE; // default to downsample
|
|
if (scale_info->scale >= ( 1.0f - stbir__small_float ) )
|
|
{
|
|
if ( (scale_info->scale <= ( 1.0f + stbir__small_float ) ) && ( STBIR_CEILF(scale_info->pixel_shift) == scale_info->pixel_shift ) )
|
|
filter = STBIR_FILTER_POINT_SAMPLE;
|
|
else
|
|
filter = STBIR_DEFAULT_FILTER_UPSAMPLE;
|
|
}
|
|
}
|
|
samp->filter_enum = filter;
|
|
|
|
STBIR_ASSERT(samp->filter_enum != 0);
|
|
STBIR_ASSERT((unsigned)samp->filter_enum < STBIR_FILTER_OTHER);
|
|
samp->filter_kernel = stbir__builtin_kernels[ filter ];
|
|
samp->filter_support = stbir__builtin_supports[ filter ];
|
|
|
|
if ( kernel && support )
|
|
{
|
|
samp->filter_kernel = kernel;
|
|
samp->filter_support = support;
|
|
samp->filter_enum = STBIR_FILTER_OTHER;
|
|
}
|
|
|
|
samp->edge = edge;
|
|
samp->filter_pixel_width = stbir__get_filter_pixel_width (samp->filter_support, scale_info->scale, user_data );
|
|
// Gather is always better, but in extreme downsamples, you have to most or all of the data in memory
|
|
// For horizontal, we always have all the pixels, so we always use gather here (always_gather==1).
|
|
// For vertical, we use gather if scaling up (which means we will have samp->filter_pixel_width
|
|
// scanlines in memory at once).
|
|
samp->is_gather = 0;
|
|
if ( scale_info->scale >= ( 1.0f - stbir__small_float ) )
|
|
samp->is_gather = 1;
|
|
else if ( ( always_gather ) || ( samp->filter_pixel_width <= STBIR_FORCE_GATHER_FILTER_SCANLINES_AMOUNT ) )
|
|
samp->is_gather = 2;
|
|
|
|
// pre calculate stuff based on the above
|
|
samp->coefficient_width = stbir__get_coefficient_width(samp, samp->is_gather, user_data);
|
|
|
|
// filter_pixel_width is the conservative size in pixels of input that affect an output pixel.
|
|
// In rare cases (only with 2 pix to 1 pix with the default filters), it's possible that the
|
|
// filter will extend before or after the scanline beyond just one extra entire copy of the
|
|
// scanline (we would hit the edge twice). We don't let you do that, so we clamp the total
|
|
// width to 3x the total of input pixel (once for the scanline, once for the left side
|
|
// overhang, and once for the right side). We only do this for edge mode, since the other
|
|
// modes can just re-edge clamp back in again.
|
|
if ( edge == STBIR_EDGE_WRAP )
|
|
if ( samp->filter_pixel_width > ( scale_info->input_full_size * 3 ) )
|
|
samp->filter_pixel_width = scale_info->input_full_size * 3;
|
|
|
|
// This is how much to expand buffers to account for filters seeking outside
|
|
// the image boundaries.
|
|
samp->filter_pixel_margin = samp->filter_pixel_width / 2;
|
|
|
|
// filter_pixel_margin is the amount that this filter can overhang on just one side of either
|
|
// end of the scanline (left or the right). Since we only allow you to overhang 1 scanline's
|
|
// worth of pixels, we clamp this one side of overhang to the input scanline size. Again,
|
|
// this clamping only happens in rare cases with the default filters (2 pix to 1 pix).
|
|
if ( edge == STBIR_EDGE_WRAP )
|
|
if ( samp->filter_pixel_margin > scale_info->input_full_size )
|
|
samp->filter_pixel_margin = scale_info->input_full_size;
|
|
|
|
samp->num_contributors = stbir__get_contributors(samp, samp->is_gather);
|
|
|
|
samp->contributors_size = samp->num_contributors * sizeof(stbir__contributors);
|
|
samp->coefficients_size = samp->num_contributors * samp->coefficient_width * sizeof(float) + sizeof(float); // extra sizeof(float) is padding
|
|
|
|
samp->gather_prescatter_contributors = 0;
|
|
samp->gather_prescatter_coefficients = 0;
|
|
if ( samp->is_gather == 0 )
|
|
{
|
|
samp->gather_prescatter_coefficient_width = samp->filter_pixel_width;
|
|
samp->gather_prescatter_num_contributors = stbir__get_contributors(samp, 2);
|
|
samp->gather_prescatter_contributors_size = samp->gather_prescatter_num_contributors * sizeof(stbir__contributors);
|
|
samp->gather_prescatter_coefficients_size = samp->gather_prescatter_num_contributors * samp->gather_prescatter_coefficient_width * sizeof(float);
|
|
}
|
|
}
|
|
|
|
static void stbir__get_conservative_extents( stbir__sampler * samp, stbir__contributors * range, void * user_data )
|
|
{
|
|
float scale = samp->scale_info.scale;
|
|
float out_shift = samp->scale_info.pixel_shift;
|
|
stbir__support_callback * support = samp->filter_support;
|
|
int input_full_size = samp->scale_info.input_full_size;
|
|
stbir_edge edge = samp->edge;
|
|
float inv_scale = samp->scale_info.inv_scale;
|
|
|
|
STBIR_ASSERT( samp->is_gather != 0 );
|
|
|
|
if ( samp->is_gather == 1 )
|
|
{
|
|
int in_first_pixel, in_last_pixel;
|
|
float out_filter_radius = support(inv_scale, user_data) * scale;
|
|
|
|
stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, 0.5, out_filter_radius, inv_scale, out_shift, input_full_size, edge );
|
|
range->n0 = in_first_pixel;
|
|
stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, ( (float)(samp->scale_info.output_sub_size-1) ) + 0.5f, out_filter_radius, inv_scale, out_shift, input_full_size, edge );
|
|
range->n1 = in_last_pixel;
|
|
}
|
|
else if ( samp->is_gather == 2 ) // downsample gather, refine
|
|
{
|
|
float in_pixels_radius = support(scale, user_data) * inv_scale;
|
|
int filter_pixel_margin = samp->filter_pixel_margin;
|
|
int output_sub_size = samp->scale_info.output_sub_size;
|
|
int input_end;
|
|
int n;
|
|
int in_first_pixel, in_last_pixel;
|
|
|
|
// get a conservative area of the input range
|
|
stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, 0, 0, inv_scale, out_shift, input_full_size, edge );
|
|
range->n0 = in_first_pixel;
|
|
stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, (float)output_sub_size, 0, inv_scale, out_shift, input_full_size, edge );
|
|
range->n1 = in_last_pixel;
|
|
|
|
// now go through the margin to the start of area to find bottom
|
|
n = range->n0 + 1;
|
|
input_end = -filter_pixel_margin;
|
|
while( n >= input_end )
|
|
{
|
|
int out_first_pixel, out_last_pixel;
|
|
stbir__calculate_out_pixel_range( &out_first_pixel, &out_last_pixel, ((float)n)+0.5f, in_pixels_radius, scale, out_shift, output_sub_size );
|
|
if ( out_first_pixel > out_last_pixel )
|
|
break;
|
|
|
|
if ( ( out_first_pixel < output_sub_size ) || ( out_last_pixel >= 0 ) )
|
|
range->n0 = n;
|
|
--n;
|
|
}
|
|
|
|
// now go through the end of the area through the margin to find top
|
|
n = range->n1 - 1;
|
|
input_end = n + 1 + filter_pixel_margin;
|
|
while( n <= input_end )
|
|
{
|
|
int out_first_pixel, out_last_pixel;
|
|
stbir__calculate_out_pixel_range( &out_first_pixel, &out_last_pixel, ((float)n)+0.5f, in_pixels_radius, scale, out_shift, output_sub_size );
|
|
if ( out_first_pixel > out_last_pixel )
|
|
break;
|
|
if ( ( out_first_pixel < output_sub_size ) || ( out_last_pixel >= 0 ) )
|
|
range->n1 = n;
|
|
++n;
|
|
}
|
|
}
|
|
|
|
if ( samp->edge == STBIR_EDGE_WRAP )
|
|
{
|
|
// if we are wrapping, and we are very close to the image size (so the edges might merge), just use the scanline up to the edge
|
|
if ( ( range->n0 > 0 ) && ( range->n1 >= input_full_size ) )
|
|
{
|
|
int marg = range->n1 - input_full_size + 1;
|
|
if ( ( marg + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= range->n0 )
|
|
range->n0 = 0;
|
|
}
|
|
if ( ( range->n0 < 0 ) && ( range->n1 < (input_full_size-1) ) )
|
|
{
|
|
int marg = -range->n0;
|
|
if ( ( input_full_size - marg - STBIR__MERGE_RUNS_PIXEL_THRESHOLD - 1 ) <= range->n1 )
|
|
range->n1 = input_full_size - 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// for non-edge-wrap modes, we never read over the edge, so clamp
|
|
if ( range->n0 < 0 )
|
|
range->n0 = 0;
|
|
if ( range->n1 >= input_full_size )
|
|
range->n1 = input_full_size - 1;
|
|
}
|
|
}
|
|
|
|
static void stbir__get_split_info( stbir__per_split_info* split_info, int splits, int output_height, int vertical_pixel_margin, int input_full_height )
|
|
{
|
|
int i, cur;
|
|
int left = output_height;
|
|
|
|
cur = 0;
|
|
for( i = 0 ; i < splits ; i++ )
|
|
{
|
|
int each;
|
|
split_info[i].start_output_y = cur;
|
|
each = left / ( splits - i );
|
|
split_info[i].end_output_y = cur + each;
|
|
cur += each;
|
|
left -= each;
|
|
|
|
// scatter range (updated to minimum as you run it)
|
|
split_info[i].start_input_y = -vertical_pixel_margin;
|
|
split_info[i].end_input_y = input_full_height + vertical_pixel_margin;
|
|
}
|
|
}
|
|
|
|
static void stbir__free_internal_mem( stbir__info *info )
|
|
{
|
|
#define STBIR__FREE_AND_CLEAR( ptr ) { if ( ptr ) { void * p = (ptr); (ptr) = 0; STBIR_FREE( p, info->user_data); } }
|
|
|
|
if ( info )
|
|
{
|
|
#ifndef STBIR__SEPARATE_ALLOCATIONS
|
|
STBIR__FREE_AND_CLEAR( info->alloced_mem );
|
|
#else
|
|
int i,j;
|
|
|
|
if ( ( info->vertical.gather_prescatter_contributors ) && ( (void*)info->vertical.gather_prescatter_contributors != (void*)info->split_info[0].decode_buffer ) )
|
|
{
|
|
STBIR__FREE_AND_CLEAR( info->vertical.gather_prescatter_coefficients );
|
|
STBIR__FREE_AND_CLEAR( info->vertical.gather_prescatter_contributors );
|
|
}
|
|
for( i = 0 ; i < info->splits ; i++ )
|
|
{
|
|
for( j = 0 ; j < info->alloc_ring_buffer_num_entries ; j++ )
|
|
{
|
|
#ifdef STBIR_SIMD8
|
|
if ( info->effective_channels == 3 )
|
|
--info->split_info[i].ring_buffers[j]; // avx in 3 channel mode needs one float at the start of the buffer
|
|
#endif
|
|
STBIR__FREE_AND_CLEAR( info->split_info[i].ring_buffers[j] );
|
|
}
|
|
|
|
#ifdef STBIR_SIMD8
|
|
if ( info->effective_channels == 3 )
|
|
--info->split_info[i].decode_buffer; // avx in 3 channel mode needs one float at the start of the buffer
|
|
#endif
|
|
STBIR__FREE_AND_CLEAR( info->split_info[i].decode_buffer );
|
|
STBIR__FREE_AND_CLEAR( info->split_info[i].ring_buffers );
|
|
STBIR__FREE_AND_CLEAR( info->split_info[i].vertical_buffer );
|
|
}
|
|
STBIR__FREE_AND_CLEAR( info->split_info );
|
|
if ( info->vertical.coefficients != info->horizontal.coefficients )
|
|
{
|
|
STBIR__FREE_AND_CLEAR( info->vertical.coefficients );
|
|
STBIR__FREE_AND_CLEAR( info->vertical.contributors );
|
|
}
|
|
STBIR__FREE_AND_CLEAR( info->horizontal.coefficients );
|
|
STBIR__FREE_AND_CLEAR( info->horizontal.contributors );
|
|
STBIR__FREE_AND_CLEAR( info->alloced_mem );
|
|
STBIR__FREE_AND_CLEAR( info );
|
|
#endif
|
|
}
|
|
|
|
#undef STBIR__FREE_AND_CLEAR
|
|
}
|
|
|
|
static int stbir__get_max_split( int splits, int height )
|
|
{
|
|
int i;
|
|
int max = 0;
|
|
|
|
for( i = 0 ; i < splits ; i++ )
|
|
{
|
|
int each = height / ( splits - i );
|
|
if ( each > max )
|
|
max = each;
|
|
height -= each;
|
|
}
|
|
return max;
|
|
}
|
|
|
|
static stbir__horizontal_gather_channels_func ** stbir__horizontal_gather_n_coeffs_funcs[8] =
|
|
{
|
|
0, stbir__horizontal_gather_1_channels_with_n_coeffs_funcs, stbir__horizontal_gather_2_channels_with_n_coeffs_funcs, stbir__horizontal_gather_3_channels_with_n_coeffs_funcs, stbir__horizontal_gather_4_channels_with_n_coeffs_funcs, 0,0, stbir__horizontal_gather_7_channels_with_n_coeffs_funcs
|
|
};
|
|
|
|
static stbir__horizontal_gather_channels_func ** stbir__horizontal_gather_channels_funcs[8] =
|
|
{
|
|
0, stbir__horizontal_gather_1_channels_funcs, stbir__horizontal_gather_2_channels_funcs, stbir__horizontal_gather_3_channels_funcs, stbir__horizontal_gather_4_channels_funcs, 0,0, stbir__horizontal_gather_7_channels_funcs
|
|
};
|
|
|
|
// there are six resize classifications: 0 == vertical scatter, 1 == vertical gather < 1x scale, 2 == vertical gather 1x-2x scale, 4 == vertical gather < 3x scale, 4 == vertical gather > 3x scale, 5 == <=4 pixel height, 6 == <=4 pixel wide column
|
|
#define STBIR_RESIZE_CLASSIFICATIONS 8
|
|
|
|
static float stbir__compute_weights[5][STBIR_RESIZE_CLASSIFICATIONS][4]= // 5 = 0=1chan, 1=2chan, 2=3chan, 3=4chan, 4=7chan
|
|
{
|
|
{
|
|
{ 1.00000f, 1.00000f, 0.31250f, 1.00000f },
|
|
{ 0.56250f, 0.59375f, 0.00000f, 0.96875f },
|
|
{ 1.00000f, 0.06250f, 0.00000f, 1.00000f },
|
|
{ 0.00000f, 0.09375f, 1.00000f, 1.00000f },
|
|
{ 1.00000f, 1.00000f, 1.00000f, 1.00000f },
|
|
{ 0.03125f, 0.12500f, 1.00000f, 1.00000f },
|
|
{ 0.06250f, 0.12500f, 0.00000f, 1.00000f },
|
|
{ 0.00000f, 1.00000f, 0.00000f, 0.03125f },
|
|
}, {
|
|
{ 0.00000f, 0.84375f, 0.00000f, 0.03125f },
|
|
{ 0.09375f, 0.93750f, 0.00000f, 0.78125f },
|
|
{ 0.87500f, 0.21875f, 0.00000f, 0.96875f },
|
|
{ 0.09375f, 0.09375f, 1.00000f, 1.00000f },
|
|
{ 1.00000f, 1.00000f, 1.00000f, 1.00000f },
|
|
{ 0.03125f, 0.12500f, 1.00000f, 1.00000f },
|
|
{ 0.06250f, 0.12500f, 0.00000f, 1.00000f },
|
|
{ 0.00000f, 1.00000f, 0.00000f, 0.53125f },
|
|
}, {
|
|
{ 0.00000f, 0.53125f, 0.00000f, 0.03125f },
|
|
{ 0.06250f, 0.96875f, 0.00000f, 0.53125f },
|
|
{ 0.87500f, 0.18750f, 0.00000f, 0.93750f },
|
|
{ 0.00000f, 0.09375f, 1.00000f, 1.00000f },
|
|
{ 1.00000f, 1.00000f, 1.00000f, 1.00000f },
|
|
{ 0.03125f, 0.12500f, 1.00000f, 1.00000f },
|
|
{ 0.06250f, 0.12500f, 0.00000f, 1.00000f },
|
|
{ 0.00000f, 1.00000f, 0.00000f, 0.56250f },
|
|
}, {
|
|
{ 0.00000f, 0.50000f, 0.00000f, 0.71875f },
|
|
{ 0.06250f, 0.84375f, 0.00000f, 0.87500f },
|
|
{ 1.00000f, 0.50000f, 0.50000f, 0.96875f },
|
|
{ 1.00000f, 0.09375f, 0.31250f, 0.50000f },
|
|
{ 1.00000f, 1.00000f, 1.00000f, 1.00000f },
|
|
{ 1.00000f, 0.03125f, 0.03125f, 0.53125f },
|
|
{ 0.18750f, 0.12500f, 0.00000f, 1.00000f },
|
|
{ 0.00000f, 1.00000f, 0.03125f, 0.18750f },
|
|
}, {
|
|
{ 0.00000f, 0.59375f, 0.00000f, 0.96875f },
|
|
{ 0.06250f, 0.81250f, 0.06250f, 0.59375f },
|
|
{ 0.75000f, 0.43750f, 0.12500f, 0.96875f },
|
|
{ 0.87500f, 0.06250f, 0.18750f, 0.43750f },
|
|
{ 1.00000f, 1.00000f, 1.00000f, 1.00000f },
|
|
{ 0.15625f, 0.12500f, 1.00000f, 1.00000f },
|
|
{ 0.06250f, 0.12500f, 0.00000f, 1.00000f },
|
|
{ 0.00000f, 1.00000f, 0.03125f, 0.34375f },
|
|
}
|
|
};
|
|
|
|
// structure that allow us to query and override info for training the costs
|
|
typedef struct STBIR__V_FIRST_INFO
|
|
{
|
|
double v_cost, h_cost;
|
|
int control_v_first; // 0 = no control, 1 = force hori, 2 = force vert
|
|
int v_first;
|
|
int v_resize_classification;
|
|
int is_gather;
|
|
} STBIR__V_FIRST_INFO;
|
|
|
|
#ifdef STBIR__V_FIRST_INFO_BUFFER
|
|
static STBIR__V_FIRST_INFO STBIR__V_FIRST_INFO_BUFFER = {0};
|
|
#define STBIR__V_FIRST_INFO_POINTER &STBIR__V_FIRST_INFO_BUFFER
|
|
#else
|
|
#define STBIR__V_FIRST_INFO_POINTER 0
|
|
#endif
|
|
|
|
// Figure out whether to scale along the horizontal or vertical first.
|
|
// This only *super* important when you are scaling by a massively
|
|
// different amount in the vertical vs the horizontal (for example, if
|
|
// you are scaling by 2x in the width, and 0.5x in the height, then you
|
|
// want to do the vertical scale first, because it's around 3x faster
|
|
// in that order.
|
|
//
|
|
// In more normal circumstances, this makes a 20-40% differences, so
|
|
// it's good to get right, but not critical. The normal way that you
|
|
// decide which direction goes first is just figuring out which
|
|
// direction does more multiplies. But with modern CPUs with their
|
|
// fancy caches and SIMD and high IPC abilities, so there's just a lot
|
|
// more that goes into it.
|
|
//
|
|
// My handwavy sort of solution is to have an app that does a whole
|
|
// bunch of timing for both vertical and horizontal first modes,
|
|
// and then another app that can read lots of these timing files
|
|
// and try to search for the best weights to use. Dotimings.c
|
|
// is the app that does a bunch of timings, and vf_train.c is the
|
|
// app that solves for the best weights (and shows how well it
|
|
// does currently).
|
|
|
|
static int stbir__should_do_vertical_first( float weights_table[STBIR_RESIZE_CLASSIFICATIONS][4], int horizontal_filter_pixel_width, float horizontal_scale, int horizontal_output_size, int vertical_filter_pixel_width, float vertical_scale, int vertical_output_size, int is_gather, STBIR__V_FIRST_INFO * info )
|
|
{
|
|
double v_cost, h_cost;
|
|
float * weights;
|
|
int vertical_first;
|
|
int v_classification;
|
|
|
|
// categorize the resize into buckets
|
|
if ( ( vertical_output_size <= 4 ) || ( horizontal_output_size <= 4 ) )
|
|
v_classification = ( vertical_output_size < horizontal_output_size ) ? 6 : 7;
|
|
else if ( vertical_scale <= 1.0f )
|
|
v_classification = ( is_gather ) ? 1 : 0;
|
|
else if ( vertical_scale <= 2.0f)
|
|
v_classification = 2;
|
|
else if ( vertical_scale <= 3.0f)
|
|
v_classification = 3;
|
|
else if ( vertical_scale <= 4.0f)
|
|
v_classification = 5;
|
|
else
|
|
v_classification = 6;
|
|
|
|
// use the right weights
|
|
weights = weights_table[ v_classification ];
|
|
|
|
// this is the costs when you don't take into account modern CPUs with high ipc and simd and caches - wish we had a better estimate
|
|
h_cost = (float)horizontal_filter_pixel_width * weights[0] + horizontal_scale * (float)vertical_filter_pixel_width * weights[1];
|
|
v_cost = (float)vertical_filter_pixel_width * weights[2] + vertical_scale * (float)horizontal_filter_pixel_width * weights[3];
|
|
|
|
// use computation estimate to decide vertical first or not
|
|
vertical_first = ( v_cost <= h_cost ) ? 1 : 0;
|
|
|
|
// save these, if requested
|
|
if ( info )
|
|
{
|
|
info->h_cost = h_cost;
|
|
info->v_cost = v_cost;
|
|
info->v_resize_classification = v_classification;
|
|
info->v_first = vertical_first;
|
|
info->is_gather = is_gather;
|
|
}
|
|
|
|
// and this allows us to override everything for testing (see dotiming.c)
|
|
if ( ( info ) && ( info->control_v_first ) )
|
|
vertical_first = ( info->control_v_first == 2 ) ? 1 : 0;
|
|
|
|
return vertical_first;
|
|
}
|
|
|
|
// layout lookups - must match stbir_internal_pixel_layout
|
|
static unsigned char stbir__pixel_channels[] = {
|
|
1,2,3,3,4, // 1ch, 2ch, rgb, bgr, 4ch
|
|
4,4,4,4,2,2, // RGBA,BGRA,ARGB,ABGR,RA,AR
|
|
4,4,4,4,2,2, // RGBA_PM,BGRA_PM,ARGB_PM,ABGR_PM,RA_PM,AR_PM
|
|
};
|
|
|
|
// the internal pixel layout enums are in a different order, so we can easily do range comparisons of types
|
|
// the public pixel layout is ordered in a way that if you cast num_channels (1-4) to the enum, you get something sensible
|
|
static stbir_internal_pixel_layout stbir__pixel_layout_convert_public_to_internal[] = {
|
|
STBIRI_BGR, STBIRI_1CHANNEL, STBIRI_2CHANNEL, STBIRI_RGB, STBIRI_RGBA,
|
|
STBIRI_4CHANNEL, STBIRI_BGRA, STBIRI_ARGB, STBIRI_ABGR, STBIRI_RA, STBIRI_AR,
|
|
STBIRI_RGBA_PM, STBIRI_BGRA_PM, STBIRI_ARGB_PM, STBIRI_ABGR_PM, STBIRI_RA_PM, STBIRI_AR_PM,
|
|
};
|
|
|
|
static stbir__info * stbir__alloc_internal_mem_and_build_samplers( stbir__sampler * horizontal, stbir__sampler * vertical, stbir__contributors * conservative, stbir_pixel_layout input_pixel_layout_public, stbir_pixel_layout output_pixel_layout_public, int splits, int new_x, int new_y, int fast_alpha, void * user_data STBIR_ONLY_PROFILE_BUILD_GET_INFO )
|
|
{
|
|
static char stbir_channel_count_index[8]={ 9,0,1,2, 3,9,9,4 };
|
|
|
|
stbir__info * info = 0;
|
|
void * alloced = 0;
|
|
int alloced_total = 0;
|
|
int vertical_first;
|
|
int decode_buffer_size, ring_buffer_length_bytes, ring_buffer_size, vertical_buffer_size, alloc_ring_buffer_num_entries;
|
|
|
|
int alpha_weighting_type = 0; // 0=none, 1=simple, 2=fancy
|
|
int conservative_split_output_size = stbir__get_max_split( splits, vertical->scale_info.output_sub_size );
|
|
stbir_internal_pixel_layout input_pixel_layout = stbir__pixel_layout_convert_public_to_internal[ input_pixel_layout_public ];
|
|
stbir_internal_pixel_layout output_pixel_layout = stbir__pixel_layout_convert_public_to_internal[ output_pixel_layout_public ];
|
|
int channels = stbir__pixel_channels[ input_pixel_layout ];
|
|
int effective_channels = channels;
|
|
|
|
// first figure out what type of alpha weighting to use (if any)
|
|
if ( ( horizontal->filter_enum != STBIR_FILTER_POINT_SAMPLE ) || ( vertical->filter_enum != STBIR_FILTER_POINT_SAMPLE ) ) // no alpha weighting on point sampling
|
|
{
|
|
if ( ( input_pixel_layout >= STBIRI_RGBA ) && ( input_pixel_layout <= STBIRI_AR ) && ( output_pixel_layout >= STBIRI_RGBA ) && ( output_pixel_layout <= STBIRI_AR ) )
|
|
{
|
|
if ( fast_alpha )
|
|
{
|
|
alpha_weighting_type = 4;
|
|
}
|
|
else
|
|
{
|
|
static int fancy_alpha_effective_cnts[6] = { 7, 7, 7, 7, 3, 3 };
|
|
alpha_weighting_type = 2;
|
|
effective_channels = fancy_alpha_effective_cnts[ input_pixel_layout - STBIRI_RGBA ];
|
|
}
|
|
}
|
|
else if ( ( input_pixel_layout >= STBIRI_RGBA_PM ) && ( input_pixel_layout <= STBIRI_AR_PM ) && ( output_pixel_layout >= STBIRI_RGBA ) && ( output_pixel_layout <= STBIRI_AR ) )
|
|
{
|
|
// input premult, output non-premult
|
|
alpha_weighting_type = 3;
|
|
}
|
|
else if ( ( input_pixel_layout >= STBIRI_RGBA ) && ( input_pixel_layout <= STBIRI_AR ) && ( output_pixel_layout >= STBIRI_RGBA_PM ) && ( output_pixel_layout <= STBIRI_AR_PM ) )
|
|
{
|
|
// input non-premult, output premult
|
|
alpha_weighting_type = 1;
|
|
}
|
|
}
|
|
|
|
// channel in and out count must match currently
|
|
if ( channels != stbir__pixel_channels[ output_pixel_layout ] )
|
|
return 0;
|
|
|
|
// get vertical first
|
|
vertical_first = stbir__should_do_vertical_first( stbir__compute_weights[ (int)stbir_channel_count_index[ effective_channels ] ], horizontal->filter_pixel_width, horizontal->scale_info.scale, horizontal->scale_info.output_sub_size, vertical->filter_pixel_width, vertical->scale_info.scale, vertical->scale_info.output_sub_size, vertical->is_gather, STBIR__V_FIRST_INFO_POINTER );
|
|
|
|
// sometimes read one float off in some of the unrolled loops (with a weight of zero coeff, so it doesn't have an effect)
|
|
decode_buffer_size = ( conservative->n1 - conservative->n0 + 1 ) * effective_channels * sizeof(float) + sizeof(float); // extra float for padding
|
|
|
|
#if defined( STBIR__SEPARATE_ALLOCATIONS ) && defined(STBIR_SIMD8)
|
|
if ( effective_channels == 3 )
|
|
decode_buffer_size += sizeof(float); // avx in 3 channel mode needs one float at the start of the buffer (only with separate allocations)
|
|
#endif
|
|
|
|
ring_buffer_length_bytes = horizontal->scale_info.output_sub_size * effective_channels * sizeof(float) + sizeof(float); // extra float for padding
|
|
|
|
// if we do vertical first, the ring buffer holds a whole decoded line
|
|
if ( vertical_first )
|
|
ring_buffer_length_bytes = ( decode_buffer_size + 15 ) & ~15;
|
|
|
|
if ( ( ring_buffer_length_bytes & 4095 ) == 0 ) ring_buffer_length_bytes += 64*3; // avoid 4k alias
|
|
|
|
// One extra entry because floating point precision problems sometimes cause an extra to be necessary.
|
|
alloc_ring_buffer_num_entries = vertical->filter_pixel_width + 1;
|
|
|
|
// we never need more ring buffer entries than the scanlines we're outputting when in scatter mode
|
|
if ( ( !vertical->is_gather ) && ( alloc_ring_buffer_num_entries > conservative_split_output_size ) )
|
|
alloc_ring_buffer_num_entries = conservative_split_output_size;
|
|
|
|
ring_buffer_size = alloc_ring_buffer_num_entries * ring_buffer_length_bytes;
|
|
|
|
// The vertical buffer is used differently, depending on whether we are scattering
|
|
// the vertical scanlines, or gathering them.
|
|
// If scattering, it's used at the temp buffer to accumulate each output.
|
|
// If gathering, it's just the output buffer.
|
|
vertical_buffer_size = horizontal->scale_info.output_sub_size * effective_channels * sizeof(float) + sizeof(float); // extra float for padding
|
|
|
|
// we make two passes through this loop, 1st to add everything up, 2nd to allocate and init
|
|
for(;;)
|
|
{
|
|
int i;
|
|
void * advance_mem = alloced;
|
|
int copy_horizontal = 0;
|
|
stbir__sampler * possibly_use_horizontal_for_pivot = 0;
|
|
|
|
#ifdef STBIR__SEPARATE_ALLOCATIONS
|
|
#define STBIR__NEXT_PTR( ptr, size, ntype ) if ( alloced ) { void * p = STBIR_MALLOC( size, user_data); if ( p == 0 ) { stbir__free_internal_mem( info ); return 0; } (ptr) = (ntype*)p; }
|
|
#else
|
|
#define STBIR__NEXT_PTR( ptr, size, ntype ) advance_mem = (void*) ( ( ((size_t)advance_mem) + 15 ) & ~15 ); if ( alloced ) ptr = (ntype*)advance_mem; advance_mem = ((char*)advance_mem) + (size);
|
|
#endif
|
|
|
|
STBIR__NEXT_PTR( info, sizeof( stbir__info ), stbir__info );
|
|
|
|
STBIR__NEXT_PTR( info->split_info, sizeof( stbir__per_split_info ) * splits, stbir__per_split_info );
|
|
|
|
if ( info )
|
|
{
|
|
static stbir__alpha_weight_func * fancy_alpha_weights[6] = { stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_2ch, stbir__fancy_alpha_weight_2ch };
|
|
static stbir__alpha_unweight_func * fancy_alpha_unweights[6] = { stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_2ch, stbir__fancy_alpha_unweight_2ch };
|
|
static stbir__alpha_weight_func * simple_alpha_weights[6] = { stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_2ch, stbir__simple_alpha_weight_2ch };
|
|
static stbir__alpha_unweight_func * simple_alpha_unweights[6] = { stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_2ch, stbir__simple_alpha_unweight_2ch };
|
|
|
|
// initialize info fields
|
|
info->alloced_mem = alloced;
|
|
info->alloced_total = alloced_total;
|
|
|
|
info->channels = channels;
|
|
info->effective_channels = effective_channels;
|
|
|
|
info->offset_x = new_x;
|
|
info->offset_y = new_y;
|
|
info->alloc_ring_buffer_num_entries = alloc_ring_buffer_num_entries;
|
|
info->ring_buffer_num_entries = 0;
|
|
info->ring_buffer_length_bytes = ring_buffer_length_bytes;
|
|
info->splits = splits;
|
|
info->vertical_first = vertical_first;
|
|
|
|
info->input_pixel_layout_internal = input_pixel_layout;
|
|
info->output_pixel_layout_internal = output_pixel_layout;
|
|
|
|
// setup alpha weight functions
|
|
info->alpha_weight = 0;
|
|
info->alpha_unweight = 0;
|
|
|
|
// handle alpha weighting functions and overrides
|
|
if ( alpha_weighting_type == 2 )
|
|
{
|
|
// high quality alpha multiplying on the way in, dividing on the way out
|
|
info->alpha_weight = fancy_alpha_weights[ input_pixel_layout - STBIRI_RGBA ];
|
|
info->alpha_unweight = fancy_alpha_unweights[ output_pixel_layout - STBIRI_RGBA ];
|
|
}
|
|
else if ( alpha_weighting_type == 4 )
|
|
{
|
|
// fast alpha multiplying on the way in, dividing on the way out
|
|
info->alpha_weight = simple_alpha_weights[ input_pixel_layout - STBIRI_RGBA ];
|
|
info->alpha_unweight = simple_alpha_unweights[ output_pixel_layout - STBIRI_RGBA ];
|
|
}
|
|
else if ( alpha_weighting_type == 1 )
|
|
{
|
|
// fast alpha on the way in, leave in premultiplied form on way out
|
|
info->alpha_weight = simple_alpha_weights[ input_pixel_layout - STBIRI_RGBA ];
|
|
}
|
|
else if ( alpha_weighting_type == 3 )
|
|
{
|
|
// incoming is premultiplied, fast alpha dividing on the way out - non-premultiplied output
|
|
info->alpha_unweight = simple_alpha_unweights[ output_pixel_layout - STBIRI_RGBA ];
|
|
}
|
|
|
|
// handle 3-chan color flipping, using the alpha weight path
|
|
if ( ( ( input_pixel_layout == STBIRI_RGB ) && ( output_pixel_layout == STBIRI_BGR ) ) ||
|
|
( ( input_pixel_layout == STBIRI_BGR ) && ( output_pixel_layout == STBIRI_RGB ) ) )
|
|
{
|
|
// do the flipping on the smaller of the two ends
|
|
if ( horizontal->scale_info.scale < 1.0f )
|
|
info->alpha_unweight = stbir__simple_flip_3ch;
|
|
else
|
|
info->alpha_weight = stbir__simple_flip_3ch;
|
|
}
|
|
|
|
}
|
|
|
|
// get all the per-split buffers
|
|
for( i = 0 ; i < splits ; i++ )
|
|
{
|
|
STBIR__NEXT_PTR( info->split_info[i].decode_buffer, decode_buffer_size, float );
|
|
|
|
#ifdef STBIR__SEPARATE_ALLOCATIONS
|
|
|
|
#ifdef STBIR_SIMD8
|
|
if ( ( info ) && ( effective_channels == 3 ) )
|
|
++info->split_info[i].decode_buffer; // avx in 3 channel mode needs one float at the start of the buffer
|
|
#endif
|
|
|
|
STBIR__NEXT_PTR( info->split_info[i].ring_buffers, alloc_ring_buffer_num_entries * sizeof(float*), float* );
|
|
{
|
|
int j;
|
|
for( j = 0 ; j < alloc_ring_buffer_num_entries ; j++ )
|
|
{
|
|
STBIR__NEXT_PTR( info->split_info[i].ring_buffers[j], ring_buffer_length_bytes, float );
|
|
#ifdef STBIR_SIMD8
|
|
if ( ( info ) && ( effective_channels == 3 ) )
|
|
++info->split_info[i].ring_buffers[j]; // avx in 3 channel mode needs one float at the start of the buffer
|
|
#endif
|
|
}
|
|
}
|
|
#else
|
|
STBIR__NEXT_PTR( info->split_info[i].ring_buffer, ring_buffer_size, float );
|
|
#endif
|
|
STBIR__NEXT_PTR( info->split_info[i].vertical_buffer, vertical_buffer_size, float );
|
|
}
|
|
|
|
// alloc memory for to-be-pivoted coeffs (if necessary)
|
|
if ( vertical->is_gather == 0 )
|
|
{
|
|
int both;
|
|
int temp_mem_amt;
|
|
|
|
// when in vertical scatter mode, we first build the coefficients in gather mode, and then pivot after,
|
|
// that means we need two buffers, so we try to use the decode buffer and ring buffer for this. if that
|
|
// is too small, we just allocate extra memory to use as this temp.
|
|
|
|
both = vertical->gather_prescatter_contributors_size + vertical->gather_prescatter_coefficients_size;
|
|
|
|
#ifdef STBIR__SEPARATE_ALLOCATIONS
|
|
temp_mem_amt = decode_buffer_size;
|
|
#else
|
|
temp_mem_amt = ( decode_buffer_size + ring_buffer_size + vertical_buffer_size ) * splits;
|
|
#endif
|
|
if ( temp_mem_amt >= both )
|
|
{
|
|
if ( info )
|
|
{
|
|
vertical->gather_prescatter_contributors = (stbir__contributors*)info->split_info[0].decode_buffer;
|
|
vertical->gather_prescatter_coefficients = (float*) ( ( (char*)info->split_info[0].decode_buffer ) + vertical->gather_prescatter_contributors_size );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// ring+decode memory is too small, so allocate temp memory
|
|
STBIR__NEXT_PTR( vertical->gather_prescatter_contributors, vertical->gather_prescatter_contributors_size, stbir__contributors );
|
|
STBIR__NEXT_PTR( vertical->gather_prescatter_coefficients, vertical->gather_prescatter_coefficients_size, float );
|
|
}
|
|
}
|
|
|
|
STBIR__NEXT_PTR( horizontal->contributors, horizontal->contributors_size, stbir__contributors );
|
|
STBIR__NEXT_PTR( horizontal->coefficients, horizontal->coefficients_size, float );
|
|
|
|
// are the two filters identical?? (happens a lot with mipmap generation)
|
|
if ( ( horizontal->filter_kernel == vertical->filter_kernel ) && ( horizontal->filter_support == vertical->filter_support ) && ( horizontal->edge == vertical->edge ) && ( horizontal->scale_info.output_sub_size == vertical->scale_info.output_sub_size ) )
|
|
{
|
|
float diff_scale = horizontal->scale_info.scale - vertical->scale_info.scale;
|
|
float diff_shift = horizontal->scale_info.pixel_shift - vertical->scale_info.pixel_shift;
|
|
if ( diff_scale < 0.0f ) diff_scale = -diff_scale;
|
|
if ( diff_shift < 0.0f ) diff_shift = -diff_shift;
|
|
if ( ( diff_scale <= stbir__small_float ) && ( diff_shift <= stbir__small_float ) )
|
|
{
|
|
if ( horizontal->is_gather == vertical->is_gather )
|
|
{
|
|
copy_horizontal = 1;
|
|
goto no_vert_alloc;
|
|
}
|
|
// everything matches, but vertical is scatter, horizontal is gather, use horizontal coeffs for vertical pivot coeffs
|
|
possibly_use_horizontal_for_pivot = horizontal;
|
|
}
|
|
}
|
|
|
|
STBIR__NEXT_PTR( vertical->contributors, vertical->contributors_size, stbir__contributors );
|
|
STBIR__NEXT_PTR( vertical->coefficients, vertical->coefficients_size, float );
|
|
|
|
no_vert_alloc:
|
|
|
|
if ( info )
|
|
{
|
|
STBIR_PROFILE_BUILD_START( horizontal );
|
|
|
|
stbir__calculate_filters( horizontal, 0, user_data STBIR_ONLY_PROFILE_BUILD_SET_INFO );
|
|
|
|
// setup the horizontal gather functions
|
|
// start with defaulting to the n_coeffs functions (specialized on channels and remnant leftover)
|
|
info->horizontal_gather_channels = stbir__horizontal_gather_n_coeffs_funcs[ effective_channels ][ horizontal->extent_info.widest & 3 ];
|
|
// but if the number of coeffs <= 12, use another set of special cases. <=12 coeffs is any enlarging resize, or shrinking resize down to about 1/3 size
|
|
if ( horizontal->extent_info.widest <= 12 )
|
|
info->horizontal_gather_channels = stbir__horizontal_gather_channels_funcs[ effective_channels ][ horizontal->extent_info.widest - 1 ];
|
|
|
|
info->scanline_extents.conservative.n0 = conservative->n0;
|
|
info->scanline_extents.conservative.n1 = conservative->n1;
|
|
|
|
// get exact extents
|
|
stbir__get_extents( horizontal, &info->scanline_extents );
|
|
|
|
// pack the horizontal coeffs
|
|
horizontal->coefficient_width = stbir__pack_coefficients(horizontal->num_contributors, horizontal->contributors, horizontal->coefficients, horizontal->coefficient_width, horizontal->extent_info.widest, info->scanline_extents.conservative.n0, info->scanline_extents.conservative.n1 );
|
|
|
|
STBIR_MEMCPY( &info->horizontal, horizontal, sizeof( stbir__sampler ) );
|
|
|
|
STBIR_PROFILE_BUILD_END( horizontal );
|
|
|
|
if ( copy_horizontal )
|
|
{
|
|
STBIR_MEMCPY( &info->vertical, horizontal, sizeof( stbir__sampler ) );
|
|
}
|
|
else
|
|
{
|
|
STBIR_PROFILE_BUILD_START( vertical );
|
|
|
|
stbir__calculate_filters( vertical, possibly_use_horizontal_for_pivot, user_data STBIR_ONLY_PROFILE_BUILD_SET_INFO );
|
|
STBIR_MEMCPY( &info->vertical, vertical, sizeof( stbir__sampler ) );
|
|
|
|
STBIR_PROFILE_BUILD_END( vertical );
|
|
}
|
|
|
|
// setup the vertical split ranges
|
|
stbir__get_split_info( info->split_info, info->splits, info->vertical.scale_info.output_sub_size, info->vertical.filter_pixel_margin, info->vertical.scale_info.input_full_size );
|
|
|
|
// now we know precisely how many entries we need
|
|
info->ring_buffer_num_entries = info->vertical.extent_info.widest;
|
|
|
|
// we never need more ring buffer entries than the scanlines we're outputting
|
|
if ( ( !info->vertical.is_gather ) && ( info->ring_buffer_num_entries > conservative_split_output_size ) )
|
|
info->ring_buffer_num_entries = conservative_split_output_size;
|
|
STBIR_ASSERT( info->ring_buffer_num_entries <= info->alloc_ring_buffer_num_entries );
|
|
|
|
// a few of the horizontal gather functions read one dword past the end (but mask it out), so put in a normal value so no snans or denormals accidentally sneak in
|
|
for( i = 0 ; i < splits ; i++ )
|
|
{
|
|
int width, ofs;
|
|
|
|
// find the right most span
|
|
if ( info->scanline_extents.spans[0].n1 > info->scanline_extents.spans[1].n1 )
|
|
width = info->scanline_extents.spans[0].n1 - info->scanline_extents.spans[0].n0;
|
|
else
|
|
width = info->scanline_extents.spans[1].n1 - info->scanline_extents.spans[1].n0;
|
|
|
|
// this calc finds the exact end of the decoded scanline for all filter modes.
|
|
// usually this is just the width * effective channels. But we have to account
|
|
// for the area to the left of the scanline for wrap filtering and alignment, this
|
|
// is stored as a negative value in info->scanline_extents.conservative.n0. Next,
|
|
// we need to skip the exact size of the right hand size filter area (again for
|
|
// wrap mode), this is in info->scanline_extents.edge_sizes[1]).
|
|
ofs = ( width + 1 - info->scanline_extents.conservative.n0 + info->scanline_extents.edge_sizes[1] ) * effective_channels;
|
|
|
|
// place a known, but numerically valid value in the decode buffer
|
|
info->split_info[i].decode_buffer[ ofs ] = 9999.0f;
|
|
|
|
// if vertical filtering first, place a known, but numerically valid value in the all
|
|
// of the ring buffer accumulators
|
|
if ( vertical_first )
|
|
{
|
|
int j;
|
|
for( j = 0; j < info->ring_buffer_num_entries ; j++ )
|
|
{
|
|
stbir__get_ring_buffer_entry( info, info->split_info + i, j )[ ofs ] = 9999.0f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef STBIR__NEXT_PTR
|
|
|
|
|
|
// is this the first time through loop?
|
|
if ( info == 0 )
|
|
{
|
|
alloced_total = (int) ( 15 + (size_t)advance_mem );
|
|
alloced = STBIR_MALLOC( alloced_total, user_data );
|
|
if ( alloced == 0 )
|
|
return 0;
|
|
}
|
|
else
|
|
return info; // success
|
|
}
|
|
}
|
|
|
|
static int stbir__perform_resize( stbir__info const * info, int split_start, int split_count )
|
|
{
|
|
stbir__per_split_info * split_info = info->split_info + split_start;
|
|
|
|
STBIR_PROFILE_CLEAR_EXTRAS();
|
|
|
|
STBIR_PROFILE_FIRST_START( looping );
|
|
if (info->vertical.is_gather)
|
|
stbir__vertical_gather_loop( info, split_info, split_count );
|
|
else
|
|
stbir__vertical_scatter_loop( info, split_info, split_count );
|
|
STBIR_PROFILE_END( looping );
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void stbir__update_info_from_resize( stbir__info * info, STBIR_RESIZE * resize )
|
|
{
|
|
static stbir__decode_pixels_func * decode_simple[STBIR_TYPE_HALF_FLOAT-STBIR_TYPE_UINT8_SRGB+1]=
|
|
{
|
|
/* 1ch-4ch */ stbir__decode_uint8_srgb, stbir__decode_uint8_srgb, 0, stbir__decode_float_linear, stbir__decode_half_float_linear,
|
|
};
|
|
|
|
static stbir__decode_pixels_func * decode_alphas[STBIRI_AR-STBIRI_RGBA+1][STBIR_TYPE_HALF_FLOAT-STBIR_TYPE_UINT8_SRGB+1]=
|
|
{
|
|
{ /* RGBA */ stbir__decode_uint8_srgb4_linearalpha, stbir__decode_uint8_srgb, 0, stbir__decode_float_linear, stbir__decode_half_float_linear },
|
|
{ /* BGRA */ stbir__decode_uint8_srgb4_linearalpha_BGRA, stbir__decode_uint8_srgb_BGRA, 0, stbir__decode_float_linear_BGRA, stbir__decode_half_float_linear_BGRA },
|
|
{ /* ARGB */ stbir__decode_uint8_srgb4_linearalpha_ARGB, stbir__decode_uint8_srgb_ARGB, 0, stbir__decode_float_linear_ARGB, stbir__decode_half_float_linear_ARGB },
|
|
{ /* ABGR */ stbir__decode_uint8_srgb4_linearalpha_ABGR, stbir__decode_uint8_srgb_ABGR, 0, stbir__decode_float_linear_ABGR, stbir__decode_half_float_linear_ABGR },
|
|
{ /* RA */ stbir__decode_uint8_srgb2_linearalpha, stbir__decode_uint8_srgb, 0, stbir__decode_float_linear, stbir__decode_half_float_linear },
|
|
{ /* AR */ stbir__decode_uint8_srgb2_linearalpha_AR, stbir__decode_uint8_srgb_AR, 0, stbir__decode_float_linear_AR, stbir__decode_half_float_linear_AR },
|
|
};
|
|
|
|
static stbir__decode_pixels_func * decode_simple_scaled_or_not[2][2]=
|
|
{
|
|
{ stbir__decode_uint8_linear_scaled, stbir__decode_uint8_linear }, { stbir__decode_uint16_linear_scaled, stbir__decode_uint16_linear },
|
|
};
|
|
|
|
static stbir__decode_pixels_func * decode_alphas_scaled_or_not[STBIRI_AR-STBIRI_RGBA+1][2][2]=
|
|
{
|
|
{ /* RGBA */ { stbir__decode_uint8_linear_scaled, stbir__decode_uint8_linear }, { stbir__decode_uint16_linear_scaled, stbir__decode_uint16_linear } },
|
|
{ /* BGRA */ { stbir__decode_uint8_linear_scaled_BGRA, stbir__decode_uint8_linear_BGRA }, { stbir__decode_uint16_linear_scaled_BGRA, stbir__decode_uint16_linear_BGRA } },
|
|
{ /* ARGB */ { stbir__decode_uint8_linear_scaled_ARGB, stbir__decode_uint8_linear_ARGB }, { stbir__decode_uint16_linear_scaled_ARGB, stbir__decode_uint16_linear_ARGB } },
|
|
{ /* ABGR */ { stbir__decode_uint8_linear_scaled_ABGR, stbir__decode_uint8_linear_ABGR }, { stbir__decode_uint16_linear_scaled_ABGR, stbir__decode_uint16_linear_ABGR } },
|
|
{ /* RA */ { stbir__decode_uint8_linear_scaled, stbir__decode_uint8_linear }, { stbir__decode_uint16_linear_scaled, stbir__decode_uint16_linear } },
|
|
{ /* AR */ { stbir__decode_uint8_linear_scaled_AR, stbir__decode_uint8_linear_AR }, { stbir__decode_uint16_linear_scaled_AR, stbir__decode_uint16_linear_AR } }
|
|
};
|
|
|
|
static stbir__encode_pixels_func * encode_simple[STBIR_TYPE_HALF_FLOAT-STBIR_TYPE_UINT8_SRGB+1]=
|
|
{
|
|
/* 1ch-4ch */ stbir__encode_uint8_srgb, stbir__encode_uint8_srgb, 0, stbir__encode_float_linear, stbir__encode_half_float_linear,
|
|
};
|
|
|
|
static stbir__encode_pixels_func * encode_alphas[STBIRI_AR-STBIRI_RGBA+1][STBIR_TYPE_HALF_FLOAT-STBIR_TYPE_UINT8_SRGB+1]=
|
|
{
|
|
{ /* RGBA */ stbir__encode_uint8_srgb4_linearalpha, stbir__encode_uint8_srgb, 0, stbir__encode_float_linear, stbir__encode_half_float_linear },
|
|
{ /* BGRA */ stbir__encode_uint8_srgb4_linearalpha_BGRA, stbir__encode_uint8_srgb_BGRA, 0, stbir__encode_float_linear_BGRA, stbir__encode_half_float_linear_BGRA },
|
|
{ /* ARGB */ stbir__encode_uint8_srgb4_linearalpha_ARGB, stbir__encode_uint8_srgb_ARGB, 0, stbir__encode_float_linear_ARGB, stbir__encode_half_float_linear_ARGB },
|
|
{ /* ABGR */ stbir__encode_uint8_srgb4_linearalpha_ABGR, stbir__encode_uint8_srgb_ABGR, 0, stbir__encode_float_linear_ABGR, stbir__encode_half_float_linear_ABGR },
|
|
{ /* RA */ stbir__encode_uint8_srgb2_linearalpha, stbir__encode_uint8_srgb, 0, stbir__encode_float_linear, stbir__encode_half_float_linear },
|
|
{ /* AR */ stbir__encode_uint8_srgb2_linearalpha_AR, stbir__encode_uint8_srgb_AR, 0, stbir__encode_float_linear_AR, stbir__encode_half_float_linear_AR }
|
|
};
|
|
|
|
static stbir__encode_pixels_func * encode_simple_scaled_or_not[2][2]=
|
|
{
|
|
{ stbir__encode_uint8_linear_scaled, stbir__encode_uint8_linear }, { stbir__encode_uint16_linear_scaled, stbir__encode_uint16_linear },
|
|
};
|
|
|
|
static stbir__encode_pixels_func * encode_alphas_scaled_or_not[STBIRI_AR-STBIRI_RGBA+1][2][2]=
|
|
{
|
|
{ /* RGBA */ { stbir__encode_uint8_linear_scaled, stbir__encode_uint8_linear }, { stbir__encode_uint16_linear_scaled, stbir__encode_uint16_linear } },
|
|
{ /* BGRA */ { stbir__encode_uint8_linear_scaled_BGRA, stbir__encode_uint8_linear_BGRA }, { stbir__encode_uint16_linear_scaled_BGRA, stbir__encode_uint16_linear_BGRA } },
|
|
{ /* ARGB */ { stbir__encode_uint8_linear_scaled_ARGB, stbir__encode_uint8_linear_ARGB }, { stbir__encode_uint16_linear_scaled_ARGB, stbir__encode_uint16_linear_ARGB } },
|
|
{ /* ABGR */ { stbir__encode_uint8_linear_scaled_ABGR, stbir__encode_uint8_linear_ABGR }, { stbir__encode_uint16_linear_scaled_ABGR, stbir__encode_uint16_linear_ABGR } },
|
|
{ /* RA */ { stbir__encode_uint8_linear_scaled, stbir__encode_uint8_linear }, { stbir__encode_uint16_linear_scaled, stbir__encode_uint16_linear } },
|
|
{ /* AR */ { stbir__encode_uint8_linear_scaled_AR, stbir__encode_uint8_linear_AR }, { stbir__encode_uint16_linear_scaled_AR, stbir__encode_uint16_linear_AR } }
|
|
};
|
|
|
|
stbir__decode_pixels_func * decode_pixels = 0;
|
|
stbir__encode_pixels_func * encode_pixels = 0;
|
|
stbir_datatype input_type, output_type;
|
|
|
|
input_type = resize->input_data_type;
|
|
output_type = resize->output_data_type;
|
|
info->input_data = resize->input_pixels;
|
|
info->input_stride_bytes = resize->input_stride_in_bytes;
|
|
info->output_stride_bytes = resize->output_stride_in_bytes;
|
|
|
|
// if we're completely point sampling, then we can turn off SRGB
|
|
if ( ( info->horizontal.filter_enum == STBIR_FILTER_POINT_SAMPLE ) && ( info->vertical.filter_enum == STBIR_FILTER_POINT_SAMPLE ) )
|
|
{
|
|
if ( ( ( input_type == STBIR_TYPE_UINT8_SRGB ) || ( input_type == STBIR_TYPE_UINT8_SRGB_ALPHA ) ) &&
|
|
( ( output_type == STBIR_TYPE_UINT8_SRGB ) || ( output_type == STBIR_TYPE_UINT8_SRGB_ALPHA ) ) )
|
|
{
|
|
input_type = STBIR_TYPE_UINT8;
|
|
output_type = STBIR_TYPE_UINT8;
|
|
}
|
|
}
|
|
|
|
// recalc the output and input strides
|
|
if ( info->input_stride_bytes == 0 )
|
|
info->input_stride_bytes = info->channels * info->horizontal.scale_info.input_full_size * stbir__type_size[input_type];
|
|
|
|
if ( info->output_stride_bytes == 0 )
|
|
info->output_stride_bytes = info->channels * info->horizontal.scale_info.output_sub_size * stbir__type_size[output_type];
|
|
|
|
// calc offset
|
|
info->output_data = ( (char*) resize->output_pixels ) + ( (ptrdiff_t) info->offset_y * (ptrdiff_t) resize->output_stride_in_bytes ) + ( info->offset_x * info->channels * stbir__type_size[output_type] );
|
|
|
|
info->in_pixels_cb = resize->input_cb;
|
|
info->user_data = resize->user_data;
|
|
info->out_pixels_cb = resize->output_cb;
|
|
|
|
// setup the input format converters
|
|
if ( ( input_type == STBIR_TYPE_UINT8 ) || ( input_type == STBIR_TYPE_UINT16 ) )
|
|
{
|
|
int non_scaled = 0;
|
|
|
|
// check if we can run unscaled - 0-255.0/0-65535.0 instead of 0-1.0 (which is a tiny bit faster when doing linear 8->8 or 16->16)
|
|
if ( ( !info->alpha_weight ) && ( !info->alpha_unweight ) ) // don't short circuit when alpha weighting (get everything to 0-1.0 as usual)
|
|
if ( ( ( input_type == STBIR_TYPE_UINT8 ) && ( output_type == STBIR_TYPE_UINT8 ) ) || ( ( input_type == STBIR_TYPE_UINT16 ) && ( output_type == STBIR_TYPE_UINT16 ) ) )
|
|
non_scaled = 1;
|
|
|
|
if ( info->input_pixel_layout_internal <= STBIRI_4CHANNEL )
|
|
decode_pixels = decode_simple_scaled_or_not[ input_type == STBIR_TYPE_UINT16 ][ non_scaled ];
|
|
else
|
|
decode_pixels = decode_alphas_scaled_or_not[ ( info->input_pixel_layout_internal - STBIRI_RGBA ) % ( STBIRI_AR-STBIRI_RGBA+1 ) ][ input_type == STBIR_TYPE_UINT16 ][ non_scaled ];
|
|
}
|
|
else
|
|
{
|
|
if ( info->input_pixel_layout_internal <= STBIRI_4CHANNEL )
|
|
decode_pixels = decode_simple[ input_type - STBIR_TYPE_UINT8_SRGB ];
|
|
else
|
|
decode_pixels = decode_alphas[ ( info->input_pixel_layout_internal - STBIRI_RGBA ) % ( STBIRI_AR-STBIRI_RGBA+1 ) ][ input_type - STBIR_TYPE_UINT8_SRGB ];
|
|
}
|
|
|
|
// setup the output format converters
|
|
if ( ( output_type == STBIR_TYPE_UINT8 ) || ( output_type == STBIR_TYPE_UINT16 ) )
|
|
{
|
|
int non_scaled = 0;
|
|
|
|
// check if we can run unscaled - 0-255.0/0-65535.0 instead of 0-1.0 (which is a tiny bit faster when doing linear 8->8 or 16->16)
|
|
if ( ( !info->alpha_weight ) && ( !info->alpha_unweight ) ) // don't short circuit when alpha weighting (get everything to 0-1.0 as usual)
|
|
if ( ( ( input_type == STBIR_TYPE_UINT8 ) && ( output_type == STBIR_TYPE_UINT8 ) ) || ( ( input_type == STBIR_TYPE_UINT16 ) && ( output_type == STBIR_TYPE_UINT16 ) ) )
|
|
non_scaled = 1;
|
|
|
|
if ( info->output_pixel_layout_internal <= STBIRI_4CHANNEL )
|
|
encode_pixels = encode_simple_scaled_or_not[ output_type == STBIR_TYPE_UINT16 ][ non_scaled ];
|
|
else
|
|
encode_pixels = encode_alphas_scaled_or_not[ ( info->output_pixel_layout_internal - STBIRI_RGBA ) % ( STBIRI_AR-STBIRI_RGBA+1 ) ][ output_type == STBIR_TYPE_UINT16 ][ non_scaled ];
|
|
}
|
|
else
|
|
{
|
|
if ( info->output_pixel_layout_internal <= STBIRI_4CHANNEL )
|
|
encode_pixels = encode_simple[ output_type - STBIR_TYPE_UINT8_SRGB ];
|
|
else
|
|
encode_pixels = encode_alphas[ ( info->output_pixel_layout_internal - STBIRI_RGBA ) % ( STBIRI_AR-STBIRI_RGBA+1 ) ][ output_type - STBIR_TYPE_UINT8_SRGB ];
|
|
}
|
|
|
|
info->input_type = input_type;
|
|
info->output_type = output_type;
|
|
info->decode_pixels = decode_pixels;
|
|
info->encode_pixels = encode_pixels;
|
|
}
|
|
|
|
static void stbir__clip( int * outx, int * outsubw, int outw, double * u0, double * u1 )
|
|
{
|
|
double per, adj;
|
|
int over;
|
|
|
|
// do left/top edge
|
|
if ( *outx < 0 )
|
|
{
|
|
per = ( (double)*outx ) / ( (double)*outsubw ); // is negative
|
|
adj = per * ( *u1 - *u0 );
|
|
*u0 -= adj; // increases u0
|
|
*outx = 0;
|
|
}
|
|
|
|
// do right/bot edge
|
|
over = outw - ( *outx + *outsubw );
|
|
if ( over < 0 )
|
|
{
|
|
per = ( (double)over ) / ( (double)*outsubw ); // is negative
|
|
adj = per * ( *u1 - *u0 );
|
|
*u1 += adj; // decrease u1
|
|
*outsubw = outw - *outx;
|
|
}
|
|
}
|
|
|
|
// converts a double to a rational that has less than one float bit of error (returns 0 if unable to do so)
|
|
static int stbir__double_to_rational(double f, stbir_uint32 limit, stbir_uint32 *numer, stbir_uint32 *denom, int limit_denom ) // limit_denom (1) or limit numer (0)
|
|
{
|
|
double err;
|
|
stbir_uint64 top, bot;
|
|
stbir_uint64 numer_last = 0;
|
|
stbir_uint64 denom_last = 1;
|
|
stbir_uint64 numer_estimate = 1;
|
|
stbir_uint64 denom_estimate = 0;
|
|
|
|
// scale to past float error range
|
|
top = (stbir_uint64)( f * (double)(1 << 25) );
|
|
bot = 1 << 25;
|
|
|
|
// keep refining, but usually stops in a few loops - usually 5 for bad cases
|
|
for(;;)
|
|
{
|
|
stbir_uint64 est, temp;
|
|
|
|
// hit limit, break out and do best full range estimate
|
|
if ( ( ( limit_denom ) ? denom_estimate : numer_estimate ) >= limit )
|
|
break;
|
|
|
|
// is the current error less than 1 bit of a float? if so, we're done
|
|
if ( denom_estimate )
|
|
{
|
|
err = ( (double)numer_estimate / (double)denom_estimate ) - f;
|
|
if ( err < 0.0 ) err = -err;
|
|
if ( err < ( 1.0 / (double)(1<<24) ) )
|
|
{
|
|
// yup, found it
|
|
*numer = (stbir_uint32) numer_estimate;
|
|
*denom = (stbir_uint32) denom_estimate;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// no more refinement bits left? break out and do full range estimate
|
|
if ( bot == 0 )
|
|
break;
|
|
|
|
// gcd the estimate bits
|
|
est = top / bot;
|
|
temp = top % bot;
|
|
top = bot;
|
|
bot = temp;
|
|
|
|
// move remainders
|
|
temp = est * denom_estimate + denom_last;
|
|
denom_last = denom_estimate;
|
|
denom_estimate = temp;
|
|
|
|
// move remainders
|
|
temp = est * numer_estimate + numer_last;
|
|
numer_last = numer_estimate;
|
|
numer_estimate = temp;
|
|
}
|
|
|
|
// we didn't fine anything good enough for float, use a full range estimate
|
|
if ( limit_denom )
|
|
{
|
|
numer_estimate= (stbir_uint64)( f * (double)limit + 0.5 );
|
|
denom_estimate = limit;
|
|
}
|
|
else
|
|
{
|
|
numer_estimate = limit;
|
|
denom_estimate = (stbir_uint64)( ( (double)limit / f ) + 0.5 );
|
|
}
|
|
|
|
*numer = (stbir_uint32) numer_estimate;
|
|
*denom = (stbir_uint32) denom_estimate;
|
|
|
|
err = ( denom_estimate ) ? ( ( (double)(stbir_uint32)numer_estimate / (double)(stbir_uint32)denom_estimate ) - f ) : 1.0;
|
|
if ( err < 0.0 ) err = -err;
|
|
return ( err < ( 1.0 / (double)(1<<24) ) ) ? 1 : 0;
|
|
}
|
|
|
|
static int stbir__calculate_region_transform( stbir__scale_info * scale_info, int output_full_range, int * output_offset, int output_sub_range, int input_full_range, double input_s0, double input_s1 )
|
|
{
|
|
double output_range, input_range, output_s, input_s, ratio, scale;
|
|
|
|
input_s = input_s1 - input_s0;
|
|
|
|
// null area
|
|
if ( ( output_full_range == 0 ) || ( input_full_range == 0 ) ||
|
|
( output_sub_range == 0 ) || ( input_s <= stbir__small_float ) )
|
|
return 0;
|
|
|
|
// are either of the ranges completely out of bounds?
|
|
if ( ( *output_offset >= output_full_range ) || ( ( *output_offset + output_sub_range ) <= 0 ) || ( input_s0 >= (1.0f-stbir__small_float) ) || ( input_s1 <= stbir__small_float ) )
|
|
return 0;
|
|
|
|
output_range = (double)output_full_range;
|
|
input_range = (double)input_full_range;
|
|
|
|
output_s = ( (double)output_sub_range) / output_range;
|
|
|
|
// figure out the scaling to use
|
|
ratio = output_s / input_s;
|
|
|
|
// save scale before clipping
|
|
scale = ( output_range / input_range ) * ratio;
|
|
scale_info->scale = (float)scale;
|
|
scale_info->inv_scale = (float)( 1.0 / scale );
|
|
|
|
// clip output area to left/right output edges (and adjust input area)
|
|
stbir__clip( output_offset, &output_sub_range, output_full_range, &input_s0, &input_s1 );
|
|
|
|
// recalc input area
|
|
input_s = input_s1 - input_s0;
|
|
|
|
// after clipping do we have zero input area?
|
|
if ( input_s <= stbir__small_float )
|
|
return 0;
|
|
|
|
// calculate and store the starting source offsets in output pixel space
|
|
scale_info->pixel_shift = (float) ( input_s0 * ratio * output_range );
|
|
|
|
scale_info->scale_is_rational = stbir__double_to_rational( scale, ( scale <= 1.0 ) ? output_full_range : input_full_range, &scale_info->scale_numerator, &scale_info->scale_denominator, ( scale >= 1.0 ) );
|
|
|
|
scale_info->input_full_size = input_full_range;
|
|
scale_info->output_sub_size = output_sub_range;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static void stbir__init_and_set_layout( STBIR_RESIZE * resize, stbir_pixel_layout pixel_layout, stbir_datatype data_type )
|
|
{
|
|
resize->input_cb = 0;
|
|
resize->output_cb = 0;
|
|
resize->user_data = resize;
|
|
resize->samplers = 0;
|
|
resize->called_alloc = 0;
|
|
resize->horizontal_filter = STBIR_FILTER_DEFAULT;
|
|
resize->horizontal_filter_kernel = 0; resize->horizontal_filter_support = 0;
|
|
resize->vertical_filter = STBIR_FILTER_DEFAULT;
|
|
resize->vertical_filter_kernel = 0; resize->vertical_filter_support = 0;
|
|
resize->horizontal_edge = STBIR_EDGE_CLAMP;
|
|
resize->vertical_edge = STBIR_EDGE_CLAMP;
|
|
resize->input_s0 = 0; resize->input_t0 = 0; resize->input_s1 = 1; resize->input_t1 = 1;
|
|
resize->output_subx = 0; resize->output_suby = 0; resize->output_subw = resize->output_w; resize->output_subh = resize->output_h;
|
|
resize->input_data_type = data_type;
|
|
resize->output_data_type = data_type;
|
|
resize->input_pixel_layout_public = pixel_layout;
|
|
resize->output_pixel_layout_public = pixel_layout;
|
|
resize->needs_rebuild = 1;
|
|
}
|
|
|
|
STBIRDEF void stbir_resize_init( STBIR_RESIZE * resize,
|
|
const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes, // stride can be zero
|
|
void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, // stride can be zero
|
|
stbir_pixel_layout pixel_layout, stbir_datatype data_type )
|
|
{
|
|
resize->input_pixels = input_pixels;
|
|
resize->input_w = input_w;
|
|
resize->input_h = input_h;
|
|
resize->input_stride_in_bytes = input_stride_in_bytes;
|
|
resize->output_pixels = output_pixels;
|
|
resize->output_w = output_w;
|
|
resize->output_h = output_h;
|
|
resize->output_stride_in_bytes = output_stride_in_bytes;
|
|
resize->fast_alpha = 0;
|
|
|
|
stbir__init_and_set_layout( resize, pixel_layout, data_type );
|
|
}
|
|
|
|
// You can update parameters any time after resize_init
|
|
STBIRDEF void stbir_set_datatypes( STBIR_RESIZE * resize, stbir_datatype input_type, stbir_datatype output_type ) // by default, datatype from resize_init
|
|
{
|
|
resize->input_data_type = input_type;
|
|
resize->output_data_type = output_type;
|
|
if ( ( resize->samplers ) && ( !resize->needs_rebuild ) )
|
|
stbir__update_info_from_resize( resize->samplers, resize );
|
|
}
|
|
|
|
STBIRDEF void stbir_set_pixel_callbacks( STBIR_RESIZE * resize, stbir_input_callback * input_cb, stbir_output_callback * output_cb ) // no callbacks by default
|
|
{
|
|
resize->input_cb = input_cb;
|
|
resize->output_cb = output_cb;
|
|
|
|
if ( ( resize->samplers ) && ( !resize->needs_rebuild ) )
|
|
{
|
|
resize->samplers->in_pixels_cb = input_cb;
|
|
resize->samplers->out_pixels_cb = output_cb;
|
|
}
|
|
}
|
|
|
|
STBIRDEF void stbir_set_user_data( STBIR_RESIZE * resize, void * user_data ) // pass back STBIR_RESIZE* by default
|
|
{
|
|
resize->user_data = user_data;
|
|
if ( ( resize->samplers ) && ( !resize->needs_rebuild ) )
|
|
resize->samplers->user_data = user_data;
|
|
}
|
|
|
|
STBIRDEF void stbir_set_buffer_ptrs( STBIR_RESIZE * resize, const void * input_pixels, int input_stride_in_bytes, void * output_pixels, int output_stride_in_bytes )
|
|
{
|
|
resize->input_pixels = input_pixels;
|
|
resize->input_stride_in_bytes = input_stride_in_bytes;
|
|
resize->output_pixels = output_pixels;
|
|
resize->output_stride_in_bytes = output_stride_in_bytes;
|
|
if ( ( resize->samplers ) && ( !resize->needs_rebuild ) )
|
|
stbir__update_info_from_resize( resize->samplers, resize );
|
|
}
|
|
|
|
|
|
STBIRDEF int stbir_set_edgemodes( STBIR_RESIZE * resize, stbir_edge horizontal_edge, stbir_edge vertical_edge ) // CLAMP by default
|
|
{
|
|
resize->horizontal_edge = horizontal_edge;
|
|
resize->vertical_edge = vertical_edge;
|
|
resize->needs_rebuild = 1;
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_set_filters( STBIR_RESIZE * resize, stbir_filter horizontal_filter, stbir_filter vertical_filter ) // STBIR_DEFAULT_FILTER_UPSAMPLE/DOWNSAMPLE by default
|
|
{
|
|
resize->horizontal_filter = horizontal_filter;
|
|
resize->vertical_filter = vertical_filter;
|
|
resize->needs_rebuild = 1;
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_set_filter_callbacks( STBIR_RESIZE * resize, stbir__kernel_callback * horizontal_filter, stbir__support_callback * horizontal_support, stbir__kernel_callback * vertical_filter, stbir__support_callback * vertical_support )
|
|
{
|
|
resize->horizontal_filter_kernel = horizontal_filter; resize->horizontal_filter_support = horizontal_support;
|
|
resize->vertical_filter_kernel = vertical_filter; resize->vertical_filter_support = vertical_support;
|
|
resize->needs_rebuild = 1;
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_set_pixel_layouts( STBIR_RESIZE * resize, stbir_pixel_layout input_pixel_layout, stbir_pixel_layout output_pixel_layout ) // sets new pixel layouts
|
|
{
|
|
resize->input_pixel_layout_public = input_pixel_layout;
|
|
resize->output_pixel_layout_public = output_pixel_layout;
|
|
resize->needs_rebuild = 1;
|
|
return 1;
|
|
}
|
|
|
|
|
|
STBIRDEF int stbir_set_non_pm_alpha_speed_over_quality( STBIR_RESIZE * resize, int non_pma_alpha_speed_over_quality ) // sets alpha speed
|
|
{
|
|
resize->fast_alpha = non_pma_alpha_speed_over_quality;
|
|
resize->needs_rebuild = 1;
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_set_input_subrect( STBIR_RESIZE * resize, double s0, double t0, double s1, double t1 ) // sets input region (full region by default)
|
|
{
|
|
resize->input_s0 = s0;
|
|
resize->input_t0 = t0;
|
|
resize->input_s1 = s1;
|
|
resize->input_t1 = t1;
|
|
resize->needs_rebuild = 1;
|
|
|
|
// are we inbounds?
|
|
if ( ( s1 < stbir__small_float ) || ( (s1-s0) < stbir__small_float ) ||
|
|
( t1 < stbir__small_float ) || ( (t1-t0) < stbir__small_float ) ||
|
|
( s0 > (1.0f-stbir__small_float) ) ||
|
|
( t0 > (1.0f-stbir__small_float) ) )
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_set_output_pixel_subrect( STBIR_RESIZE * resize, int subx, int suby, int subw, int subh ) // sets input region (full region by default)
|
|
{
|
|
resize->output_subx = subx;
|
|
resize->output_suby = suby;
|
|
resize->output_subw = subw;
|
|
resize->output_subh = subh;
|
|
resize->needs_rebuild = 1;
|
|
|
|
// are we inbounds?
|
|
if ( ( subx >= resize->output_w ) || ( ( subx + subw ) <= 0 ) || ( suby >= resize->output_h ) || ( ( suby + subh ) <= 0 ) || ( subw == 0 ) || ( subh == 0 ) )
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_set_pixel_subrect( STBIR_RESIZE * resize, int subx, int suby, int subw, int subh ) // sets both regions (full regions by default)
|
|
{
|
|
double s0, t0, s1, t1;
|
|
|
|
s0 = ( (double)subx ) / ( (double)resize->output_w );
|
|
t0 = ( (double)suby ) / ( (double)resize->output_h );
|
|
s1 = ( (double)(subx+subw) ) / ( (double)resize->output_w );
|
|
t1 = ( (double)(suby+subh) ) / ( (double)resize->output_h );
|
|
|
|
resize->input_s0 = s0;
|
|
resize->input_t0 = t0;
|
|
resize->input_s1 = s1;
|
|
resize->input_t1 = t1;
|
|
resize->output_subx = subx;
|
|
resize->output_suby = suby;
|
|
resize->output_subw = subw;
|
|
resize->output_subh = subh;
|
|
resize->needs_rebuild = 1;
|
|
|
|
// are we inbounds?
|
|
if ( ( subx >= resize->output_w ) || ( ( subx + subw ) <= 0 ) || ( suby >= resize->output_h ) || ( ( suby + subh ) <= 0 ) || ( subw == 0 ) || ( subh == 0 ) )
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int stbir__perform_build( STBIR_RESIZE * resize, int splits )
|
|
{
|
|
stbir__contributors conservative = { 0, 0 };
|
|
stbir__sampler horizontal, vertical;
|
|
int new_output_subx, new_output_suby;
|
|
stbir__info * out_info;
|
|
#ifdef STBIR_PROFILE
|
|
stbir__info profile_infod; // used to contain building profile info before everything is allocated
|
|
stbir__info * profile_info = &profile_infod;
|
|
#endif
|
|
|
|
// have we already built the samplers?
|
|
if ( resize->samplers )
|
|
return 0;
|
|
|
|
#define STBIR_RETURN_ERROR_AND_ASSERT( exp ) STBIR_ASSERT( !(exp) ); if (exp) return 0;
|
|
STBIR_RETURN_ERROR_AND_ASSERT( (unsigned)resize->horizontal_filter >= STBIR_FILTER_OTHER)
|
|
STBIR_RETURN_ERROR_AND_ASSERT( (unsigned)resize->vertical_filter >= STBIR_FILTER_OTHER)
|
|
#undef STBIR_RETURN_ERROR_AND_ASSERT
|
|
|
|
if ( splits <= 0 )
|
|
return 0;
|
|
|
|
STBIR_PROFILE_BUILD_FIRST_START( build );
|
|
|
|
new_output_subx = resize->output_subx;
|
|
new_output_suby = resize->output_suby;
|
|
|
|
// do horizontal clip and scale calcs
|
|
if ( !stbir__calculate_region_transform( &horizontal.scale_info, resize->output_w, &new_output_subx, resize->output_subw, resize->input_w, resize->input_s0, resize->input_s1 ) )
|
|
return 0;
|
|
|
|
// do vertical clip and scale calcs
|
|
if ( !stbir__calculate_region_transform( &vertical.scale_info, resize->output_h, &new_output_suby, resize->output_subh, resize->input_h, resize->input_t0, resize->input_t1 ) )
|
|
return 0;
|
|
|
|
// if nothing to do, just return
|
|
if ( ( horizontal.scale_info.output_sub_size == 0 ) || ( vertical.scale_info.output_sub_size == 0 ) )
|
|
return 0;
|
|
|
|
stbir__set_sampler(&horizontal, resize->horizontal_filter, resize->horizontal_filter_kernel, resize->horizontal_filter_support, resize->horizontal_edge, &horizontal.scale_info, 1, resize->user_data );
|
|
stbir__get_conservative_extents( &horizontal, &conservative, resize->user_data );
|
|
stbir__set_sampler(&vertical, resize->vertical_filter, resize->horizontal_filter_kernel, resize->vertical_filter_support, resize->vertical_edge, &vertical.scale_info, 0, resize->user_data );
|
|
|
|
if ( ( vertical.scale_info.output_sub_size / splits ) < STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS ) // each split should be a minimum of 4 scanlines (handwavey choice)
|
|
{
|
|
splits = vertical.scale_info.output_sub_size / STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS;
|
|
if ( splits == 0 ) splits = 1;
|
|
}
|
|
|
|
STBIR_PROFILE_BUILD_START( alloc );
|
|
out_info = stbir__alloc_internal_mem_and_build_samplers( &horizontal, &vertical, &conservative, resize->input_pixel_layout_public, resize->output_pixel_layout_public, splits, new_output_subx, new_output_suby, resize->fast_alpha, resize->user_data STBIR_ONLY_PROFILE_BUILD_SET_INFO );
|
|
STBIR_PROFILE_BUILD_END( alloc );
|
|
STBIR_PROFILE_BUILD_END( build );
|
|
|
|
if ( out_info )
|
|
{
|
|
resize->splits = splits;
|
|
resize->samplers = out_info;
|
|
resize->needs_rebuild = 0;
|
|
#ifdef STBIR_PROFILE
|
|
STBIR_MEMCPY( &out_info->profile, &profile_infod.profile, sizeof( out_info->profile ) );
|
|
#endif
|
|
|
|
// update anything that can be changed without recalcing samplers
|
|
stbir__update_info_from_resize( out_info, resize );
|
|
|
|
return splits;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void stbir_free_samplers( STBIR_RESIZE * resize )
|
|
{
|
|
if ( resize->samplers )
|
|
{
|
|
stbir__free_internal_mem( resize->samplers );
|
|
resize->samplers = 0;
|
|
resize->called_alloc = 0;
|
|
}
|
|
}
|
|
|
|
STBIRDEF int stbir_build_samplers_with_splits( STBIR_RESIZE * resize, int splits )
|
|
{
|
|
if ( ( resize->samplers == 0 ) || ( resize->needs_rebuild ) )
|
|
{
|
|
if ( resize->samplers )
|
|
stbir_free_samplers( resize );
|
|
|
|
resize->called_alloc = 1;
|
|
return stbir__perform_build( resize, splits );
|
|
}
|
|
|
|
STBIR_PROFILE_BUILD_CLEAR( resize->samplers );
|
|
|
|
return 1;
|
|
}
|
|
|
|
STBIRDEF int stbir_build_samplers( STBIR_RESIZE * resize )
|
|
{
|
|
return stbir_build_samplers_with_splits( resize, 1 );
|
|
}
|
|
|
|
STBIRDEF int stbir_resize_extended( STBIR_RESIZE * resize )
|
|
{
|
|
int result;
|
|
|
|
if ( ( resize->samplers == 0 ) || ( resize->needs_rebuild ) )
|
|
{
|
|
int alloc_state = resize->called_alloc; // remember allocated state
|
|
|
|
if ( resize->samplers )
|
|
{
|
|
stbir__free_internal_mem( resize->samplers );
|
|
resize->samplers = 0;
|
|
}
|
|
|
|
if ( !stbir_build_samplers( resize ) )
|
|
return 0;
|
|
|
|
resize->called_alloc = alloc_state;
|
|
|
|
// if build_samplers succeeded (above), but there are no samplers set, then
|
|
// the area to stretch into was zero pixels, so don't do anything and return
|
|
// success
|
|
if ( resize->samplers == 0 )
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
// didn't build anything - clear it
|
|
STBIR_PROFILE_BUILD_CLEAR( resize->samplers );
|
|
}
|
|
|
|
// do resize
|
|
result = stbir__perform_resize( resize->samplers, 0, resize->splits );
|
|
|
|
// if we alloced, then free
|
|
if ( !resize->called_alloc )
|
|
{
|
|
stbir_free_samplers( resize );
|
|
resize->samplers = 0;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
STBIRDEF int stbir_resize_extended_split( STBIR_RESIZE * resize, int split_start, int split_count )
|
|
{
|
|
STBIR_ASSERT( resize->samplers );
|
|
|
|
// if we're just doing the whole thing, call full
|
|
if ( ( split_start == -1 ) || ( ( split_start == 0 ) && ( split_count == resize->splits ) ) )
|
|
return stbir_resize_extended( resize );
|
|
|
|
// you **must** build samplers first when using split resize
|
|
if ( ( resize->samplers == 0 ) || ( resize->needs_rebuild ) )
|
|
return 0;
|
|
|
|
if ( ( split_start >= resize->splits ) || ( split_start < 0 ) || ( ( split_start + split_count ) > resize->splits ) || ( split_count <= 0 ) )
|
|
return 0;
|
|
|
|
// do resize
|
|
return stbir__perform_resize( resize->samplers, split_start, split_count );
|
|
}
|
|
|
|
static int stbir__check_output_stuff( void ** ret_ptr, int * ret_pitch, void * output_pixels, int type_size, int output_w, int output_h, int output_stride_in_bytes, stbir_internal_pixel_layout pixel_layout )
|
|
{
|
|
size_t size;
|
|
int pitch;
|
|
void * ptr;
|
|
|
|
pitch = output_w * type_size * stbir__pixel_channels[ pixel_layout ];
|
|
if ( pitch == 0 )
|
|
return 0;
|
|
|
|
if ( output_stride_in_bytes == 0 )
|
|
output_stride_in_bytes = pitch;
|
|
|
|
if ( output_stride_in_bytes < pitch )
|
|
return 0;
|
|
|
|
size = output_stride_in_bytes * output_h;
|
|
if ( size == 0 )
|
|
return 0;
|
|
|
|
*ret_ptr = 0;
|
|
*ret_pitch = output_stride_in_bytes;
|
|
|
|
if ( output_pixels == 0 )
|
|
{
|
|
ptr = STBIR_MALLOC( size, 0 );
|
|
if ( ptr == 0 )
|
|
return 0;
|
|
|
|
*ret_ptr = ptr;
|
|
*ret_pitch = pitch;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
STBIRDEF unsigned char * stbir_resize_uint8_linear( const unsigned char *input_pixels , int input_w , int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_layout )
|
|
{
|
|
STBIR_RESIZE resize;
|
|
unsigned char * optr;
|
|
int opitch;
|
|
|
|
if ( !stbir__check_output_stuff( (void**)&optr, &opitch, output_pixels, sizeof( unsigned char ), output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[ pixel_layout ] ) )
|
|
return 0;
|
|
|
|
stbir_resize_init( &resize,
|
|
input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
(optr) ? optr : output_pixels, output_w, output_h, opitch,
|
|
pixel_layout, STBIR_TYPE_UINT8 );
|
|
|
|
if ( !stbir_resize_extended( &resize ) )
|
|
{
|
|
if ( optr )
|
|
STBIR_FREE( optr, 0 );
|
|
return 0;
|
|
}
|
|
|
|
return (optr) ? optr : output_pixels;
|
|
}
|
|
|
|
STBIRDEF unsigned char * stbir_resize_uint8_srgb( const unsigned char *input_pixels , int input_w , int input_h, int input_stride_in_bytes,
|
|
unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_layout )
|
|
{
|
|
STBIR_RESIZE resize;
|
|
unsigned char * optr;
|
|
int opitch;
|
|
|
|
if ( !stbir__check_output_stuff( (void**)&optr, &opitch, output_pixels, sizeof( unsigned char ), output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[ pixel_layout ] ) )
|
|
return 0;
|
|
|
|
stbir_resize_init( &resize,
|
|
input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
(optr) ? optr : output_pixels, output_w, output_h, opitch,
|
|
pixel_layout, STBIR_TYPE_UINT8_SRGB );
|
|
|
|
if ( !stbir_resize_extended( &resize ) )
|
|
{
|
|
if ( optr )
|
|
STBIR_FREE( optr, 0 );
|
|
return 0;
|
|
}
|
|
|
|
return (optr) ? optr : output_pixels;
|
|
}
|
|
|
|
|
|
STBIRDEF float * stbir_resize_float_linear( const float *input_pixels , int input_w , int input_h, int input_stride_in_bytes,
|
|
float *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_layout )
|
|
{
|
|
STBIR_RESIZE resize;
|
|
float * optr;
|
|
int opitch;
|
|
|
|
if ( !stbir__check_output_stuff( (void**)&optr, &opitch, output_pixels, sizeof( float ), output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[ pixel_layout ] ) )
|
|
return 0;
|
|
|
|
stbir_resize_init( &resize,
|
|
input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
(optr) ? optr : output_pixels, output_w, output_h, opitch,
|
|
pixel_layout, STBIR_TYPE_FLOAT );
|
|
|
|
if ( !stbir_resize_extended( &resize ) )
|
|
{
|
|
if ( optr )
|
|
STBIR_FREE( optr, 0 );
|
|
return 0;
|
|
}
|
|
|
|
return (optr) ? optr : output_pixels;
|
|
}
|
|
|
|
|
|
STBIRDEF void * stbir_resize( const void *input_pixels , int input_w , int input_h, int input_stride_in_bytes,
|
|
void *output_pixels, int output_w, int output_h, int output_stride_in_bytes,
|
|
stbir_pixel_layout pixel_layout, stbir_datatype data_type,
|
|
stbir_edge edge, stbir_filter filter )
|
|
{
|
|
STBIR_RESIZE resize;
|
|
float * optr;
|
|
int opitch;
|
|
|
|
if ( !stbir__check_output_stuff( (void**)&optr, &opitch, output_pixels, stbir__type_size[data_type], output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[ pixel_layout ] ) )
|
|
return 0;
|
|
|
|
stbir_resize_init( &resize,
|
|
input_pixels, input_w, input_h, input_stride_in_bytes,
|
|
(optr) ? optr : output_pixels, output_w, output_h, output_stride_in_bytes,
|
|
pixel_layout, data_type );
|
|
|
|
resize.horizontal_edge = edge;
|
|
resize.vertical_edge = edge;
|
|
resize.horizontal_filter = filter;
|
|
resize.vertical_filter = filter;
|
|
|
|
if ( !stbir_resize_extended( &resize ) )
|
|
{
|
|
if ( optr )
|
|
STBIR_FREE( optr, 0 );
|
|
return 0;
|
|
}
|
|
|
|
return (optr) ? optr : output_pixels;
|
|
}
|
|
|
|
#ifdef STBIR_PROFILE
|
|
|
|
STBIRDEF void stbir_resize_build_profile_info( STBIR_PROFILE_INFO * info, STBIR_RESIZE const * resize )
|
|
{
|
|
static char const * bdescriptions[6] = { "Building", "Allocating", "Horizontal sampler", "Vertical sampler", "Coefficient cleanup", "Coefficient piovot" } ;
|
|
stbir__info* samp = resize->samplers;
|
|
int i;
|
|
|
|
typedef int testa[ (STBIR__ARRAY_SIZE( bdescriptions ) == (STBIR__ARRAY_SIZE( samp->profile.array )-1) )?1:-1];
|
|
typedef int testb[ (sizeof( samp->profile.array ) == (sizeof(samp->profile.named)) )?1:-1];
|
|
typedef int testc[ (sizeof( info->clocks ) >= (sizeof(samp->profile.named)) )?1:-1];
|
|
|
|
for( i = 0 ; i < STBIR__ARRAY_SIZE( bdescriptions ) ; i++)
|
|
info->clocks[i] = samp->profile.array[i+1];
|
|
|
|
info->total_clocks = samp->profile.named.total;
|
|
info->descriptions = bdescriptions;
|
|
info->count = STBIR__ARRAY_SIZE( bdescriptions );
|
|
}
|
|
|
|
STBIRDEF void stbir_resize_split_profile_info( STBIR_PROFILE_INFO * info, STBIR_RESIZE const * resize, int split_start, int split_count )
|
|
{
|
|
static char const * descriptions[7] = { "Looping", "Vertical sampling", "Horizontal sampling", "Scanline input", "Scanline output", "Alpha weighting", "Alpha unweighting" };
|
|
stbir__per_split_info * split_info;
|
|
int s, i;
|
|
|
|
typedef int testa[ (STBIR__ARRAY_SIZE( descriptions ) == (STBIR__ARRAY_SIZE( split_info->profile.array )-1) )?1:-1];
|
|
typedef int testb[ (sizeof( split_info->profile.array ) == (sizeof(split_info->profile.named)) )?1:-1];
|
|
typedef int testc[ (sizeof( info->clocks ) >= (sizeof(split_info->profile.named)) )?1:-1];
|
|
|
|
if ( split_start == -1 )
|
|
{
|
|
split_start = 0;
|
|
split_count = resize->samplers->splits;
|
|
}
|
|
|
|
if ( ( split_start >= resize->splits ) || ( split_start < 0 ) || ( ( split_start + split_count ) > resize->splits ) || ( split_count <= 0 ) )
|
|
{
|
|
info->total_clocks = 0;
|
|
info->descriptions = 0;
|
|
info->count = 0;
|
|
return;
|
|
}
|
|
|
|
split_info = resize->samplers->split_info + split_start;
|
|
|
|
// sum up the profile from all the splits
|
|
for( i = 0 ; i < STBIR__ARRAY_SIZE( descriptions ) ; i++ )
|
|
{
|
|
stbir_uint64 sum = 0;
|
|
for( s = 0 ; s < split_count ; s++ )
|
|
sum += split_info[s].profile.array[i+1];
|
|
info->clocks[i] = sum;
|
|
}
|
|
|
|
info->total_clocks = split_info->profile.named.total;
|
|
info->descriptions = descriptions;
|
|
info->count = STBIR__ARRAY_SIZE( descriptions );
|
|
}
|
|
|
|
STBIRDEF void stbir_resize_extended_profile_info( STBIR_PROFILE_INFO * info, STBIR_RESIZE const * resize )
|
|
{
|
|
stbir_resize_split_profile_info( info, resize, -1, 0 );
|
|
}
|
|
|
|
#endif // STBIR_PROFILE
|
|
|
|
#undef STBIR_BGR
|
|
#undef STBIR_1CHANNEL
|
|
#undef STBIR_2CHANNEL
|
|
#undef STBIR_RGB
|
|
#undef STBIR_RGBA
|
|
#undef STBIR_4CHANNEL
|
|
#undef STBIR_BGRA
|
|
#undef STBIR_ARGB
|
|
#undef STBIR_ABGR
|
|
#undef STBIR_RA
|
|
#undef STBIR_AR
|
|
#undef STBIR_RGBA_PM
|
|
#undef STBIR_BGRA_PM
|
|
#undef STBIR_ARGB_PM
|
|
#undef STBIR_ABGR_PM
|
|
#undef STBIR_RA_PM
|
|
#undef STBIR_AR_PM
|
|
|
|
#endif // STB_IMAGE_RESIZE_IMPLEMENTATION
|
|
|
|
#else // STB_IMAGE_RESIZE_HORIZONTALS&STB_IMAGE_RESIZE_DO_VERTICALS
|
|
|
|
// we reinclude the header file to define all the horizontal functions
|
|
// specializing each function for the number of coeffs is 20-40% faster *OVERALL*
|
|
|
|
// by including the header file again this way, we can still debug the functions
|
|
|
|
#define STBIR_strs_join2( start, mid, end ) start##mid##end
|
|
#define STBIR_strs_join1( start, mid, end ) STBIR_strs_join2( start, mid, end )
|
|
|
|
#define STBIR_strs_join24( start, mid1, mid2, end ) start##mid1##mid2##end
|
|
#define STBIR_strs_join14( start, mid1, mid2, end ) STBIR_strs_join24( start, mid1, mid2, end )
|
|
|
|
#ifdef STB_IMAGE_RESIZE_DO_CODERS
|
|
|
|
#ifdef stbir__decode_suffix
|
|
#define STBIR__CODER_NAME( name ) STBIR_strs_join1( name, _, stbir__decode_suffix )
|
|
#else
|
|
#define STBIR__CODER_NAME( name ) name
|
|
#endif
|
|
|
|
#ifdef stbir__decode_swizzle
|
|
#define stbir__decode_simdf8_flip(reg) STBIR_strs_join1( STBIR_strs_join1( STBIR_strs_join1( STBIR_strs_join1( stbir__simdf8_0123to,stbir__decode_order0,stbir__decode_order1),stbir__decode_order2,stbir__decode_order3),stbir__decode_order0,stbir__decode_order1),stbir__decode_order2,stbir__decode_order3)(reg, reg)
|
|
#define stbir__decode_simdf4_flip(reg) STBIR_strs_join1( STBIR_strs_join1( stbir__simdf_0123to,stbir__decode_order0,stbir__decode_order1),stbir__decode_order2,stbir__decode_order3)(reg, reg)
|
|
#define stbir__encode_simdf8_unflip(reg) STBIR_strs_join1( STBIR_strs_join1( STBIR_strs_join1( STBIR_strs_join1( stbir__simdf8_0123to,stbir__encode_order0,stbir__encode_order1),stbir__encode_order2,stbir__encode_order3),stbir__encode_order0,stbir__encode_order1),stbir__encode_order2,stbir__encode_order3)(reg, reg)
|
|
#define stbir__encode_simdf4_unflip(reg) STBIR_strs_join1( STBIR_strs_join1( stbir__simdf_0123to,stbir__encode_order0,stbir__encode_order1),stbir__encode_order2,stbir__encode_order3)(reg, reg)
|
|
#else
|
|
#define stbir__decode_order0 0
|
|
#define stbir__decode_order1 1
|
|
#define stbir__decode_order2 2
|
|
#define stbir__decode_order3 3
|
|
#define stbir__encode_order0 0
|
|
#define stbir__encode_order1 1
|
|
#define stbir__encode_order2 2
|
|
#define stbir__encode_order3 3
|
|
#define stbir__decode_simdf8_flip(reg)
|
|
#define stbir__decode_simdf4_flip(reg)
|
|
#define stbir__encode_simdf8_unflip(reg)
|
|
#define stbir__encode_simdf4_unflip(reg)
|
|
#endif
|
|
|
|
#ifdef STBIR_SIMD8
|
|
#define stbir__encode_simdfX_unflip stbir__encode_simdf8_unflip
|
|
#else
|
|
#define stbir__encode_simdfX_unflip stbir__encode_simdf4_unflip
|
|
#endif
|
|
|
|
static void STBIR__CODER_NAME( stbir__decode_uint8_linear_scaled )( float * decodep, int width_times_channels, void const * inputp )
|
|
{
|
|
float STBIR_STREAMOUT_PTR( * ) decode = decodep;
|
|
float * decode_end = (float*) decode + width_times_channels;
|
|
unsigned char const * input = (unsigned char const*)inputp;
|
|
|
|
#ifdef STBIR_SIMD
|
|
unsigned char const * end_input_m16 = input + width_times_channels - 16;
|
|
if ( width_times_channels >= 16 )
|
|
{
|
|
decode_end -= 16;
|
|
for(;;)
|
|
{
|
|
#ifdef STBIR_SIMD8
|
|
stbir__simdi i; stbir__simdi8 o0,o1;
|
|
stbir__simdf8 of0, of1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load( i, input );
|
|
stbir__simdi8_expand_u8_to_u32( o0, o1, i );
|
|
stbir__simdi8_convert_i32_to_float( of0, o0 );
|
|
stbir__simdi8_convert_i32_to_float( of1, o1 );
|
|
stbir__simdf8_mult( of0, of0, STBIR_max_uint8_as_float_inverted8);
|
|
stbir__simdf8_mult( of1, of1, STBIR_max_uint8_as_float_inverted8);
|
|
stbir__decode_simdf8_flip( of0 );
|
|
stbir__decode_simdf8_flip( of1 );
|
|
stbir__simdf8_store( decode + 0, of0 );
|
|
stbir__simdf8_store( decode + 8, of1 );
|
|
#else
|
|
stbir__simdi i, o0, o1, o2, o3;
|
|
stbir__simdf of0, of1, of2, of3;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load( i, input );
|
|
stbir__simdi_expand_u8_to_u32( o0,o1,o2,o3,i);
|
|
stbir__simdi_convert_i32_to_float( of0, o0 );
|
|
stbir__simdi_convert_i32_to_float( of1, o1 );
|
|
stbir__simdi_convert_i32_to_float( of2, o2 );
|
|
stbir__simdi_convert_i32_to_float( of3, o3 );
|
|
stbir__simdf_mult( of0, of0, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted) );
|
|
stbir__simdf_mult( of1, of1, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted) );
|
|
stbir__simdf_mult( of2, of2, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted) );
|
|
stbir__simdf_mult( of3, of3, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted) );
|
|
stbir__decode_simdf4_flip( of0 );
|
|
stbir__decode_simdf4_flip( of1 );
|
|
stbir__decode_simdf4_flip( of2 );
|
|
stbir__decode_simdf4_flip( of3 );
|
|
stbir__simdf_store( decode + 0, of0 );
|
|
stbir__simdf_store( decode + 4, of1 );
|
|
stbir__simdf_store( decode + 8, of2 );
|
|
stbir__simdf_store( decode + 12, of3 );
|
|
#endif
|
|
decode += 16;
|
|
input += 16;
|
|
if ( decode <= decode_end )
|
|
continue;
|
|
if ( decode == ( decode_end + 16 ) )
|
|
break;
|
|
decode = decode_end; // backup and do last couple
|
|
input = end_input_m16;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
decode += 4;
|
|
while( decode <= decode_end )
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
decode[0-4] = ((float)(input[stbir__decode_order0])) * stbir__max_uint8_as_float_inverted;
|
|
decode[1-4] = ((float)(input[stbir__decode_order1])) * stbir__max_uint8_as_float_inverted;
|
|
decode[2-4] = ((float)(input[stbir__decode_order2])) * stbir__max_uint8_as_float_inverted;
|
|
decode[3-4] = ((float)(input[stbir__decode_order3])) * stbir__max_uint8_as_float_inverted;
|
|
decode += 4;
|
|
input += 4;
|
|
}
|
|
decode -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( decode < decode_end )
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = ((float)(input[stbir__decode_order0])) * stbir__max_uint8_as_float_inverted;
|
|
#if stbir__coder_min_num >= 2
|
|
decode[1] = ((float)(input[stbir__decode_order1])) * stbir__max_uint8_as_float_inverted;
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
decode[2] = ((float)(input[stbir__decode_order2])) * stbir__max_uint8_as_float_inverted;
|
|
#endif
|
|
decode += stbir__coder_min_num;
|
|
input += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void STBIR__CODER_NAME( stbir__encode_uint8_linear_scaled )( void * outputp, int width_times_channels, float const * encode )
|
|
{
|
|
unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char *) outputp;
|
|
unsigned char * end_output = ( (unsigned char *) output ) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
if ( width_times_channels >= stbir__simdfX_float_count*2 )
|
|
{
|
|
float const * end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count*2;
|
|
end_output -= stbir__simdfX_float_count*2;
|
|
for(;;)
|
|
{
|
|
stbir__simdfX e0, e1;
|
|
stbir__simdi i;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
stbir__simdfX_madd_mem( e0, STBIR_simd_point5X, STBIR_max_uint8_as_floatX, encode );
|
|
stbir__simdfX_madd_mem( e1, STBIR_simd_point5X, STBIR_max_uint8_as_floatX, encode+stbir__simdfX_float_count );
|
|
stbir__encode_simdfX_unflip( e0 );
|
|
stbir__encode_simdfX_unflip( e1 );
|
|
#ifdef STBIR_SIMD8
|
|
stbir__simdf8_pack_to_16bytes( i, e0, e1 );
|
|
stbir__simdi_store( output, i );
|
|
#else
|
|
stbir__simdf_pack_to_8bytes( i, e0, e1 );
|
|
stbir__simdi_store2( output, i );
|
|
#endif
|
|
encode += stbir__simdfX_float_count*2;
|
|
output += stbir__simdfX_float_count*2;
|
|
if ( output <= end_output )
|
|
continue;
|
|
if ( output == ( end_output + stbir__simdfX_float_count*2 ) )
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m8;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
while( output <= end_output )
|
|
{
|
|
stbir__simdf e0;
|
|
stbir__simdi i0;
|
|
STBIR_NO_UNROLL(encode);
|
|
stbir__simdf_load( e0, encode );
|
|
stbir__simdf_madd( e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), e0 );
|
|
stbir__encode_simdf4_unflip( e0 );
|
|
stbir__simdf_pack_to_8bytes( i0, e0, e0 ); // only use first 4
|
|
*(int*)(output-4) = stbir__simdi_to_int( i0 );
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( output < end_output )
|
|
{
|
|
stbir__simdf e0;
|
|
STBIR_NO_UNROLL(encode);
|
|
stbir__simdf_madd1_mem( e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), encode+stbir__encode_order0 ); output[0] = stbir__simdf_convert_float_to_uint8( e0 );
|
|
#if stbir__coder_min_num >= 2
|
|
stbir__simdf_madd1_mem( e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), encode+stbir__encode_order1 ); output[1] = stbir__simdf_convert_float_to_uint8( e0 );
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
stbir__simdf_madd1_mem( e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), encode+stbir__encode_order2 ); output[2] = stbir__simdf_convert_float_to_uint8( e0 );
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
while( output <= end_output )
|
|
{
|
|
float f;
|
|
f = encode[stbir__encode_order0] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[0-4] = (unsigned char)f;
|
|
f = encode[stbir__encode_order1] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[1-4] = (unsigned char)f;
|
|
f = encode[stbir__encode_order2] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[2-4] = (unsigned char)f;
|
|
f = encode[stbir__encode_order3] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[3-4] = (unsigned char)f;
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( output < end_output )
|
|
{
|
|
float f;
|
|
STBIR_NO_UNROLL(encode);
|
|
f = encode[stbir__encode_order0] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[0] = (unsigned char)f;
|
|
#if stbir__coder_min_num >= 2
|
|
f = encode[stbir__encode_order1] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[1] = (unsigned char)f;
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
f = encode[stbir__encode_order2] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[2] = (unsigned char)f;
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__decode_uint8_linear)( float * decodep, int width_times_channels, void const * inputp )
|
|
{
|
|
float STBIR_STREAMOUT_PTR( * ) decode = decodep;
|
|
float * decode_end = (float*) decode + width_times_channels;
|
|
unsigned char const * input = (unsigned char const*)inputp;
|
|
|
|
#ifdef STBIR_SIMD
|
|
unsigned char const * end_input_m16 = input + width_times_channels - 16;
|
|
if ( width_times_channels >= 16 )
|
|
{
|
|
decode_end -= 16;
|
|
for(;;)
|
|
{
|
|
#ifdef STBIR_SIMD8
|
|
stbir__simdi i; stbir__simdi8 o0,o1;
|
|
stbir__simdf8 of0, of1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load( i, input );
|
|
stbir__simdi8_expand_u8_to_u32( o0, o1, i );
|
|
stbir__simdi8_convert_i32_to_float( of0, o0 );
|
|
stbir__simdi8_convert_i32_to_float( of1, o1 );
|
|
stbir__decode_simdf8_flip( of0 );
|
|
stbir__decode_simdf8_flip( of1 );
|
|
stbir__simdf8_store( decode + 0, of0 );
|
|
stbir__simdf8_store( decode + 8, of1 );
|
|
#else
|
|
stbir__simdi i, o0, o1, o2, o3;
|
|
stbir__simdf of0, of1, of2, of3;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load( i, input );
|
|
stbir__simdi_expand_u8_to_u32( o0,o1,o2,o3,i);
|
|
stbir__simdi_convert_i32_to_float( of0, o0 );
|
|
stbir__simdi_convert_i32_to_float( of1, o1 );
|
|
stbir__simdi_convert_i32_to_float( of2, o2 );
|
|
stbir__simdi_convert_i32_to_float( of3, o3 );
|
|
stbir__decode_simdf4_flip( of0 );
|
|
stbir__decode_simdf4_flip( of1 );
|
|
stbir__decode_simdf4_flip( of2 );
|
|
stbir__decode_simdf4_flip( of3 );
|
|
stbir__simdf_store( decode + 0, of0 );
|
|
stbir__simdf_store( decode + 4, of1 );
|
|
stbir__simdf_store( decode + 8, of2 );
|
|
stbir__simdf_store( decode + 12, of3 );
|
|
#endif
|
|
decode += 16;
|
|
input += 16;
|
|
if ( decode <= decode_end )
|
|
continue;
|
|
if ( decode == ( decode_end + 16 ) )
|
|
break;
|
|
decode = decode_end; // backup and do last couple
|
|
input = end_input_m16;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
decode += 4;
|
|
while( decode <= decode_end )
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
decode[0-4] = ((float)(input[stbir__decode_order0]));
|
|
decode[1-4] = ((float)(input[stbir__decode_order1]));
|
|
decode[2-4] = ((float)(input[stbir__decode_order2]));
|
|
decode[3-4] = ((float)(input[stbir__decode_order3]));
|
|
decode += 4;
|
|
input += 4;
|
|
}
|
|
decode -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( decode < decode_end )
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = ((float)(input[stbir__decode_order0]));
|
|
#if stbir__coder_min_num >= 2
|
|
decode[1] = ((float)(input[stbir__decode_order1]));
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
decode[2] = ((float)(input[stbir__decode_order2]));
|
|
#endif
|
|
decode += stbir__coder_min_num;
|
|
input += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void STBIR__CODER_NAME( stbir__encode_uint8_linear )( void * outputp, int width_times_channels, float const * encode )
|
|
{
|
|
unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char *) outputp;
|
|
unsigned char * end_output = ( (unsigned char *) output ) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
if ( width_times_channels >= stbir__simdfX_float_count*2 )
|
|
{
|
|
float const * end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count*2;
|
|
end_output -= stbir__simdfX_float_count*2;
|
|
for(;;)
|
|
{
|
|
stbir__simdfX e0, e1;
|
|
stbir__simdi i;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
stbir__simdfX_add_mem( e0, STBIR_simd_point5X, encode );
|
|
stbir__simdfX_add_mem( e1, STBIR_simd_point5X, encode+stbir__simdfX_float_count );
|
|
stbir__encode_simdfX_unflip( e0 );
|
|
stbir__encode_simdfX_unflip( e1 );
|
|
#ifdef STBIR_SIMD8
|
|
stbir__simdf8_pack_to_16bytes( i, e0, e1 );
|
|
stbir__simdi_store( output, i );
|
|
#else
|
|
stbir__simdf_pack_to_8bytes( i, e0, e1 );
|
|
stbir__simdi_store2( output, i );
|
|
#endif
|
|
encode += stbir__simdfX_float_count*2;
|
|
output += stbir__simdfX_float_count*2;
|
|
if ( output <= end_output )
|
|
continue;
|
|
if ( output == ( end_output + stbir__simdfX_float_count*2 ) )
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m8;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
while( output <= end_output )
|
|
{
|
|
stbir__simdf e0;
|
|
stbir__simdi i0;
|
|
STBIR_NO_UNROLL(encode);
|
|
stbir__simdf_load( e0, encode );
|
|
stbir__simdf_add( e0, STBIR__CONSTF(STBIR_simd_point5), e0 );
|
|
stbir__encode_simdf4_unflip( e0 );
|
|
stbir__simdf_pack_to_8bytes( i0, e0, e0 ); // only use first 4
|
|
*(int*)(output-4) = stbir__simdi_to_int( i0 );
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
#else
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
while( output <= end_output )
|
|
{
|
|
float f;
|
|
f = encode[stbir__encode_order0] + 0.5f; STBIR_CLAMP(f, 0, 255); output[0-4] = (unsigned char)f;
|
|
f = encode[stbir__encode_order1] + 0.5f; STBIR_CLAMP(f, 0, 255); output[1-4] = (unsigned char)f;
|
|
f = encode[stbir__encode_order2] + 0.5f; STBIR_CLAMP(f, 0, 255); output[2-4] = (unsigned char)f;
|
|
f = encode[stbir__encode_order3] + 0.5f; STBIR_CLAMP(f, 0, 255); output[3-4] = (unsigned char)f;
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( output < end_output )
|
|
{
|
|
float f;
|
|
STBIR_NO_UNROLL(encode);
|
|
f = encode[stbir__encode_order0] + 0.5f; STBIR_CLAMP(f, 0, 255); output[0] = (unsigned char)f;
|
|
#if stbir__coder_min_num >= 2
|
|
f = encode[stbir__encode_order1] + 0.5f; STBIR_CLAMP(f, 0, 255); output[1] = (unsigned char)f;
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
f = encode[stbir__encode_order2] + 0.5f; STBIR_CLAMP(f, 0, 255); output[2] = (unsigned char)f;
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__decode_uint8_srgb)( float * decodep, int width_times_channels, void const * inputp )
|
|
{
|
|
float STBIR_STREAMOUT_PTR( * ) decode = decodep;
|
|
float const * decode_end = (float*) decode + width_times_channels;
|
|
unsigned char const * input = (unsigned char const *)inputp;
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
decode += 4;
|
|
while( decode <= decode_end )
|
|
{
|
|
decode[0-4] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order0 ] ];
|
|
decode[1-4] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order1 ] ];
|
|
decode[2-4] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order2 ] ];
|
|
decode[3-4] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order3 ] ];
|
|
decode += 4;
|
|
input += 4;
|
|
}
|
|
decode -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( decode < decode_end )
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order0 ] ];
|
|
#if stbir__coder_min_num >= 2
|
|
decode[1] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order1 ] ];
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
decode[2] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order2 ] ];
|
|
#endif
|
|
decode += stbir__coder_min_num;
|
|
input += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#define stbir__min_max_shift20( i, f ) \
|
|
stbir__simdf_max( f, f, stbir_simdf_casti(STBIR__CONSTI( STBIR_almost_zero )) ); \
|
|
stbir__simdf_min( f, f, stbir_simdf_casti(STBIR__CONSTI( STBIR_almost_one )) ); \
|
|
stbir__simdi_32shr( i, stbir_simdi_castf( f ), 20 );
|
|
|
|
#define stbir__scale_and_convert( i, f ) \
|
|
stbir__simdf_madd( f, STBIR__CONSTF( STBIR_simd_point5 ), STBIR__CONSTF( STBIR_max_uint8_as_float ), f ); \
|
|
stbir__simdf_max( f, f, stbir__simdf_zeroP() ); \
|
|
stbir__simdf_min( f, f, STBIR__CONSTF( STBIR_max_uint8_as_float ) ); \
|
|
stbir__simdf_convert_float_to_i32( i, f );
|
|
|
|
#define stbir__linear_to_srgb_finish( i, f ) \
|
|
{ \
|
|
stbir__simdi temp; \
|
|
stbir__simdi_32shr( temp, stbir_simdi_castf( f ), 12 ) ; \
|
|
stbir__simdi_and( temp, temp, STBIR__CONSTI(STBIR_mastissa_mask) ); \
|
|
stbir__simdi_or( temp, temp, STBIR__CONSTI(STBIR_topscale) ); \
|
|
stbir__simdi_16madd( i, i, temp ); \
|
|
stbir__simdi_32shr( i, i, 16 ); \
|
|
}
|
|
|
|
#define stbir__simdi_table_lookup2( v0,v1, table ) \
|
|
{ \
|
|
stbir__simdi_u32 temp0,temp1; \
|
|
temp0.m128i_i128 = v0; \
|
|
temp1.m128i_i128 = v1; \
|
|
temp0.m128i_u32[0] = table[temp0.m128i_i32[0]]; temp0.m128i_u32[1] = table[temp0.m128i_i32[1]]; temp0.m128i_u32[2] = table[temp0.m128i_i32[2]]; temp0.m128i_u32[3] = table[temp0.m128i_i32[3]]; \
|
|
temp1.m128i_u32[0] = table[temp1.m128i_i32[0]]; temp1.m128i_u32[1] = table[temp1.m128i_i32[1]]; temp1.m128i_u32[2] = table[temp1.m128i_i32[2]]; temp1.m128i_u32[3] = table[temp1.m128i_i32[3]]; \
|
|
v0 = temp0.m128i_i128; \
|
|
v1 = temp1.m128i_i128; \
|
|
}
|
|
|
|
#define stbir__simdi_table_lookup3( v0,v1,v2, table ) \
|
|
{ \
|
|
stbir__simdi_u32 temp0,temp1,temp2; \
|
|
temp0.m128i_i128 = v0; \
|
|
temp1.m128i_i128 = v1; \
|
|
temp2.m128i_i128 = v2; \
|
|
temp0.m128i_u32[0] = table[temp0.m128i_i32[0]]; temp0.m128i_u32[1] = table[temp0.m128i_i32[1]]; temp0.m128i_u32[2] = table[temp0.m128i_i32[2]]; temp0.m128i_u32[3] = table[temp0.m128i_i32[3]]; \
|
|
temp1.m128i_u32[0] = table[temp1.m128i_i32[0]]; temp1.m128i_u32[1] = table[temp1.m128i_i32[1]]; temp1.m128i_u32[2] = table[temp1.m128i_i32[2]]; temp1.m128i_u32[3] = table[temp1.m128i_i32[3]]; \
|
|
temp2.m128i_u32[0] = table[temp2.m128i_i32[0]]; temp2.m128i_u32[1] = table[temp2.m128i_i32[1]]; temp2.m128i_u32[2] = table[temp2.m128i_i32[2]]; temp2.m128i_u32[3] = table[temp2.m128i_i32[3]]; \
|
|
v0 = temp0.m128i_i128; \
|
|
v1 = temp1.m128i_i128; \
|
|
v2 = temp2.m128i_i128; \
|
|
}
|
|
|
|
#define stbir__simdi_table_lookup4( v0,v1,v2,v3, table ) \
|
|
{ \
|
|
stbir__simdi_u32 temp0,temp1,temp2,temp3; \
|
|
temp0.m128i_i128 = v0; \
|
|
temp1.m128i_i128 = v1; \
|
|
temp2.m128i_i128 = v2; \
|
|
temp3.m128i_i128 = v3; \
|
|
temp0.m128i_u32[0] = table[temp0.m128i_i32[0]]; temp0.m128i_u32[1] = table[temp0.m128i_i32[1]]; temp0.m128i_u32[2] = table[temp0.m128i_i32[2]]; temp0.m128i_u32[3] = table[temp0.m128i_i32[3]]; \
|
|
temp1.m128i_u32[0] = table[temp1.m128i_i32[0]]; temp1.m128i_u32[1] = table[temp1.m128i_i32[1]]; temp1.m128i_u32[2] = table[temp1.m128i_i32[2]]; temp1.m128i_u32[3] = table[temp1.m128i_i32[3]]; \
|
|
temp2.m128i_u32[0] = table[temp2.m128i_i32[0]]; temp2.m128i_u32[1] = table[temp2.m128i_i32[1]]; temp2.m128i_u32[2] = table[temp2.m128i_i32[2]]; temp2.m128i_u32[3] = table[temp2.m128i_i32[3]]; \
|
|
temp3.m128i_u32[0] = table[temp3.m128i_i32[0]]; temp3.m128i_u32[1] = table[temp3.m128i_i32[1]]; temp3.m128i_u32[2] = table[temp3.m128i_i32[2]]; temp3.m128i_u32[3] = table[temp3.m128i_i32[3]]; \
|
|
v0 = temp0.m128i_i128; \
|
|
v1 = temp1.m128i_i128; \
|
|
v2 = temp2.m128i_i128; \
|
|
v3 = temp3.m128i_i128; \
|
|
}
|
|
|
|
static void STBIR__CODER_NAME( stbir__encode_uint8_srgb )( void * outputp, int width_times_channels, float const * encode )
|
|
{
|
|
unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char*) outputp;
|
|
unsigned char * end_output = ( (unsigned char*) output ) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
stbir_uint32 const * to_srgb = fp32_to_srgb8_tab4 - (127-13)*8;
|
|
|
|
if ( width_times_channels >= 16 )
|
|
{
|
|
float const * end_encode_m16 = encode + width_times_channels - 16;
|
|
end_output -= 16;
|
|
for(;;)
|
|
{
|
|
stbir__simdf f0, f1, f2, f3;
|
|
stbir__simdi i0, i1, i2, i3;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
|
|
stbir__simdf_load4_transposed( f0, f1, f2, f3, encode );
|
|
|
|
stbir__min_max_shift20( i0, f0 );
|
|
stbir__min_max_shift20( i1, f1 );
|
|
stbir__min_max_shift20( i2, f2 );
|
|
stbir__min_max_shift20( i3, f3 );
|
|
|
|
stbir__simdi_table_lookup4( i0, i1, i2, i3, to_srgb );
|
|
|
|
stbir__linear_to_srgb_finish( i0, f0 );
|
|
stbir__linear_to_srgb_finish( i1, f1 );
|
|
stbir__linear_to_srgb_finish( i2, f2 );
|
|
stbir__linear_to_srgb_finish( i3, f3 );
|
|
|
|
stbir__interleave_pack_and_store_16_u8( output, STBIR_strs_join1(i, ,stbir__encode_order0), STBIR_strs_join1(i, ,stbir__encode_order1), STBIR_strs_join1(i, ,stbir__encode_order2), STBIR_strs_join1(i, ,stbir__encode_order3) );
|
|
|
|
encode += 16;
|
|
output += 16;
|
|
if ( output <= end_output )
|
|
continue;
|
|
if ( output == ( end_output + 16 ) )
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m16;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
while ( output <= end_output )
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
|
|
output[0-4] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order0] );
|
|
output[1-4] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order1] );
|
|
output[2-4] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order2] );
|
|
output[3-4] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order3] );
|
|
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( output < end_output )
|
|
{
|
|
STBIR_NO_UNROLL(encode);
|
|
output[0] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order0] );
|
|
#if stbir__coder_min_num >= 2
|
|
output[1] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order1] );
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
output[2] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order2] );
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if ( stbir__coder_min_num == 4 ) || ( ( stbir__coder_min_num == 1 ) && ( !defined(stbir__decode_swizzle) ) )
|
|
|
|
static void STBIR__CODER_NAME(stbir__decode_uint8_srgb4_linearalpha)( float * decodep, int width_times_channels, void const * inputp )
|
|
{
|
|
float STBIR_STREAMOUT_PTR( * ) decode = decodep;
|
|
float const * decode_end = (float*) decode + width_times_channels;
|
|
unsigned char const * input = (unsigned char const *)inputp;
|
|
do {
|
|
decode[0] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order0] ];
|
|
decode[1] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order1] ];
|
|
decode[2] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order2] ];
|
|
decode[3] = ( (float) input[stbir__decode_order3] ) * stbir__max_uint8_as_float_inverted;
|
|
input += 4;
|
|
decode += 4;
|
|
} while( decode < decode_end );
|
|
}
|
|
|
|
|
|
static void STBIR__CODER_NAME( stbir__encode_uint8_srgb4_linearalpha )( void * outputp, int width_times_channels, float const * encode )
|
|
{
|
|
unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char*) outputp;
|
|
unsigned char * end_output = ( (unsigned char*) output ) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
stbir_uint32 const * to_srgb = fp32_to_srgb8_tab4 - (127-13)*8;
|
|
|
|
if ( width_times_channels >= 16 )
|
|
{
|
|
float const * end_encode_m16 = encode + width_times_channels - 16;
|
|
end_output -= 16;
|
|
for(;;)
|
|
{
|
|
stbir__simdf f0, f1, f2, f3;
|
|
stbir__simdi i0, i1, i2, i3;
|
|
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
stbir__simdf_load4_transposed( f0, f1, f2, f3, encode );
|
|
|
|
stbir__min_max_shift20( i0, f0 );
|
|
stbir__min_max_shift20( i1, f1 );
|
|
stbir__min_max_shift20( i2, f2 );
|
|
stbir__scale_and_convert( i3, f3 );
|
|
|
|
stbir__simdi_table_lookup3( i0, i1, i2, to_srgb );
|
|
|
|
stbir__linear_to_srgb_finish( i0, f0 );
|
|
stbir__linear_to_srgb_finish( i1, f1 );
|
|
stbir__linear_to_srgb_finish( i2, f2 );
|
|
|
|
stbir__interleave_pack_and_store_16_u8( output, STBIR_strs_join1(i, ,stbir__encode_order0), STBIR_strs_join1(i, ,stbir__encode_order1), STBIR_strs_join1(i, ,stbir__encode_order2), STBIR_strs_join1(i, ,stbir__encode_order3) );
|
|
|
|
output += 16;
|
|
encode += 16;
|
|
|
|
if ( output <= end_output )
|
|
continue;
|
|
if ( output == ( end_output + 16 ) )
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m16;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
do {
|
|
float f;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
|
|
output[stbir__decode_order0] = stbir__linear_to_srgb_uchar( encode[0] );
|
|
output[stbir__decode_order1] = stbir__linear_to_srgb_uchar( encode[1] );
|
|
output[stbir__decode_order2] = stbir__linear_to_srgb_uchar( encode[2] );
|
|
|
|
f = encode[3] * stbir__max_uint8_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[stbir__decode_order3] = (unsigned char) f;
|
|
|
|
output += 4;
|
|
encode += 4;
|
|
} while( output < end_output );
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ( stbir__coder_min_num == 2 ) || ( ( stbir__coder_min_num == 1 ) && ( !defined(stbir__decode_swizzle) ) )
|
|
|
|
static void STBIR__CODER_NAME(stbir__decode_uint8_srgb2_linearalpha)( float * decodep, int width_times_channels, void const * inputp )
|
|
{
|
|
float STBIR_STREAMOUT_PTR( * ) decode = decodep;
|
|
float const * decode_end = (float*) decode + width_times_channels;
|
|
unsigned char const * input = (unsigned char const *)inputp;
|
|
decode += 4;
|
|
while( decode <= decode_end )
|
|
{
|
|
decode[0-4] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order0] ];
|
|
decode[1-4] = ( (float) input[stbir__decode_order1] ) * stbir__max_uint8_as_float_inverted;
|
|
decode[2-4] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order0+2] ];
|
|
decode[3-4] = ( (float) input[stbir__decode_order1+2] ) * stbir__max_uint8_as_float_inverted;
|
|
input += 4;
|
|
decode += 4;
|
|
}
|
|
decode -= 4;
|
|
if( decode < decode_end )
|
|
{
|
|
decode[0] = stbir__srgb_uchar_to_linear_float[ stbir__decode_order0 ];
|
|
decode[1] = ( (float) input[stbir__decode_order1] ) * stbir__max_uint8_as_float_inverted;
|
|
}
|
|
}
|
|
|
|
static void STBIR__CODER_NAME( stbir__encode_uint8_srgb2_linearalpha )( void * outputp, int width_times_channels, float const * encode )
|
|
{
|
|
unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char*) outputp;
|
|
unsigned char * end_output = ( (unsigned char*) output ) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
stbir_uint32 const * to_srgb = fp32_to_srgb8_tab4 - (127-13)*8;
|
|
|
|
if ( width_times_channels >= 16 )
|
|
{
|
|
float const * end_encode_m16 = encode + width_times_channels - 16;
|
|
end_output -= 16;
|
|
for(;;)
|
|
{
|
|
stbir__simdf f0, f1, f2, f3;
|
|
stbir__simdi i0, i1, i2, i3;
|
|
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
stbir__simdf_load4_transposed( f0, f1, f2, f3, encode );
|
|
|
|
stbir__min_max_shift20( i0, f0 );
|
|
stbir__scale_and_convert( i1, f1 );
|
|
stbir__min_max_shift20( i2, f2 );
|
|
stbir__scale_and_convert( i3, f3 );
|
|
|
|
stbir__simdi_table_lookup2( i0, i2, to_srgb );
|
|
|
|
stbir__linear_to_srgb_finish( i0, f0 );
|
|
stbir__linear_to_srgb_finish( i2, f2 );
|
|
|
|
stbir__interleave_pack_and_store_16_u8( output, STBIR_strs_join1(i, ,stbir__encode_order0), STBIR_strs_join1(i, ,stbir__encode_order1), STBIR_strs_join1(i, ,stbir__encode_order2), STBIR_strs_join1(i, ,stbir__encode_order3) );
|
|
|
|
output += 16;
|
|
encode += 16;
|
|
if ( output <= end_output )
|
|
continue;
|
|
if ( output == ( end_output + 16 ) )
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m16;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
do {
|
|
float f;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
|
|
output[stbir__decode_order0] = stbir__linear_to_srgb_uchar( encode[0] );
|
|
|
|
f = encode[1] * stbir__max_uint8_as_float + 0.5f;
|
|
STBIR_CLAMP(f, 0, 255);
|
|
output[stbir__decode_order1] = (unsigned char) f;
|
|
|
|
output += 2;
|
|
encode += 2;
|
|
} while( output < end_output );
|
|
}
|
|
|
|
#endif
|
|
|
|
static void STBIR__CODER_NAME(stbir__decode_uint16_linear_scaled)( float * decodep, int width_times_channels, void const * inputp )
|
|
{
|
|
float STBIR_STREAMOUT_PTR( * ) decode = decodep;
|
|
float * decode_end = (float*) decode + width_times_channels;
|
|
unsigned short const * input = (unsigned short const *)inputp;
|
|
|
|
#ifdef STBIR_SIMD
|
|
unsigned short const * end_input_m8 = input + width_times_channels - 8;
|
|
if ( width_times_channels >= 8 )
|
|
{
|
|
decode_end -= 8;
|
|
for(;;)
|
|
{
|
|
#ifdef STBIR_SIMD8
|
|
stbir__simdi i; stbir__simdi8 o;
|
|
stbir__simdf8 of;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load( i, input );
|
|
stbir__simdi8_expand_u16_to_u32( o, i );
|
|
stbir__simdi8_convert_i32_to_float( of, o );
|
|
stbir__simdf8_mult( of, of, STBIR_max_uint16_as_float_inverted8);
|
|
stbir__decode_simdf8_flip( of );
|
|
stbir__simdf8_store( decode + 0, of );
|
|
#else
|
|
stbir__simdi i, o0, o1;
|
|
stbir__simdf of0, of1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load( i, input );
|
|
stbir__simdi_expand_u16_to_u32( o0,o1,i );
|
|
stbir__simdi_convert_i32_to_float( of0, o0 );
|
|
stbir__simdi_convert_i32_to_float( of1, o1 );
|
|
stbir__simdf_mult( of0, of0, STBIR__CONSTF(STBIR_max_uint16_as_float_inverted) );
|
|
stbir__simdf_mult( of1, of1, STBIR__CONSTF(STBIR_max_uint16_as_float_inverted));
|
|
stbir__decode_simdf4_flip( of0 );
|
|
stbir__decode_simdf4_flip( of1 );
|
|
stbir__simdf_store( decode + 0, of0 );
|
|
stbir__simdf_store( decode + 4, of1 );
|
|
#endif
|
|
decode += 8;
|
|
input += 8;
|
|
if ( decode <= decode_end )
|
|
continue;
|
|
if ( decode == ( decode_end + 8 ) )
|
|
break;
|
|
decode = decode_end; // backup and do last couple
|
|
input = end_input_m8;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
decode += 4;
|
|
while( decode <= decode_end )
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
decode[0-4] = ((float)(input[stbir__decode_order0])) * stbir__max_uint16_as_float_inverted;
|
|
decode[1-4] = ((float)(input[stbir__decode_order1])) * stbir__max_uint16_as_float_inverted;
|
|
decode[2-4] = ((float)(input[stbir__decode_order2])) * stbir__max_uint16_as_float_inverted;
|
|
decode[3-4] = ((float)(input[stbir__decode_order3])) * stbir__max_uint16_as_float_inverted;
|
|
decode += 4;
|
|
input += 4;
|
|
}
|
|
decode -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( decode < decode_end )
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = ((float)(input[stbir__decode_order0])) * stbir__max_uint16_as_float_inverted;
|
|
#if stbir__coder_min_num >= 2
|
|
decode[1] = ((float)(input[stbir__decode_order1])) * stbir__max_uint16_as_float_inverted;
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
decode[2] = ((float)(input[stbir__decode_order2])) * stbir__max_uint16_as_float_inverted;
|
|
#endif
|
|
decode += stbir__coder_min_num;
|
|
input += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
static void STBIR__CODER_NAME(stbir__encode_uint16_linear_scaled)( void * outputp, int width_times_channels, float const * encode )
|
|
{
|
|
unsigned short STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned short*) outputp;
|
|
unsigned short * end_output = ( (unsigned short*) output ) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
{
|
|
if ( width_times_channels >= stbir__simdfX_float_count*2 )
|
|
{
|
|
float const * end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count*2;
|
|
end_output -= stbir__simdfX_float_count*2;
|
|
for(;;)
|
|
{
|
|
stbir__simdfX e0, e1;
|
|
stbir__simdiX i;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
stbir__simdfX_madd_mem( e0, STBIR_simd_point5X, STBIR_max_uint16_as_floatX, encode );
|
|
stbir__simdfX_madd_mem( e1, STBIR_simd_point5X, STBIR_max_uint16_as_floatX, encode+stbir__simdfX_float_count );
|
|
stbir__encode_simdfX_unflip( e0 );
|
|
stbir__encode_simdfX_unflip( e1 );
|
|
stbir__simdfX_pack_to_words( i, e0, e1 );
|
|
stbir__simdiX_store( output, i );
|
|
encode += stbir__simdfX_float_count*2;
|
|
output += stbir__simdfX_float_count*2;
|
|
if ( output <= end_output )
|
|
continue;
|
|
if ( output == ( end_output + stbir__simdfX_float_count*2 ) )
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m8;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
while( output <= end_output )
|
|
{
|
|
stbir__simdf e;
|
|
stbir__simdi i;
|
|
STBIR_NO_UNROLL(encode);
|
|
stbir__simdf_load( e, encode );
|
|
stbir__simdf_madd( e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), e );
|
|
stbir__encode_simdf4_unflip( e );
|
|
stbir__simdf_pack_to_8words( i, e, e ); // only use first 4
|
|
stbir__simdi_store2( output-4, i );
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( output < end_output )
|
|
{
|
|
stbir__simdf e;
|
|
STBIR_NO_UNROLL(encode);
|
|
stbir__simdf_madd1_mem( e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), encode+stbir__encode_order0 ); output[0] = stbir__simdf_convert_float_to_short( e );
|
|
#if stbir__coder_min_num >= 2
|
|
stbir__simdf_madd1_mem( e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), encode+stbir__encode_order1 ); output[1] = stbir__simdf_convert_float_to_short( e );
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
stbir__simdf_madd1_mem( e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), encode+stbir__encode_order2 ); output[2] = stbir__simdf_convert_float_to_short( e );
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
while( output <= end_output )
|
|
{
|
|
float f;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
f = encode[stbir__encode_order0] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[0-4] = (unsigned short)f;
|
|
f = encode[stbir__encode_order1] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[1-4] = (unsigned short)f;
|
|
f = encode[stbir__encode_order2] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[2-4] = (unsigned short)f;
|
|
f = encode[stbir__encode_order3] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[3-4] = (unsigned short)f;
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( output < end_output )
|
|
{
|
|
float f;
|
|
STBIR_NO_UNROLL(encode);
|
|
f = encode[stbir__encode_order0] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[0] = (unsigned short)f;
|
|
#if stbir__coder_min_num >= 2
|
|
f = encode[stbir__encode_order1] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[1] = (unsigned short)f;
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
f = encode[stbir__encode_order2] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[2] = (unsigned short)f;
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__decode_uint16_linear)( float * decodep, int width_times_channels, void const * inputp )
|
|
{
|
|
float STBIR_STREAMOUT_PTR( * ) decode = decodep;
|
|
float * decode_end = (float*) decode + width_times_channels;
|
|
unsigned short const * input = (unsigned short const *)inputp;
|
|
|
|
#ifdef STBIR_SIMD
|
|
unsigned short const * end_input_m8 = input + width_times_channels - 8;
|
|
if ( width_times_channels >= 8 )
|
|
{
|
|
decode_end -= 8;
|
|
for(;;)
|
|
{
|
|
#ifdef STBIR_SIMD8
|
|
stbir__simdi i; stbir__simdi8 o;
|
|
stbir__simdf8 of;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load( i, input );
|
|
stbir__simdi8_expand_u16_to_u32( o, i );
|
|
stbir__simdi8_convert_i32_to_float( of, o );
|
|
stbir__decode_simdf8_flip( of );
|
|
stbir__simdf8_store( decode + 0, of );
|
|
#else
|
|
stbir__simdi i, o0, o1;
|
|
stbir__simdf of0, of1;
|
|
STBIR_NO_UNROLL(decode);
|
|
stbir__simdi_load( i, input );
|
|
stbir__simdi_expand_u16_to_u32( o0, o1, i );
|
|
stbir__simdi_convert_i32_to_float( of0, o0 );
|
|
stbir__simdi_convert_i32_to_float( of1, o1 );
|
|
stbir__decode_simdf4_flip( of0 );
|
|
stbir__decode_simdf4_flip( of1 );
|
|
stbir__simdf_store( decode + 0, of0 );
|
|
stbir__simdf_store( decode + 4, of1 );
|
|
#endif
|
|
decode += 8;
|
|
input += 8;
|
|
if ( decode <= decode_end )
|
|
continue;
|
|
if ( decode == ( decode_end + 8 ) )
|
|
break;
|
|
decode = decode_end; // backup and do last couple
|
|
input = end_input_m8;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
decode += 4;
|
|
while( decode <= decode_end )
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
decode[0-4] = ((float)(input[stbir__decode_order0]));
|
|
decode[1-4] = ((float)(input[stbir__decode_order1]));
|
|
decode[2-4] = ((float)(input[stbir__decode_order2]));
|
|
decode[3-4] = ((float)(input[stbir__decode_order3]));
|
|
decode += 4;
|
|
input += 4;
|
|
}
|
|
decode -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( decode < decode_end )
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = ((float)(input[stbir__decode_order0]));
|
|
#if stbir__coder_min_num >= 2
|
|
decode[1] = ((float)(input[stbir__decode_order1]));
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
decode[2] = ((float)(input[stbir__decode_order2]));
|
|
#endif
|
|
decode += stbir__coder_min_num;
|
|
input += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__encode_uint16_linear)( void * outputp, int width_times_channels, float const * encode )
|
|
{
|
|
unsigned short STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned short*) outputp;
|
|
unsigned short * end_output = ( (unsigned short*) output ) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
{
|
|
if ( width_times_channels >= stbir__simdfX_float_count*2 )
|
|
{
|
|
float const * end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count*2;
|
|
end_output -= stbir__simdfX_float_count*2;
|
|
for(;;)
|
|
{
|
|
stbir__simdfX e0, e1;
|
|
stbir__simdiX i;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
stbir__simdfX_add_mem( e0, STBIR_simd_point5X, encode );
|
|
stbir__simdfX_add_mem( e1, STBIR_simd_point5X, encode+stbir__simdfX_float_count );
|
|
stbir__encode_simdfX_unflip( e0 );
|
|
stbir__encode_simdfX_unflip( e1 );
|
|
stbir__simdfX_pack_to_words( i, e0, e1 );
|
|
stbir__simdiX_store( output, i );
|
|
encode += stbir__simdfX_float_count*2;
|
|
output += stbir__simdfX_float_count*2;
|
|
if ( output <= end_output )
|
|
continue;
|
|
if ( output == ( end_output + stbir__simdfX_float_count*2 ) )
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m8;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
while( output <= end_output )
|
|
{
|
|
stbir__simdf e;
|
|
stbir__simdi i;
|
|
STBIR_NO_UNROLL(encode);
|
|
stbir__simdf_load( e, encode );
|
|
stbir__simdf_add( e, STBIR__CONSTF(STBIR_simd_point5), e );
|
|
stbir__encode_simdf4_unflip( e );
|
|
stbir__simdf_pack_to_8words( i, e, e ); // only use first 4
|
|
stbir__simdi_store2( output-4, i );
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
#else
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
while( output <= end_output )
|
|
{
|
|
float f;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
f = encode[stbir__encode_order0] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[0-4] = (unsigned short)f;
|
|
f = encode[stbir__encode_order1] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[1-4] = (unsigned short)f;
|
|
f = encode[stbir__encode_order2] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[2-4] = (unsigned short)f;
|
|
f = encode[stbir__encode_order3] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[3-4] = (unsigned short)f;
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( output < end_output )
|
|
{
|
|
float f;
|
|
STBIR_NO_UNROLL(encode);
|
|
f = encode[stbir__encode_order0] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[0] = (unsigned short)f;
|
|
#if stbir__coder_min_num >= 2
|
|
f = encode[stbir__encode_order1] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[1] = (unsigned short)f;
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
f = encode[stbir__encode_order2] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[2] = (unsigned short)f;
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__decode_half_float_linear)( float * decodep, int width_times_channels, void const * inputp )
|
|
{
|
|
float STBIR_STREAMOUT_PTR( * ) decode = decodep;
|
|
float * decode_end = (float*) decode + width_times_channels;
|
|
stbir__FP16 const * input = (stbir__FP16 const *)inputp;
|
|
|
|
#ifdef STBIR_SIMD
|
|
if ( width_times_channels >= 8 )
|
|
{
|
|
stbir__FP16 const * end_input_m8 = input + width_times_channels - 8;
|
|
decode_end -= 8;
|
|
for(;;)
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
|
|
stbir__half_to_float_SIMD( decode, input );
|
|
#ifdef stbir__decode_swizzle
|
|
#ifdef STBIR_SIMD8
|
|
{
|
|
stbir__simdf8 of;
|
|
stbir__simdf8_load( of, decode );
|
|
stbir__decode_simdf8_flip( of );
|
|
stbir__simdf8_store( decode, of );
|
|
}
|
|
#else
|
|
{
|
|
stbir__simdf of0,of1;
|
|
stbir__simdf_load( of0, decode );
|
|
stbir__simdf_load( of1, decode+4 );
|
|
stbir__decode_simdf4_flip( of0 );
|
|
stbir__decode_simdf4_flip( of1 );
|
|
stbir__simdf_store( decode, of0 );
|
|
stbir__simdf_store( decode+4, of1 );
|
|
}
|
|
#endif
|
|
#endif
|
|
decode += 8;
|
|
input += 8;
|
|
if ( decode <= decode_end )
|
|
continue;
|
|
if ( decode == ( decode_end + 8 ) )
|
|
break;
|
|
decode = decode_end; // backup and do last couple
|
|
input = end_input_m8;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
decode += 4;
|
|
while( decode <= decode_end )
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
decode[0-4] = stbir__half_to_float(input[stbir__decode_order0]);
|
|
decode[1-4] = stbir__half_to_float(input[stbir__decode_order1]);
|
|
decode[2-4] = stbir__half_to_float(input[stbir__decode_order2]);
|
|
decode[3-4] = stbir__half_to_float(input[stbir__decode_order3]);
|
|
decode += 4;
|
|
input += 4;
|
|
}
|
|
decode -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( decode < decode_end )
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = stbir__half_to_float(input[stbir__decode_order0]);
|
|
#if stbir__coder_min_num >= 2
|
|
decode[1] = stbir__half_to_float(input[stbir__decode_order1]);
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
decode[2] = stbir__half_to_float(input[stbir__decode_order2]);
|
|
#endif
|
|
decode += stbir__coder_min_num;
|
|
input += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void STBIR__CODER_NAME( stbir__encode_half_float_linear )( void * outputp, int width_times_channels, float const * encode )
|
|
{
|
|
stbir__FP16 STBIR_SIMD_STREAMOUT_PTR( * ) output = (stbir__FP16*) outputp;
|
|
stbir__FP16 * end_output = ( (stbir__FP16*) output ) + width_times_channels;
|
|
|
|
#ifdef STBIR_SIMD
|
|
if ( width_times_channels >= 8 )
|
|
{
|
|
float const * end_encode_m8 = encode + width_times_channels - 8;
|
|
end_output -= 8;
|
|
for(;;)
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
#ifdef stbir__decode_swizzle
|
|
#ifdef STBIR_SIMD8
|
|
{
|
|
stbir__simdf8 of;
|
|
stbir__simdf8_load( of, encode );
|
|
stbir__encode_simdf8_unflip( of );
|
|
stbir__float_to_half_SIMD( output, (float*)&of );
|
|
}
|
|
#else
|
|
{
|
|
stbir__simdf of[2];
|
|
stbir__simdf_load( of[0], encode );
|
|
stbir__simdf_load( of[1], encode+4 );
|
|
stbir__encode_simdf4_unflip( of[0] );
|
|
stbir__encode_simdf4_unflip( of[1] );
|
|
stbir__float_to_half_SIMD( output, (float*)of );
|
|
}
|
|
#endif
|
|
#else
|
|
stbir__float_to_half_SIMD( output, encode );
|
|
#endif
|
|
encode += 8;
|
|
output += 8;
|
|
if ( output <= end_output )
|
|
continue;
|
|
if ( output == ( end_output + 8 ) )
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m8;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
while( output <= end_output )
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(output);
|
|
output[0-4] = stbir__float_to_half(encode[stbir__encode_order0]);
|
|
output[1-4] = stbir__float_to_half(encode[stbir__encode_order1]);
|
|
output[2-4] = stbir__float_to_half(encode[stbir__encode_order2]);
|
|
output[3-4] = stbir__float_to_half(encode[stbir__encode_order3]);
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( output < end_output )
|
|
{
|
|
STBIR_NO_UNROLL(output);
|
|
output[0] = stbir__float_to_half(encode[stbir__encode_order0]);
|
|
#if stbir__coder_min_num >= 2
|
|
output[1] = stbir__float_to_half(encode[stbir__encode_order1]);
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
output[2] = stbir__float_to_half(encode[stbir__encode_order2]);
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void STBIR__CODER_NAME(stbir__decode_float_linear)( float * decodep, int width_times_channels, void const * inputp )
|
|
{
|
|
#ifdef stbir__decode_swizzle
|
|
float STBIR_STREAMOUT_PTR( * ) decode = decodep;
|
|
float * decode_end = (float*) decode + width_times_channels;
|
|
float const * input = (float const *)inputp;
|
|
|
|
#ifdef STBIR_SIMD
|
|
if ( width_times_channels >= 16 )
|
|
{
|
|
float const * end_input_m16 = input + width_times_channels - 16;
|
|
decode_end -= 16;
|
|
for(;;)
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
#ifdef stbir__decode_swizzle
|
|
#ifdef STBIR_SIMD8
|
|
{
|
|
stbir__simdf8 of0,of1;
|
|
stbir__simdf8_load( of0, input );
|
|
stbir__simdf8_load( of1, input+8 );
|
|
stbir__decode_simdf8_flip( of0 );
|
|
stbir__decode_simdf8_flip( of1 );
|
|
stbir__simdf8_store( decode, of0 );
|
|
stbir__simdf8_store( decode+8, of1 );
|
|
}
|
|
#else
|
|
{
|
|
stbir__simdf of0,of1,of2,of3;
|
|
stbir__simdf_load( of0, input );
|
|
stbir__simdf_load( of1, input+4 );
|
|
stbir__simdf_load( of2, input+8 );
|
|
stbir__simdf_load( of3, input+12 );
|
|
stbir__decode_simdf4_flip( of0 );
|
|
stbir__decode_simdf4_flip( of1 );
|
|
stbir__decode_simdf4_flip( of2 );
|
|
stbir__decode_simdf4_flip( of3 );
|
|
stbir__simdf_store( decode, of0 );
|
|
stbir__simdf_store( decode+4, of1 );
|
|
stbir__simdf_store( decode+8, of2 );
|
|
stbir__simdf_store( decode+12, of3 );
|
|
}
|
|
#endif
|
|
#endif
|
|
decode += 16;
|
|
input += 16;
|
|
if ( decode <= decode_end )
|
|
continue;
|
|
if ( decode == ( decode_end + 16 ) )
|
|
break;
|
|
decode = decode_end; // backup and do last couple
|
|
input = end_input_m16;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
decode += 4;
|
|
while( decode <= decode_end )
|
|
{
|
|
STBIR_SIMD_NO_UNROLL(decode);
|
|
decode[0-4] = input[stbir__decode_order0];
|
|
decode[1-4] = input[stbir__decode_order1];
|
|
decode[2-4] = input[stbir__decode_order2];
|
|
decode[3-4] = input[stbir__decode_order3];
|
|
decode += 4;
|
|
input += 4;
|
|
}
|
|
decode -= 4;
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( decode < decode_end )
|
|
{
|
|
STBIR_NO_UNROLL(decode);
|
|
decode[0] = input[stbir__decode_order0];
|
|
#if stbir__coder_min_num >= 2
|
|
decode[1] = input[stbir__decode_order1];
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
decode[2] = input[stbir__decode_order2];
|
|
#endif
|
|
decode += stbir__coder_min_num;
|
|
input += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
|
|
if ( (void*)decodep != inputp )
|
|
STBIR_MEMCPY( decodep, inputp, width_times_channels * sizeof( float ) );
|
|
|
|
#endif
|
|
}
|
|
|
|
static void STBIR__CODER_NAME( stbir__encode_float_linear )( void * outputp, int width_times_channels, float const * encode )
|
|
{
|
|
#if !defined( STBIR_FLOAT_HIGH_CLAMP ) && !defined(STBIR_FLOAT_LO_CLAMP) && !defined(stbir__decode_swizzle)
|
|
|
|
if ( (void*)outputp != (void*) encode )
|
|
STBIR_MEMCPY( outputp, encode, width_times_channels * sizeof( float ) );
|
|
|
|
#else
|
|
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = (float*) outputp;
|
|
float * end_output = ( (float*) output ) + width_times_channels;
|
|
|
|
#ifdef STBIR_FLOAT_HIGH_CLAMP
|
|
#define stbir_scalar_hi_clamp( v ) if ( v > STBIR_FLOAT_HIGH_CLAMP ) v = STBIR_FLOAT_HIGH_CLAMP;
|
|
#else
|
|
#define stbir_scalar_hi_clamp( v )
|
|
#endif
|
|
#ifdef STBIR_FLOAT_LOW_CLAMP
|
|
#define stbir_scalar_lo_clamp( v ) if ( v < STBIR_FLOAT_LOW_CLAMP ) v = STBIR_FLOAT_LOW_CLAMP;
|
|
#else
|
|
#define stbir_scalar_lo_clamp( v )
|
|
#endif
|
|
|
|
#ifdef STBIR_SIMD
|
|
|
|
#ifdef STBIR_FLOAT_HIGH_CLAMP
|
|
const stbir__simdfX high_clamp = stbir__simdf_frepX(STBIR_FLOAT_HIGH_CLAMP);
|
|
#endif
|
|
#ifdef STBIR_FLOAT_LOW_CLAMP
|
|
const stbir__simdfX low_clamp = stbir__simdf_frepX(STBIR_FLOAT_LOW_CLAMP);
|
|
#endif
|
|
|
|
if ( width_times_channels >= ( stbir__simdfX_float_count * 2 ) )
|
|
{
|
|
float const * end_encode_m8 = encode + width_times_channels - ( stbir__simdfX_float_count * 2 );
|
|
end_output -= ( stbir__simdfX_float_count * 2 );
|
|
for(;;)
|
|
{
|
|
stbir__simdfX e0, e1;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
stbir__simdfX_load( e0, encode );
|
|
stbir__simdfX_load( e1, encode+stbir__simdfX_float_count );
|
|
#ifdef STBIR_FLOAT_HIGH_CLAMP
|
|
stbir__simdfX_min( e0, e0, high_clamp );
|
|
stbir__simdfX_min( e1, e1, high_clamp );
|
|
#endif
|
|
#ifdef STBIR_FLOAT_LOW_CLAMP
|
|
stbir__simdfX_max( e0, e0, low_clamp );
|
|
stbir__simdfX_max( e1, e1, low_clamp );
|
|
#endif
|
|
stbir__encode_simdfX_unflip( e0 );
|
|
stbir__encode_simdfX_unflip( e1 );
|
|
stbir__simdfX_store( output, e0 );
|
|
stbir__simdfX_store( output+stbir__simdfX_float_count, e1 );
|
|
encode += stbir__simdfX_float_count * 2;
|
|
output += stbir__simdfX_float_count * 2;
|
|
if ( output < end_output )
|
|
continue;
|
|
if ( output == ( end_output + ( stbir__simdfX_float_count * 2 ) ) )
|
|
break;
|
|
output = end_output; // backup and do last couple
|
|
encode = end_encode_m8;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
while( output <= end_output )
|
|
{
|
|
stbir__simdf e0;
|
|
STBIR_NO_UNROLL(encode);
|
|
stbir__simdf_load( e0, encode );
|
|
#ifdef STBIR_FLOAT_HIGH_CLAMP
|
|
stbir__simdf_min( e0, e0, high_clamp );
|
|
#endif
|
|
#ifdef STBIR_FLOAT_LOW_CLAMP
|
|
stbir__simdf_max( e0, e0, low_clamp );
|
|
#endif
|
|
stbir__encode_simdf4_unflip( e0 );
|
|
stbir__simdf_store( output-4, e0 );
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
#endif
|
|
|
|
#else
|
|
|
|
// try to do blocks of 4 when you can
|
|
#if stbir__coder_min_num != 3 // doesn't divide cleanly by four
|
|
output += 4;
|
|
while( output <= end_output )
|
|
{
|
|
float e;
|
|
STBIR_SIMD_NO_UNROLL(encode);
|
|
e = encode[ stbir__encode_order0 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[0-4] = e;
|
|
e = encode[ stbir__encode_order1 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[1-4] = e;
|
|
e = encode[ stbir__encode_order2 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[2-4] = e;
|
|
e = encode[ stbir__encode_order3 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[3-4] = e;
|
|
output += 4;
|
|
encode += 4;
|
|
}
|
|
output -= 4;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// do the remnants
|
|
#if stbir__coder_min_num < 4
|
|
while( output < end_output )
|
|
{
|
|
float e;
|
|
STBIR_NO_UNROLL(encode);
|
|
e = encode[ stbir__encode_order0 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[0] = e;
|
|
#if stbir__coder_min_num >= 2
|
|
e = encode[ stbir__encode_order1 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[1] = e;
|
|
#endif
|
|
#if stbir__coder_min_num >= 3
|
|
e = encode[ stbir__encode_order2 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[2] = e;
|
|
#endif
|
|
output += stbir__coder_min_num;
|
|
encode += stbir__coder_min_num;
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
}
|
|
|
|
#undef stbir__decode_suffix
|
|
#undef stbir__decode_simdf8_flip
|
|
#undef stbir__decode_simdf4_flip
|
|
#undef stbir__decode_order0
|
|
#undef stbir__decode_order1
|
|
#undef stbir__decode_order2
|
|
#undef stbir__decode_order3
|
|
#undef stbir__encode_order0
|
|
#undef stbir__encode_order1
|
|
#undef stbir__encode_order2
|
|
#undef stbir__encode_order3
|
|
#undef stbir__encode_simdf8_unflip
|
|
#undef stbir__encode_simdf4_unflip
|
|
#undef stbir__encode_simdfX_unflip
|
|
#undef STBIR__CODER_NAME
|
|
#undef stbir__coder_min_num
|
|
#undef stbir__decode_swizzle
|
|
#undef stbir_scalar_hi_clamp
|
|
#undef stbir_scalar_lo_clamp
|
|
#undef STB_IMAGE_RESIZE_DO_CODERS
|
|
|
|
#elif defined( STB_IMAGE_RESIZE_DO_VERTICALS)
|
|
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#define STBIR_chans( start, end ) STBIR_strs_join14(start,STBIR__vertical_channels,end,_cont)
|
|
#else
|
|
#define STBIR_chans( start, end ) STBIR_strs_join1(start,STBIR__vertical_channels,end)
|
|
#endif
|
|
|
|
#if STBIR__vertical_channels >= 1
|
|
#define stbIF0( code ) code
|
|
#else
|
|
#define stbIF0( code )
|
|
#endif
|
|
#if STBIR__vertical_channels >= 2
|
|
#define stbIF1( code ) code
|
|
#else
|
|
#define stbIF1( code )
|
|
#endif
|
|
#if STBIR__vertical_channels >= 3
|
|
#define stbIF2( code ) code
|
|
#else
|
|
#define stbIF2( code )
|
|
#endif
|
|
#if STBIR__vertical_channels >= 4
|
|
#define stbIF3( code ) code
|
|
#else
|
|
#define stbIF3( code )
|
|
#endif
|
|
#if STBIR__vertical_channels >= 5
|
|
#define stbIF4( code ) code
|
|
#else
|
|
#define stbIF4( code )
|
|
#endif
|
|
#if STBIR__vertical_channels >= 6
|
|
#define stbIF5( code ) code
|
|
#else
|
|
#define stbIF5( code )
|
|
#endif
|
|
#if STBIR__vertical_channels >= 7
|
|
#define stbIF6( code ) code
|
|
#else
|
|
#define stbIF6( code )
|
|
#endif
|
|
#if STBIR__vertical_channels >= 8
|
|
#define stbIF7( code ) code
|
|
#else
|
|
#define stbIF7( code )
|
|
#endif
|
|
|
|
static void STBIR_chans( stbir__vertical_scatter_with_,_coeffs)( float ** outputs, float const * vertical_coefficients, float const * input, float const * input_end )
|
|
{
|
|
stbIF0( float STBIR_SIMD_STREAMOUT_PTR( * ) output0 = outputs[0]; float c0s = vertical_coefficients[0]; )
|
|
stbIF1( float STBIR_SIMD_STREAMOUT_PTR( * ) output1 = outputs[1]; float c1s = vertical_coefficients[1]; )
|
|
stbIF2( float STBIR_SIMD_STREAMOUT_PTR( * ) output2 = outputs[2]; float c2s = vertical_coefficients[2]; )
|
|
stbIF3( float STBIR_SIMD_STREAMOUT_PTR( * ) output3 = outputs[3]; float c3s = vertical_coefficients[3]; )
|
|
stbIF4( float STBIR_SIMD_STREAMOUT_PTR( * ) output4 = outputs[4]; float c4s = vertical_coefficients[4]; )
|
|
stbIF5( float STBIR_SIMD_STREAMOUT_PTR( * ) output5 = outputs[5]; float c5s = vertical_coefficients[5]; )
|
|
stbIF6( float STBIR_SIMD_STREAMOUT_PTR( * ) output6 = outputs[6]; float c6s = vertical_coefficients[6]; )
|
|
stbIF7( float STBIR_SIMD_STREAMOUT_PTR( * ) output7 = outputs[7]; float c7s = vertical_coefficients[7]; )
|
|
|
|
#ifdef STBIR_SIMD
|
|
{
|
|
stbIF0(stbir__simdfX c0 = stbir__simdf_frepX( c0s ); )
|
|
stbIF1(stbir__simdfX c1 = stbir__simdf_frepX( c1s ); )
|
|
stbIF2(stbir__simdfX c2 = stbir__simdf_frepX( c2s ); )
|
|
stbIF3(stbir__simdfX c3 = stbir__simdf_frepX( c3s ); )
|
|
stbIF4(stbir__simdfX c4 = stbir__simdf_frepX( c4s ); )
|
|
stbIF5(stbir__simdfX c5 = stbir__simdf_frepX( c5s ); )
|
|
stbIF6(stbir__simdfX c6 = stbir__simdf_frepX( c6s ); )
|
|
stbIF7(stbir__simdfX c7 = stbir__simdf_frepX( c7s ); )
|
|
while ( ( (char*)input_end - (char*) input ) >= (16*stbir__simdfX_float_count) )
|
|
{
|
|
stbir__simdfX o0, o1, o2, o3, r0, r1, r2, r3;
|
|
STBIR_SIMD_NO_UNROLL(output0);
|
|
|
|
stbir__simdfX_load( r0, input ); stbir__simdfX_load( r1, input+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input+(3*stbir__simdfX_float_count) );
|
|
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0( stbir__simdfX_load( o0, output0 ); stbir__simdfX_load( o1, output0+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output0+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output0+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c0 ); stbir__simdfX_madd( o1, o1, r1, c0 ); stbir__simdfX_madd( o2, o2, r2, c0 ); stbir__simdfX_madd( o3, o3, r3, c0 );
|
|
stbir__simdfX_store( output0, o0 ); stbir__simdfX_store( output0+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output0+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output0+(3*stbir__simdfX_float_count), o3 ); )
|
|
stbIF1( stbir__simdfX_load( o0, output1 ); stbir__simdfX_load( o1, output1+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output1+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output1+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c1 ); stbir__simdfX_madd( o1, o1, r1, c1 ); stbir__simdfX_madd( o2, o2, r2, c1 ); stbir__simdfX_madd( o3, o3, r3, c1 );
|
|
stbir__simdfX_store( output1, o0 ); stbir__simdfX_store( output1+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output1+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output1+(3*stbir__simdfX_float_count), o3 ); )
|
|
stbIF2( stbir__simdfX_load( o0, output2 ); stbir__simdfX_load( o1, output2+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output2+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output2+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c2 ); stbir__simdfX_madd( o1, o1, r1, c2 ); stbir__simdfX_madd( o2, o2, r2, c2 ); stbir__simdfX_madd( o3, o3, r3, c2 );
|
|
stbir__simdfX_store( output2, o0 ); stbir__simdfX_store( output2+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output2+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output2+(3*stbir__simdfX_float_count), o3 ); )
|
|
stbIF3( stbir__simdfX_load( o0, output3 ); stbir__simdfX_load( o1, output3+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output3+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output3+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c3 ); stbir__simdfX_madd( o1, o1, r1, c3 ); stbir__simdfX_madd( o2, o2, r2, c3 ); stbir__simdfX_madd( o3, o3, r3, c3 );
|
|
stbir__simdfX_store( output3, o0 ); stbir__simdfX_store( output3+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output3+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output3+(3*stbir__simdfX_float_count), o3 ); )
|
|
stbIF4( stbir__simdfX_load( o0, output4 ); stbir__simdfX_load( o1, output4+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output4+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output4+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c4 ); stbir__simdfX_madd( o1, o1, r1, c4 ); stbir__simdfX_madd( o2, o2, r2, c4 ); stbir__simdfX_madd( o3, o3, r3, c4 );
|
|
stbir__simdfX_store( output4, o0 ); stbir__simdfX_store( output4+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output4+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output4+(3*stbir__simdfX_float_count), o3 ); )
|
|
stbIF5( stbir__simdfX_load( o0, output5 ); stbir__simdfX_load( o1, output5+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output5+(2*stbir__simdfX_float_count)); stbir__simdfX_load( o3, output5+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c5 ); stbir__simdfX_madd( o1, o1, r1, c5 ); stbir__simdfX_madd( o2, o2, r2, c5 ); stbir__simdfX_madd( o3, o3, r3, c5 );
|
|
stbir__simdfX_store( output5, o0 ); stbir__simdfX_store( output5+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output5+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output5+(3*stbir__simdfX_float_count), o3 ); )
|
|
stbIF6( stbir__simdfX_load( o0, output6 ); stbir__simdfX_load( o1, output6+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output6+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output6+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c6 ); stbir__simdfX_madd( o1, o1, r1, c6 ); stbir__simdfX_madd( o2, o2, r2, c6 ); stbir__simdfX_madd( o3, o3, r3, c6 );
|
|
stbir__simdfX_store( output6, o0 ); stbir__simdfX_store( output6+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output6+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output6+(3*stbir__simdfX_float_count), o3 ); )
|
|
stbIF7( stbir__simdfX_load( o0, output7 ); stbir__simdfX_load( o1, output7+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output7+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output7+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c7 ); stbir__simdfX_madd( o1, o1, r1, c7 ); stbir__simdfX_madd( o2, o2, r2, c7 ); stbir__simdfX_madd( o3, o3, r3, c7 );
|
|
stbir__simdfX_store( output7, o0 ); stbir__simdfX_store( output7+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output7+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output7+(3*stbir__simdfX_float_count), o3 ); )
|
|
#else
|
|
stbIF0( stbir__simdfX_mult( o0, r0, c0 ); stbir__simdfX_mult( o1, r1, c0 ); stbir__simdfX_mult( o2, r2, c0 ); stbir__simdfX_mult( o3, r3, c0 );
|
|
stbir__simdfX_store( output0, o0 ); stbir__simdfX_store( output0+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output0+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output0+(3*stbir__simdfX_float_count), o3 ); )
|
|
stbIF1( stbir__simdfX_mult( o0, r0, c1 ); stbir__simdfX_mult( o1, r1, c1 ); stbir__simdfX_mult( o2, r2, c1 ); stbir__simdfX_mult( o3, r3, c1 );
|
|
stbir__simdfX_store( output1, o0 ); stbir__simdfX_store( output1+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output1+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output1+(3*stbir__simdfX_float_count), o3 ); )
|
|
stbIF2( stbir__simdfX_mult( o0, r0, c2 ); stbir__simdfX_mult( o1, r1, c2 ); stbir__simdfX_mult( o2, r2, c2 ); stbir__simdfX_mult( o3, r3, c2 );
|
|
stbir__simdfX_store( output2, o0 ); stbir__simdfX_store( output2+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output2+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output2+(3*stbir__simdfX_float_count), o3 ); )
|
|
stbIF3( stbir__simdfX_mult( o0, r0, c3 ); stbir__simdfX_mult( o1, r1, c3 ); stbir__simdfX_mult( o2, r2, c3 ); stbir__simdfX_mult( o3, r3, c3 );
|
|
stbir__simdfX_store( output3, o0 ); stbir__simdfX_store( output3+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output3+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output3+(3*stbir__simdfX_float_count), o3 ); )
|
|
stbIF4( stbir__simdfX_mult( o0, r0, c4 ); stbir__simdfX_mult( o1, r1, c4 ); stbir__simdfX_mult( o2, r2, c4 ); stbir__simdfX_mult( o3, r3, c4 );
|
|
stbir__simdfX_store( output4, o0 ); stbir__simdfX_store( output4+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output4+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output4+(3*stbir__simdfX_float_count), o3 ); )
|
|
stbIF5( stbir__simdfX_mult( o0, r0, c5 ); stbir__simdfX_mult( o1, r1, c5 ); stbir__simdfX_mult( o2, r2, c5 ); stbir__simdfX_mult( o3, r3, c5 );
|
|
stbir__simdfX_store( output5, o0 ); stbir__simdfX_store( output5+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output5+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output5+(3*stbir__simdfX_float_count), o3 ); )
|
|
stbIF6( stbir__simdfX_mult( o0, r0, c6 ); stbir__simdfX_mult( o1, r1, c6 ); stbir__simdfX_mult( o2, r2, c6 ); stbir__simdfX_mult( o3, r3, c6 );
|
|
stbir__simdfX_store( output6, o0 ); stbir__simdfX_store( output6+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output6+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output6+(3*stbir__simdfX_float_count), o3 ); )
|
|
stbIF7( stbir__simdfX_mult( o0, r0, c7 ); stbir__simdfX_mult( o1, r1, c7 ); stbir__simdfX_mult( o2, r2, c7 ); stbir__simdfX_mult( o3, r3, c7 );
|
|
stbir__simdfX_store( output7, o0 ); stbir__simdfX_store( output7+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output7+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output7+(3*stbir__simdfX_float_count), o3 ); )
|
|
#endif
|
|
|
|
input += (4*stbir__simdfX_float_count);
|
|
stbIF0( output0 += (4*stbir__simdfX_float_count); ) stbIF1( output1 += (4*stbir__simdfX_float_count); ) stbIF2( output2 += (4*stbir__simdfX_float_count); ) stbIF3( output3 += (4*stbir__simdfX_float_count); ) stbIF4( output4 += (4*stbir__simdfX_float_count); ) stbIF5( output5 += (4*stbir__simdfX_float_count); ) stbIF6( output6 += (4*stbir__simdfX_float_count); ) stbIF7( output7 += (4*stbir__simdfX_float_count); )
|
|
}
|
|
while ( ( (char*)input_end - (char*) input ) >= 16 )
|
|
{
|
|
stbir__simdf o0, r0;
|
|
STBIR_SIMD_NO_UNROLL(output0);
|
|
|
|
stbir__simdf_load( r0, input );
|
|
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0( stbir__simdf_load( o0, output0 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c0 ) ); stbir__simdf_store( output0, o0 ); )
|
|
stbIF1( stbir__simdf_load( o0, output1 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c1 ) ); stbir__simdf_store( output1, o0 ); )
|
|
stbIF2( stbir__simdf_load( o0, output2 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c2 ) ); stbir__simdf_store( output2, o0 ); )
|
|
stbIF3( stbir__simdf_load( o0, output3 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c3 ) ); stbir__simdf_store( output3, o0 ); )
|
|
stbIF4( stbir__simdf_load( o0, output4 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c4 ) ); stbir__simdf_store( output4, o0 ); )
|
|
stbIF5( stbir__simdf_load( o0, output5 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c5 ) ); stbir__simdf_store( output5, o0 ); )
|
|
stbIF6( stbir__simdf_load( o0, output6 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c6 ) ); stbir__simdf_store( output6, o0 ); )
|
|
stbIF7( stbir__simdf_load( o0, output7 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c7 ) ); stbir__simdf_store( output7, o0 ); )
|
|
#else
|
|
stbIF0( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c0 ) ); stbir__simdf_store( output0, o0 ); )
|
|
stbIF1( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c1 ) ); stbir__simdf_store( output1, o0 ); )
|
|
stbIF2( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c2 ) ); stbir__simdf_store( output2, o0 ); )
|
|
stbIF3( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c3 ) ); stbir__simdf_store( output3, o0 ); )
|
|
stbIF4( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c4 ) ); stbir__simdf_store( output4, o0 ); )
|
|
stbIF5( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c5 ) ); stbir__simdf_store( output5, o0 ); )
|
|
stbIF6( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c6 ) ); stbir__simdf_store( output6, o0 ); )
|
|
stbIF7( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c7 ) ); stbir__simdf_store( output7, o0 ); )
|
|
#endif
|
|
|
|
input += 4;
|
|
stbIF0( output0 += 4; ) stbIF1( output1 += 4; ) stbIF2( output2 += 4; ) stbIF3( output3 += 4; ) stbIF4( output4 += 4; ) stbIF5( output5 += 4; ) stbIF6( output6 += 4; ) stbIF7( output7 += 4; )
|
|
}
|
|
}
|
|
#else
|
|
while ( ( (char*)input_end - (char*) input ) >= 16 )
|
|
{
|
|
float r0, r1, r2, r3;
|
|
STBIR_NO_UNROLL(input);
|
|
|
|
r0 = input[0], r1 = input[1], r2 = input[2], r3 = input[3];
|
|
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0( output0[0] += ( r0 * c0s ); output0[1] += ( r1 * c0s ); output0[2] += ( r2 * c0s ); output0[3] += ( r3 * c0s ); )
|
|
stbIF1( output1[0] += ( r0 * c1s ); output1[1] += ( r1 * c1s ); output1[2] += ( r2 * c1s ); output1[3] += ( r3 * c1s ); )
|
|
stbIF2( output2[0] += ( r0 * c2s ); output2[1] += ( r1 * c2s ); output2[2] += ( r2 * c2s ); output2[3] += ( r3 * c2s ); )
|
|
stbIF3( output3[0] += ( r0 * c3s ); output3[1] += ( r1 * c3s ); output3[2] += ( r2 * c3s ); output3[3] += ( r3 * c3s ); )
|
|
stbIF4( output4[0] += ( r0 * c4s ); output4[1] += ( r1 * c4s ); output4[2] += ( r2 * c4s ); output4[3] += ( r3 * c4s ); )
|
|
stbIF5( output5[0] += ( r0 * c5s ); output5[1] += ( r1 * c5s ); output5[2] += ( r2 * c5s ); output5[3] += ( r3 * c5s ); )
|
|
stbIF6( output6[0] += ( r0 * c6s ); output6[1] += ( r1 * c6s ); output6[2] += ( r2 * c6s ); output6[3] += ( r3 * c6s ); )
|
|
stbIF7( output7[0] += ( r0 * c7s ); output7[1] += ( r1 * c7s ); output7[2] += ( r2 * c7s ); output7[3] += ( r3 * c7s ); )
|
|
#else
|
|
stbIF0( output0[0] = ( r0 * c0s ); output0[1] = ( r1 * c0s ); output0[2] = ( r2 * c0s ); output0[3] = ( r3 * c0s ); )
|
|
stbIF1( output1[0] = ( r0 * c1s ); output1[1] = ( r1 * c1s ); output1[2] = ( r2 * c1s ); output1[3] = ( r3 * c1s ); )
|
|
stbIF2( output2[0] = ( r0 * c2s ); output2[1] = ( r1 * c2s ); output2[2] = ( r2 * c2s ); output2[3] = ( r3 * c2s ); )
|
|
stbIF3( output3[0] = ( r0 * c3s ); output3[1] = ( r1 * c3s ); output3[2] = ( r2 * c3s ); output3[3] = ( r3 * c3s ); )
|
|
stbIF4( output4[0] = ( r0 * c4s ); output4[1] = ( r1 * c4s ); output4[2] = ( r2 * c4s ); output4[3] = ( r3 * c4s ); )
|
|
stbIF5( output5[0] = ( r0 * c5s ); output5[1] = ( r1 * c5s ); output5[2] = ( r2 * c5s ); output5[3] = ( r3 * c5s ); )
|
|
stbIF6( output6[0] = ( r0 * c6s ); output6[1] = ( r1 * c6s ); output6[2] = ( r2 * c6s ); output6[3] = ( r3 * c6s ); )
|
|
stbIF7( output7[0] = ( r0 * c7s ); output7[1] = ( r1 * c7s ); output7[2] = ( r2 * c7s ); output7[3] = ( r3 * c7s ); )
|
|
#endif
|
|
|
|
input += 4;
|
|
stbIF0( output0 += 4; ) stbIF1( output1 += 4; ) stbIF2( output2 += 4; ) stbIF3( output3 += 4; ) stbIF4( output4 += 4; ) stbIF5( output5 += 4; ) stbIF6( output6 += 4; ) stbIF7( output7 += 4; )
|
|
}
|
|
#endif
|
|
while ( input < input_end )
|
|
{
|
|
float r = input[0];
|
|
STBIR_NO_UNROLL(output0);
|
|
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0( output0[0] += ( r * c0s ); )
|
|
stbIF1( output1[0] += ( r * c1s ); )
|
|
stbIF2( output2[0] += ( r * c2s ); )
|
|
stbIF3( output3[0] += ( r * c3s ); )
|
|
stbIF4( output4[0] += ( r * c4s ); )
|
|
stbIF5( output5[0] += ( r * c5s ); )
|
|
stbIF6( output6[0] += ( r * c6s ); )
|
|
stbIF7( output7[0] += ( r * c7s ); )
|
|
#else
|
|
stbIF0( output0[0] = ( r * c0s ); )
|
|
stbIF1( output1[0] = ( r * c1s ); )
|
|
stbIF2( output2[0] = ( r * c2s ); )
|
|
stbIF3( output3[0] = ( r * c3s ); )
|
|
stbIF4( output4[0] = ( r * c4s ); )
|
|
stbIF5( output5[0] = ( r * c5s ); )
|
|
stbIF6( output6[0] = ( r * c6s ); )
|
|
stbIF7( output7[0] = ( r * c7s ); )
|
|
#endif
|
|
|
|
++input;
|
|
stbIF0( ++output0; ) stbIF1( ++output1; ) stbIF2( ++output2; ) stbIF3( ++output3; ) stbIF4( ++output4; ) stbIF5( ++output5; ) stbIF6( ++output6; ) stbIF7( ++output7; )
|
|
}
|
|
}
|
|
|
|
static void STBIR_chans( stbir__vertical_gather_with_,_coeffs)( float * outputp, float const * vertical_coefficients, float const ** inputs, float const * input0_end )
|
|
{
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = outputp;
|
|
|
|
stbIF0( float const * input0 = inputs[0]; float c0s = vertical_coefficients[0]; )
|
|
stbIF1( float const * input1 = inputs[1]; float c1s = vertical_coefficients[1]; )
|
|
stbIF2( float const * input2 = inputs[2]; float c2s = vertical_coefficients[2]; )
|
|
stbIF3( float const * input3 = inputs[3]; float c3s = vertical_coefficients[3]; )
|
|
stbIF4( float const * input4 = inputs[4]; float c4s = vertical_coefficients[4]; )
|
|
stbIF5( float const * input5 = inputs[5]; float c5s = vertical_coefficients[5]; )
|
|
stbIF6( float const * input6 = inputs[6]; float c6s = vertical_coefficients[6]; )
|
|
stbIF7( float const * input7 = inputs[7]; float c7s = vertical_coefficients[7]; )
|
|
|
|
#if ( STBIR__vertical_channels == 1 ) && !defined(STB_IMAGE_RESIZE_VERTICAL_CONTINUE)
|
|
// check single channel one weight
|
|
if ( ( c0s >= (1.0f-0.000001f) ) && ( c0s <= (1.0f+0.000001f) ) )
|
|
{
|
|
STBIR_MEMCPY( output, input0, (char*)input0_end - (char*)input0 );
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#ifdef STBIR_SIMD
|
|
{
|
|
stbIF0(stbir__simdfX c0 = stbir__simdf_frepX( c0s ); )
|
|
stbIF1(stbir__simdfX c1 = stbir__simdf_frepX( c1s ); )
|
|
stbIF2(stbir__simdfX c2 = stbir__simdf_frepX( c2s ); )
|
|
stbIF3(stbir__simdfX c3 = stbir__simdf_frepX( c3s ); )
|
|
stbIF4(stbir__simdfX c4 = stbir__simdf_frepX( c4s ); )
|
|
stbIF5(stbir__simdfX c5 = stbir__simdf_frepX( c5s ); )
|
|
stbIF6(stbir__simdfX c6 = stbir__simdf_frepX( c6s ); )
|
|
stbIF7(stbir__simdfX c7 = stbir__simdf_frepX( c7s ); )
|
|
|
|
while ( ( (char*)input0_end - (char*) input0 ) >= (16*stbir__simdfX_float_count) )
|
|
{
|
|
stbir__simdfX o0, o1, o2, o3, r0, r1, r2, r3;
|
|
STBIR_SIMD_NO_UNROLL(output);
|
|
|
|
// prefetch four loop iterations ahead (doesn't affect much for small resizes, but helps with big ones)
|
|
stbIF0( stbir__prefetch( input0 + (16*stbir__simdfX_float_count) ); )
|
|
stbIF1( stbir__prefetch( input1 + (16*stbir__simdfX_float_count) ); )
|
|
stbIF2( stbir__prefetch( input2 + (16*stbir__simdfX_float_count) ); )
|
|
stbIF3( stbir__prefetch( input3 + (16*stbir__simdfX_float_count) ); )
|
|
stbIF4( stbir__prefetch( input4 + (16*stbir__simdfX_float_count) ); )
|
|
stbIF5( stbir__prefetch( input5 + (16*stbir__simdfX_float_count) ); )
|
|
stbIF6( stbir__prefetch( input6 + (16*stbir__simdfX_float_count) ); )
|
|
stbIF7( stbir__prefetch( input7 + (16*stbir__simdfX_float_count) ); )
|
|
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0( stbir__simdfX_load( o0, output ); stbir__simdfX_load( o1, output+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_load( r0, input0 ); stbir__simdfX_load( r1, input0+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input0+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input0+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c0 ); stbir__simdfX_madd( o1, o1, r1, c0 ); stbir__simdfX_madd( o2, o2, r2, c0 ); stbir__simdfX_madd( o3, o3, r3, c0 ); )
|
|
#else
|
|
stbIF0( stbir__simdfX_load( r0, input0 ); stbir__simdfX_load( r1, input0+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input0+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input0+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_mult( o0, r0, c0 ); stbir__simdfX_mult( o1, r1, c0 ); stbir__simdfX_mult( o2, r2, c0 ); stbir__simdfX_mult( o3, r3, c0 ); )
|
|
#endif
|
|
|
|
stbIF1( stbir__simdfX_load( r0, input1 ); stbir__simdfX_load( r1, input1+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input1+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input1+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c1 ); stbir__simdfX_madd( o1, o1, r1, c1 ); stbir__simdfX_madd( o2, o2, r2, c1 ); stbir__simdfX_madd( o3, o3, r3, c1 ); )
|
|
stbIF2( stbir__simdfX_load( r0, input2 ); stbir__simdfX_load( r1, input2+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input2+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input2+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c2 ); stbir__simdfX_madd( o1, o1, r1, c2 ); stbir__simdfX_madd( o2, o2, r2, c2 ); stbir__simdfX_madd( o3, o3, r3, c2 ); )
|
|
stbIF3( stbir__simdfX_load( r0, input3 ); stbir__simdfX_load( r1, input3+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input3+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input3+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c3 ); stbir__simdfX_madd( o1, o1, r1, c3 ); stbir__simdfX_madd( o2, o2, r2, c3 ); stbir__simdfX_madd( o3, o3, r3, c3 ); )
|
|
stbIF4( stbir__simdfX_load( r0, input4 ); stbir__simdfX_load( r1, input4+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input4+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input4+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c4 ); stbir__simdfX_madd( o1, o1, r1, c4 ); stbir__simdfX_madd( o2, o2, r2, c4 ); stbir__simdfX_madd( o3, o3, r3, c4 ); )
|
|
stbIF5( stbir__simdfX_load( r0, input5 ); stbir__simdfX_load( r1, input5+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input5+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input5+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c5 ); stbir__simdfX_madd( o1, o1, r1, c5 ); stbir__simdfX_madd( o2, o2, r2, c5 ); stbir__simdfX_madd( o3, o3, r3, c5 ); )
|
|
stbIF6( stbir__simdfX_load( r0, input6 ); stbir__simdfX_load( r1, input6+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input6+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input6+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c6 ); stbir__simdfX_madd( o1, o1, r1, c6 ); stbir__simdfX_madd( o2, o2, r2, c6 ); stbir__simdfX_madd( o3, o3, r3, c6 ); )
|
|
stbIF7( stbir__simdfX_load( r0, input7 ); stbir__simdfX_load( r1, input7+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input7+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input7+(3*stbir__simdfX_float_count) );
|
|
stbir__simdfX_madd( o0, o0, r0, c7 ); stbir__simdfX_madd( o1, o1, r1, c7 ); stbir__simdfX_madd( o2, o2, r2, c7 ); stbir__simdfX_madd( o3, o3, r3, c7 ); )
|
|
|
|
stbir__simdfX_store( output, o0 ); stbir__simdfX_store( output+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output+(3*stbir__simdfX_float_count), o3 );
|
|
output += (4*stbir__simdfX_float_count);
|
|
stbIF0( input0 += (4*stbir__simdfX_float_count); ) stbIF1( input1 += (4*stbir__simdfX_float_count); ) stbIF2( input2 += (4*stbir__simdfX_float_count); ) stbIF3( input3 += (4*stbir__simdfX_float_count); ) stbIF4( input4 += (4*stbir__simdfX_float_count); ) stbIF5( input5 += (4*stbir__simdfX_float_count); ) stbIF6( input6 += (4*stbir__simdfX_float_count); ) stbIF7( input7 += (4*stbir__simdfX_float_count); )
|
|
}
|
|
|
|
while ( ( (char*)input0_end - (char*) input0 ) >= 16 )
|
|
{
|
|
stbir__simdf o0, r0;
|
|
STBIR_SIMD_NO_UNROLL(output);
|
|
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0( stbir__simdf_load( o0, output ); stbir__simdf_load( r0, input0 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c0 ) ); )
|
|
#else
|
|
stbIF0( stbir__simdf_load( r0, input0 ); stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c0 ) ); )
|
|
#endif
|
|
stbIF1( stbir__simdf_load( r0, input1 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c1 ) ); )
|
|
stbIF2( stbir__simdf_load( r0, input2 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c2 ) ); )
|
|
stbIF3( stbir__simdf_load( r0, input3 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c3 ) ); )
|
|
stbIF4( stbir__simdf_load( r0, input4 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c4 ) ); )
|
|
stbIF5( stbir__simdf_load( r0, input5 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c5 ) ); )
|
|
stbIF6( stbir__simdf_load( r0, input6 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c6 ) ); )
|
|
stbIF7( stbir__simdf_load( r0, input7 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c7 ) ); )
|
|
|
|
stbir__simdf_store( output, o0 );
|
|
output += 4;
|
|
stbIF0( input0 += 4; ) stbIF1( input1 += 4; ) stbIF2( input2 += 4; ) stbIF3( input3 += 4; ) stbIF4( input4 += 4; ) stbIF5( input5 += 4; ) stbIF6( input6 += 4; ) stbIF7( input7 += 4; )
|
|
}
|
|
}
|
|
#else
|
|
while ( ( (char*)input0_end - (char*) input0 ) >= 16 )
|
|
{
|
|
float o0, o1, o2, o3;
|
|
STBIR_NO_UNROLL(output);
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0( o0 = output[0] + input0[0] * c0s; o1 = output[1] + input0[1] * c0s; o2 = output[2] + input0[2] * c0s; o3 = output[3] + input0[3] * c0s; )
|
|
#else
|
|
stbIF0( o0 = input0[0] * c0s; o1 = input0[1] * c0s; o2 = input0[2] * c0s; o3 = input0[3] * c0s; )
|
|
#endif
|
|
stbIF1( o0 += input1[0] * c1s; o1 += input1[1] * c1s; o2 += input1[2] * c1s; o3 += input1[3] * c1s; )
|
|
stbIF2( o0 += input2[0] * c2s; o1 += input2[1] * c2s; o2 += input2[2] * c2s; o3 += input2[3] * c2s; )
|
|
stbIF3( o0 += input3[0] * c3s; o1 += input3[1] * c3s; o2 += input3[2] * c3s; o3 += input3[3] * c3s; )
|
|
stbIF4( o0 += input4[0] * c4s; o1 += input4[1] * c4s; o2 += input4[2] * c4s; o3 += input4[3] * c4s; )
|
|
stbIF5( o0 += input5[0] * c5s; o1 += input5[1] * c5s; o2 += input5[2] * c5s; o3 += input5[3] * c5s; )
|
|
stbIF6( o0 += input6[0] * c6s; o1 += input6[1] * c6s; o2 += input6[2] * c6s; o3 += input6[3] * c6s; )
|
|
stbIF7( o0 += input7[0] * c7s; o1 += input7[1] * c7s; o2 += input7[2] * c7s; o3 += input7[3] * c7s; )
|
|
output[0] = o0; output[1] = o1; output[2] = o2; output[3] = o3;
|
|
output += 4;
|
|
stbIF0( input0 += 4; ) stbIF1( input1 += 4; ) stbIF2( input2 += 4; ) stbIF3( input3 += 4; ) stbIF4( input4 += 4; ) stbIF5( input5 += 4; ) stbIF6( input6 += 4; ) stbIF7( input7 += 4; )
|
|
}
|
|
#endif
|
|
while ( input0 < input0_end )
|
|
{
|
|
float o0;
|
|
STBIR_NO_UNROLL(output);
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
stbIF0( o0 = output[0] + input0[0] * c0s; )
|
|
#else
|
|
stbIF0( o0 = input0[0] * c0s; )
|
|
#endif
|
|
stbIF1( o0 += input1[0] * c1s; )
|
|
stbIF2( o0 += input2[0] * c2s; )
|
|
stbIF3( o0 += input3[0] * c3s; )
|
|
stbIF4( o0 += input4[0] * c4s; )
|
|
stbIF5( o0 += input5[0] * c5s; )
|
|
stbIF6( o0 += input6[0] * c6s; )
|
|
stbIF7( o0 += input7[0] * c7s; )
|
|
output[0] = o0;
|
|
++output;
|
|
stbIF0( ++input0; ) stbIF1( ++input1; ) stbIF2( ++input2; ) stbIF3( ++input3; ) stbIF4( ++input4; ) stbIF5( ++input5; ) stbIF6( ++input6; ) stbIF7( ++input7; )
|
|
}
|
|
}
|
|
|
|
#undef stbIF0
|
|
#undef stbIF1
|
|
#undef stbIF2
|
|
#undef stbIF3
|
|
#undef stbIF4
|
|
#undef stbIF5
|
|
#undef stbIF6
|
|
#undef stbIF7
|
|
#undef STB_IMAGE_RESIZE_DO_VERTICALS
|
|
#undef STBIR__vertical_channels
|
|
#undef STB_IMAGE_RESIZE_DO_HORIZONTALS
|
|
#undef STBIR_strs_join24
|
|
#undef STBIR_strs_join14
|
|
#undef STBIR_chans
|
|
#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#undef STB_IMAGE_RESIZE_VERTICAL_CONTINUE
|
|
#endif
|
|
|
|
#else // !STB_IMAGE_RESIZE_DO_VERTICALS
|
|
|
|
#define STBIR_chans( start, end ) STBIR_strs_join1(start,STBIR__horizontal_channels,end)
|
|
|
|
#ifndef stbir__2_coeff_only
|
|
#define stbir__2_coeff_only() \
|
|
stbir__1_coeff_only(); \
|
|
stbir__1_coeff_remnant(1);
|
|
#endif
|
|
|
|
#ifndef stbir__2_coeff_remnant
|
|
#define stbir__2_coeff_remnant( ofs ) \
|
|
stbir__1_coeff_remnant(ofs); \
|
|
stbir__1_coeff_remnant((ofs)+1);
|
|
#endif
|
|
|
|
#ifndef stbir__3_coeff_only
|
|
#define stbir__3_coeff_only() \
|
|
stbir__2_coeff_only(); \
|
|
stbir__1_coeff_remnant(2);
|
|
#endif
|
|
|
|
#ifndef stbir__3_coeff_remnant
|
|
#define stbir__3_coeff_remnant( ofs ) \
|
|
stbir__2_coeff_remnant(ofs); \
|
|
stbir__1_coeff_remnant((ofs)+2);
|
|
#endif
|
|
|
|
#ifndef stbir__3_coeff_setup
|
|
#define stbir__3_coeff_setup()
|
|
#endif
|
|
|
|
#ifndef stbir__4_coeff_start
|
|
#define stbir__4_coeff_start() \
|
|
stbir__2_coeff_only(); \
|
|
stbir__2_coeff_remnant(2);
|
|
#endif
|
|
|
|
#ifndef stbir__4_coeff_continue_from_4
|
|
#define stbir__4_coeff_continue_from_4( ofs ) \
|
|
stbir__2_coeff_remnant(ofs); \
|
|
stbir__2_coeff_remnant((ofs)+2);
|
|
#endif
|
|
|
|
#ifndef stbir__store_output_tiny
|
|
#define stbir__store_output_tiny stbir__store_output
|
|
#endif
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_1_coeff)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const * hc = horizontal_coefficients;
|
|
stbir__1_coeff_only();
|
|
stbir__store_output_tiny();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_2_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const * hc = horizontal_coefficients;
|
|
stbir__2_coeff_only();
|
|
stbir__store_output_tiny();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_3_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const * hc = horizontal_coefficients;
|
|
stbir__3_coeff_only();
|
|
stbir__store_output_tiny();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_4_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const * hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__store_output();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_5_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const * hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__1_coeff_remnant(4);
|
|
stbir__store_output();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_6_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const * hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__2_coeff_remnant(4);
|
|
stbir__store_output();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_7_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
stbir__3_coeff_setup();
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const * hc = horizontal_coefficients;
|
|
|
|
stbir__4_coeff_start();
|
|
stbir__3_coeff_remnant(4);
|
|
stbir__store_output();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_8_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const * hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__4_coeff_continue_from_4(4);
|
|
stbir__store_output();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_9_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const * hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__4_coeff_continue_from_4(4);
|
|
stbir__1_coeff_remnant(8);
|
|
stbir__store_output();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_10_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const * hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__4_coeff_continue_from_4(4);
|
|
stbir__2_coeff_remnant(8);
|
|
stbir__store_output();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_11_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
stbir__3_coeff_setup();
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const * hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__4_coeff_continue_from_4(4);
|
|
stbir__3_coeff_remnant(8);
|
|
stbir__store_output();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_12_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
float const * hc = horizontal_coefficients;
|
|
stbir__4_coeff_start();
|
|
stbir__4_coeff_continue_from_4(4);
|
|
stbir__4_coeff_continue_from_4(8);
|
|
stbir__store_output();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_n_coeffs_mod0 )( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
int n = ( ( horizontal_contributors->n1 - horizontal_contributors->n0 + 1 ) - 4 + 3 ) >> 2;
|
|
float const * hc = horizontal_coefficients;
|
|
|
|
stbir__4_coeff_start();
|
|
do {
|
|
hc += 4;
|
|
decode += STBIR__horizontal_channels * 4;
|
|
stbir__4_coeff_continue_from_4( 0 );
|
|
--n;
|
|
} while ( n > 0 );
|
|
stbir__store_output();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_n_coeffs_mod1 )( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
int n = ( ( horizontal_contributors->n1 - horizontal_contributors->n0 + 1 ) - 5 + 3 ) >> 2;
|
|
float const * hc = horizontal_coefficients;
|
|
|
|
stbir__4_coeff_start();
|
|
do {
|
|
hc += 4;
|
|
decode += STBIR__horizontal_channels * 4;
|
|
stbir__4_coeff_continue_from_4( 0 );
|
|
--n;
|
|
} while ( n > 0 );
|
|
stbir__1_coeff_remnant( 4 );
|
|
stbir__store_output();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_n_coeffs_mod2 )( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
int n = ( ( horizontal_contributors->n1 - horizontal_contributors->n0 + 1 ) - 6 + 3 ) >> 2;
|
|
float const * hc = horizontal_coefficients;
|
|
|
|
stbir__4_coeff_start();
|
|
do {
|
|
hc += 4;
|
|
decode += STBIR__horizontal_channels * 4;
|
|
stbir__4_coeff_continue_from_4( 0 );
|
|
--n;
|
|
} while ( n > 0 );
|
|
stbir__2_coeff_remnant( 4 );
|
|
|
|
stbir__store_output();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static void STBIR_chans( stbir__horizontal_gather_,_channels_with_n_coeffs_mod3 )( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width )
|
|
{
|
|
float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels;
|
|
float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer;
|
|
stbir__3_coeff_setup();
|
|
do {
|
|
float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels;
|
|
int n = ( ( horizontal_contributors->n1 - horizontal_contributors->n0 + 1 ) - 7 + 3 ) >> 2;
|
|
float const * hc = horizontal_coefficients;
|
|
|
|
stbir__4_coeff_start();
|
|
do {
|
|
hc += 4;
|
|
decode += STBIR__horizontal_channels * 4;
|
|
stbir__4_coeff_continue_from_4( 0 );
|
|
--n;
|
|
} while ( n > 0 );
|
|
stbir__3_coeff_remnant( 4 );
|
|
|
|
stbir__store_output();
|
|
} while ( output < output_end );
|
|
}
|
|
|
|
static stbir__horizontal_gather_channels_func * STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_funcs)[4]=
|
|
{
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_mod0),
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_mod1),
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_mod2),
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_mod3),
|
|
};
|
|
|
|
static stbir__horizontal_gather_channels_func * STBIR_chans(stbir__horizontal_gather_,_channels_funcs)[12]=
|
|
{
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_1_coeff),
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_2_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_3_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_4_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_5_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_6_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_7_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_8_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_9_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_10_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_11_coeffs),
|
|
STBIR_chans(stbir__horizontal_gather_,_channels_with_12_coeffs),
|
|
};
|
|
|
|
#undef STBIR__horizontal_channels
|
|
#undef STB_IMAGE_RESIZE_DO_HORIZONTALS
|
|
#undef stbir__1_coeff_only
|
|
#undef stbir__1_coeff_remnant
|
|
#undef stbir__2_coeff_only
|
|
#undef stbir__2_coeff_remnant
|
|
#undef stbir__3_coeff_only
|
|
#undef stbir__3_coeff_remnant
|
|
#undef stbir__3_coeff_setup
|
|
#undef stbir__4_coeff_start
|
|
#undef stbir__4_coeff_continue_from_4
|
|
#undef stbir__store_output
|
|
#undef stbir__store_output_tiny
|
|
#undef STBIR_chans
|
|
|
|
#endif // HORIZONALS
|
|
|
|
#undef STBIR_strs_join2
|
|
#undef STBIR_strs_join1
|
|
|
|
#endif // STB_IMAGE_RESIZE_DO_HORIZONTALS/VERTICALS/CODERS
|
|
|
|
/*
|
|
------------------------------------------------------------------------------
|
|
This software is available under 2 licenses -- choose whichever you prefer.
|
|
------------------------------------------------------------------------------
|
|
ALTERNATIVE A - MIT License
|
|
Copyright (c) 2017 Sean Barrett
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
this software and associated documentation files (the "Software"), to deal in
|
|
the Software without restriction, including without limitation the rights to
|
|
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
of the Software, and to permit persons to whom the Software is furnished to do
|
|
so, subject to the following conditions:
|
|
The above copyright notice and this permission notice shall be included in all
|
|
copies or substantial portions of the Software.
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
------------------------------------------------------------------------------
|
|
ALTERNATIVE B - Public Domain (www.unlicense.org)
|
|
This is free and unencumbered software released into the public domain.
|
|
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
|
|
software, either in source code form or as a compiled binary, for any purpose,
|
|
commercial or non-commercial, and by any means.
|
|
In jurisdictions that recognize copyright laws, the author or authors of this
|
|
software dedicate any and all copyright interest in the software to the public
|
|
domain. We make this dedication for the benefit of the public at large and to
|
|
the detriment of our heirs and successors. We intend this dedication to be an
|
|
overt act of relinquishment in perpetuity of all present and future rights to
|
|
this software under copyright law.
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
------------------------------------------------------------------------------
|
|
*/
|