435 lines
12 KiB
C++
435 lines
12 KiB
C++
|
// Tencent is pleased to support the open source community by making ncnn available.
|
||
|
//
|
||
|
// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
//
|
||
|
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||
|
// in compliance with the License. You may obtain a copy of the License at
|
||
|
//
|
||
|
// https://opensource.org/licenses/BSD-3-Clause
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software distributed
|
||
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
// specific language governing permissions and limitations under the License.
|
||
|
|
||
|
#include "net.h"
|
||
|
|
||
|
#if defined(USE_NCNN_SIMPLEOCV)
|
||
|
#include "simpleocv.h"
|
||
|
#else
|
||
|
#include <opencv2/core/core.hpp>
|
||
|
#include <opencv2/highgui/highgui.hpp>
|
||
|
#include <opencv2/imgproc/imgproc.hpp>
|
||
|
#endif
|
||
|
#include <stdio.h>
|
||
|
#include <vector>
|
||
|
|
||
|
struct FaceObject
|
||
|
{
|
||
|
cv::Rect_<float> rect;
|
||
|
float prob;
|
||
|
};
|
||
|
|
||
|
static inline float intersection_area(const FaceObject& a, const FaceObject& b)
|
||
|
{
|
||
|
cv::Rect_<float> inter = a.rect & b.rect;
|
||
|
return inter.area();
|
||
|
}
|
||
|
|
||
|
static void qsort_descent_inplace(std::vector<FaceObject>& faceobjects, int left, int right)
|
||
|
{
|
||
|
int i = left;
|
||
|
int j = right;
|
||
|
float p = faceobjects[(left + right) / 2].prob;
|
||
|
|
||
|
while (i <= j)
|
||
|
{
|
||
|
while (faceobjects[i].prob > p)
|
||
|
i++;
|
||
|
|
||
|
while (faceobjects[j].prob < p)
|
||
|
j--;
|
||
|
|
||
|
if (i <= j)
|
||
|
{
|
||
|
// swap
|
||
|
std::swap(faceobjects[i], faceobjects[j]);
|
||
|
|
||
|
i++;
|
||
|
j--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#pragma omp parallel sections
|
||
|
{
|
||
|
#pragma omp section
|
||
|
{
|
||
|
if (left < j) qsort_descent_inplace(faceobjects, left, j);
|
||
|
}
|
||
|
#pragma omp section
|
||
|
{
|
||
|
if (i < right) qsort_descent_inplace(faceobjects, i, right);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void qsort_descent_inplace(std::vector<FaceObject>& faceobjects)
|
||
|
{
|
||
|
if (faceobjects.empty())
|
||
|
return;
|
||
|
|
||
|
qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1);
|
||
|
}
|
||
|
|
||
|
static void nms_sorted_bboxes(const std::vector<FaceObject>& faceobjects, std::vector<int>& picked, float nms_threshold)
|
||
|
{
|
||
|
picked.clear();
|
||
|
|
||
|
const int n = faceobjects.size();
|
||
|
|
||
|
std::vector<float> areas(n);
|
||
|
for (int i = 0; i < n; i++)
|
||
|
{
|
||
|
areas[i] = faceobjects[i].rect.area();
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < n; i++)
|
||
|
{
|
||
|
const FaceObject& a = faceobjects[i];
|
||
|
|
||
|
int keep = 1;
|
||
|
for (int j = 0; j < (int)picked.size(); j++)
|
||
|
{
|
||
|
const FaceObject& b = faceobjects[picked[j]];
|
||
|
|
||
|
// intersection over union
|
||
|
float inter_area = intersection_area(a, b);
|
||
|
float union_area = areas[i] + areas[picked[j]] - inter_area;
|
||
|
// float IoU = inter_area / union_area
|
||
|
if (inter_area / union_area > nms_threshold)
|
||
|
keep = 0;
|
||
|
}
|
||
|
|
||
|
if (keep)
|
||
|
picked.push_back(i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// insightface/detection/scrfd/mmdet/core/anchor/anchor_generator.py gen_single_level_base_anchors()
|
||
|
static ncnn::Mat generate_anchors(int base_size, const ncnn::Mat& ratios, const ncnn::Mat& scales)
|
||
|
{
|
||
|
int num_ratio = ratios.w;
|
||
|
int num_scale = scales.w;
|
||
|
|
||
|
ncnn::Mat anchors;
|
||
|
anchors.create(4, num_ratio * num_scale);
|
||
|
|
||
|
const float cx = 0;
|
||
|
const float cy = 0;
|
||
|
|
||
|
for (int i = 0; i < num_ratio; i++)
|
||
|
{
|
||
|
float ar = ratios[i];
|
||
|
|
||
|
int r_w = round(base_size / sqrt(ar));
|
||
|
int r_h = round(r_w * ar); //round(base_size * sqrt(ar));
|
||
|
|
||
|
for (int j = 0; j < num_scale; j++)
|
||
|
{
|
||
|
float scale = scales[j];
|
||
|
|
||
|
float rs_w = r_w * scale;
|
||
|
float rs_h = r_h * scale;
|
||
|
|
||
|
float* anchor = anchors.row(i * num_scale + j);
|
||
|
|
||
|
anchor[0] = cx - rs_w * 0.5f;
|
||
|
anchor[1] = cy - rs_h * 0.5f;
|
||
|
anchor[2] = cx + rs_w * 0.5f;
|
||
|
anchor[3] = cy + rs_h * 0.5f;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return anchors;
|
||
|
}
|
||
|
|
||
|
static void generate_proposals(const ncnn::Mat& anchors, int feat_stride, const ncnn::Mat& score_blob, const ncnn::Mat& bbox_blob, float prob_threshold, std::vector<FaceObject>& faceobjects)
|
||
|
{
|
||
|
int w = score_blob.w;
|
||
|
int h = score_blob.h;
|
||
|
|
||
|
// generate face proposal from bbox deltas and shifted anchors
|
||
|
const int num_anchors = anchors.h;
|
||
|
|
||
|
for (int q = 0; q < num_anchors; q++)
|
||
|
{
|
||
|
const float* anchor = anchors.row(q);
|
||
|
|
||
|
const ncnn::Mat score = score_blob.channel(q);
|
||
|
const ncnn::Mat bbox = bbox_blob.channel_range(q * 4, 4);
|
||
|
|
||
|
// shifted anchor
|
||
|
float anchor_y = anchor[1];
|
||
|
|
||
|
float anchor_w = anchor[2] - anchor[0];
|
||
|
float anchor_h = anchor[3] - anchor[1];
|
||
|
|
||
|
for (int i = 0; i < h; i++)
|
||
|
{
|
||
|
float anchor_x = anchor[0];
|
||
|
|
||
|
for (int j = 0; j < w; j++)
|
||
|
{
|
||
|
int index = i * w + j;
|
||
|
|
||
|
float prob = score[index];
|
||
|
|
||
|
if (prob >= prob_threshold)
|
||
|
{
|
||
|
// insightface/detection/scrfd/mmdet/models/dense_heads/scrfd_head.py _get_bboxes_single()
|
||
|
float dx = bbox.channel(0)[index] * feat_stride;
|
||
|
float dy = bbox.channel(1)[index] * feat_stride;
|
||
|
float dw = bbox.channel(2)[index] * feat_stride;
|
||
|
float dh = bbox.channel(3)[index] * feat_stride;
|
||
|
|
||
|
// insightface/detection/scrfd/mmdet/core/bbox/transforms.py distance2bbox()
|
||
|
float cx = anchor_x + anchor_w * 0.5f;
|
||
|
float cy = anchor_y + anchor_h * 0.5f;
|
||
|
|
||
|
float x0 = cx - dx;
|
||
|
float y0 = cy - dy;
|
||
|
float x1 = cx + dw;
|
||
|
float y1 = cy + dh;
|
||
|
|
||
|
FaceObject obj;
|
||
|
obj.rect.x = x0;
|
||
|
obj.rect.y = y0;
|
||
|
obj.rect.width = x1 - x0 + 1;
|
||
|
obj.rect.height = y1 - y0 + 1;
|
||
|
obj.prob = prob;
|
||
|
|
||
|
faceobjects.push_back(obj);
|
||
|
}
|
||
|
|
||
|
anchor_x += feat_stride;
|
||
|
}
|
||
|
|
||
|
anchor_y += feat_stride;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int detect_scrfd(const cv::Mat& bgr, std::vector<FaceObject>& faceobjects)
|
||
|
{
|
||
|
ncnn::Net scrfd;
|
||
|
|
||
|
scrfd.opt.use_vulkan_compute = true;
|
||
|
|
||
|
// model is converted from
|
||
|
// https://github.com/deepinsight/insightface/tree/master/detection/scrfd
|
||
|
// the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
|
||
|
scrfd.load_param("scrfd_500m-opt2.param");
|
||
|
scrfd.load_model("scrfd_500m-opt2.bin");
|
||
|
|
||
|
int width = bgr.cols;
|
||
|
int height = bgr.rows;
|
||
|
|
||
|
// insightface/detection/scrfd/configs/scrfd/scrfd_500m.py
|
||
|
const int target_size = 640;
|
||
|
const float prob_threshold = 0.3f;
|
||
|
const float nms_threshold = 0.45f;
|
||
|
|
||
|
// pad to multiple of 32
|
||
|
int w = width;
|
||
|
int h = height;
|
||
|
float scale = 1.f;
|
||
|
if (w > h)
|
||
|
{
|
||
|
scale = (float)target_size / w;
|
||
|
w = target_size;
|
||
|
h = h * scale;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
scale = (float)target_size / h;
|
||
|
h = target_size;
|
||
|
w = w * scale;
|
||
|
}
|
||
|
|
||
|
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, width, height, w, h);
|
||
|
|
||
|
// pad to target_size rectangle
|
||
|
int wpad = (w + 31) / 32 * 32 - w;
|
||
|
int hpad = (h + 31) / 32 * 32 - h;
|
||
|
ncnn::Mat in_pad;
|
||
|
ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 0.f);
|
||
|
|
||
|
const float mean_vals[3] = {127.5f, 127.5f, 127.5f};
|
||
|
const float norm_vals[3] = {1 / 128.f, 1 / 128.f, 1 / 128.f};
|
||
|
in_pad.substract_mean_normalize(mean_vals, norm_vals);
|
||
|
|
||
|
ncnn::Extractor ex = scrfd.create_extractor();
|
||
|
|
||
|
ex.input("input.1", in_pad);
|
||
|
|
||
|
std::vector<FaceObject> faceproposals;
|
||
|
|
||
|
// stride 32
|
||
|
{
|
||
|
ncnn::Mat score_blob, bbox_blob;
|
||
|
ex.extract("412", score_blob);
|
||
|
ex.extract("415", bbox_blob);
|
||
|
|
||
|
const int base_size = 16;
|
||
|
const int feat_stride = 8;
|
||
|
ncnn::Mat ratios(1);
|
||
|
ratios[0] = 1.f;
|
||
|
ncnn::Mat scales(2);
|
||
|
scales[0] = 1.f;
|
||
|
scales[1] = 2.f;
|
||
|
ncnn::Mat anchors = generate_anchors(base_size, ratios, scales);
|
||
|
|
||
|
std::vector<FaceObject> faceobjects32;
|
||
|
generate_proposals(anchors, feat_stride, score_blob, bbox_blob, prob_threshold, faceobjects32);
|
||
|
|
||
|
faceproposals.insert(faceproposals.end(), faceobjects32.begin(), faceobjects32.end());
|
||
|
}
|
||
|
|
||
|
// stride 16
|
||
|
{
|
||
|
ncnn::Mat score_blob, bbox_blob;
|
||
|
ex.extract("474", score_blob);
|
||
|
ex.extract("477", bbox_blob);
|
||
|
|
||
|
const int base_size = 64;
|
||
|
const int feat_stride = 16;
|
||
|
ncnn::Mat ratios(1);
|
||
|
ratios[0] = 1.f;
|
||
|
ncnn::Mat scales(2);
|
||
|
scales[0] = 1.f;
|
||
|
scales[1] = 2.f;
|
||
|
ncnn::Mat anchors = generate_anchors(base_size, ratios, scales);
|
||
|
|
||
|
std::vector<FaceObject> faceobjects16;
|
||
|
generate_proposals(anchors, feat_stride, score_blob, bbox_blob, prob_threshold, faceobjects16);
|
||
|
|
||
|
faceproposals.insert(faceproposals.end(), faceobjects16.begin(), faceobjects16.end());
|
||
|
}
|
||
|
|
||
|
// stride 8
|
||
|
{
|
||
|
ncnn::Mat score_blob, bbox_blob;
|
||
|
ex.extract("536", score_blob);
|
||
|
ex.extract("539", bbox_blob);
|
||
|
|
||
|
const int base_size = 256;
|
||
|
const int feat_stride = 32;
|
||
|
ncnn::Mat ratios(1);
|
||
|
ratios[0] = 1.f;
|
||
|
ncnn::Mat scales(2);
|
||
|
scales[0] = 1.f;
|
||
|
scales[1] = 2.f;
|
||
|
ncnn::Mat anchors = generate_anchors(base_size, ratios, scales);
|
||
|
|
||
|
std::vector<FaceObject> faceobjects8;
|
||
|
generate_proposals(anchors, feat_stride, score_blob, bbox_blob, prob_threshold, faceobjects8);
|
||
|
|
||
|
faceproposals.insert(faceproposals.end(), faceobjects8.begin(), faceobjects8.end());
|
||
|
}
|
||
|
|
||
|
// sort all proposals by score from highest to lowest
|
||
|
qsort_descent_inplace(faceproposals);
|
||
|
|
||
|
// apply nms with nms_threshold
|
||
|
std::vector<int> picked;
|
||
|
nms_sorted_bboxes(faceproposals, picked, nms_threshold);
|
||
|
|
||
|
int face_count = picked.size();
|
||
|
|
||
|
faceobjects.resize(face_count);
|
||
|
for (int i = 0; i < face_count; i++)
|
||
|
{
|
||
|
faceobjects[i] = faceproposals[picked[i]];
|
||
|
|
||
|
// adjust offset to original unpadded
|
||
|
float x0 = (faceobjects[i].rect.x - (wpad / 2)) / scale;
|
||
|
float y0 = (faceobjects[i].rect.y - (hpad / 2)) / scale;
|
||
|
float x1 = (faceobjects[i].rect.x + faceobjects[i].rect.width - (wpad / 2)) / scale;
|
||
|
float y1 = (faceobjects[i].rect.y + faceobjects[i].rect.height - (hpad / 2)) / scale;
|
||
|
|
||
|
x0 = std::max(std::min(x0, (float)width - 1), 0.f);
|
||
|
y0 = std::max(std::min(y0, (float)height - 1), 0.f);
|
||
|
x1 = std::max(std::min(x1, (float)width - 1), 0.f);
|
||
|
y1 = std::max(std::min(y1, (float)height - 1), 0.f);
|
||
|
|
||
|
faceobjects[i].rect.x = x0;
|
||
|
faceobjects[i].rect.y = y0;
|
||
|
faceobjects[i].rect.width = x1 - x0;
|
||
|
faceobjects[i].rect.height = y1 - y0;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void draw_faceobjects(const cv::Mat& bgr, const std::vector<FaceObject>& faceobjects)
|
||
|
{
|
||
|
cv::Mat image = bgr.clone();
|
||
|
|
||
|
for (size_t i = 0; i < faceobjects.size(); i++)
|
||
|
{
|
||
|
const FaceObject& obj = faceobjects[i];
|
||
|
|
||
|
fprintf(stderr, "%.5f at %.2f %.2f %.2f x %.2f\n", obj.prob,
|
||
|
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
|
||
|
|
||
|
cv::rectangle(image, obj.rect, cv::Scalar(0, 255, 0));
|
||
|
|
||
|
char text[256];
|
||
|
sprintf(text, "%.1f%%", obj.prob * 100);
|
||
|
|
||
|
int baseLine = 0;
|
||
|
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
|
||
|
|
||
|
int x = obj.rect.x;
|
||
|
int y = obj.rect.y - label_size.height - baseLine;
|
||
|
if (y < 0)
|
||
|
y = 0;
|
||
|
if (x + label_size.width > image.cols)
|
||
|
x = image.cols - label_size.width;
|
||
|
|
||
|
cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
|
||
|
cv::Scalar(255, 255, 255), -1);
|
||
|
|
||
|
cv::putText(image, text, cv::Point(x, y + label_size.height),
|
||
|
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
|
||
|
}
|
||
|
|
||
|
cv::imshow("image", image);
|
||
|
cv::waitKey(0);
|
||
|
}
|
||
|
|
||
|
int main(int argc, char** argv)
|
||
|
{
|
||
|
if (argc != 2)
|
||
|
{
|
||
|
fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
const char* imagepath = argv[1];
|
||
|
|
||
|
cv::Mat m = cv::imread(imagepath, 1);
|
||
|
if (m.empty())
|
||
|
{
|
||
|
fprintf(stderr, "cv::imread %s failed\n", imagepath);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
std::vector<FaceObject> faceobjects;
|
||
|
detect_scrfd(m, faceobjects);
|
||
|
|
||
|
draw_faceobjects(m, faceobjects);
|
||
|
|
||
|
return 0;
|
||
|
}
|