76 lines
3.1 KiB
Python
76 lines
3.1 KiB
Python
|
# Tencent is pleased to support the open source community by making ncnn available.
|
||
|
#
|
||
|
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||
|
# in compliance with the License. You may obtain a copy of the License at
|
||
|
#
|
||
|
# https://opensource.org/licenses/BSD-3-Clause
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software distributed
|
||
|
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
|
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
# specific language governing permissions and limitations under the License.
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
class Model(nn.Module):
|
||
|
def __init__(self):
|
||
|
super(Model, self).__init__()
|
||
|
|
||
|
self.conv_0 = nn.Conv2d(in_channels=12, out_channels=16, kernel_size=3)
|
||
|
self.conv_1 = nn.Conv2d(in_channels=16, out_channels=20, kernel_size=(2,4), stride=(2,1), padding=2, dilation=1)
|
||
|
self.conv_2 = nn.Conv2d(in_channels=20, out_channels=24, kernel_size=(1,3), stride=1, padding=(2,4), dilation=1, groups=1, bias=False)
|
||
|
if torch.__version__ < '1.9':
|
||
|
self.conv_3 = nn.Conv2d(in_channels=24, out_channels=28, kernel_size=(5,4), stride=1, padding=0, dilation=1, groups=4, bias=True)
|
||
|
self.conv_4 = nn.Conv2d(in_channels=28, out_channels=32, kernel_size=3, stride=1, padding=1, dilation=(1,2), groups=2, bias=False, padding_mode='zeros')
|
||
|
else:
|
||
|
self.conv_3 = nn.Conv2d(in_channels=24, out_channels=28, kernel_size=(5,4), stride=1, padding='valid', dilation=1, groups=4, bias=True)
|
||
|
self.conv_4 = nn.Conv2d(in_channels=28, out_channels=32, kernel_size=3, stride=1, padding='same', dilation=(1,2), groups=2, bias=False, padding_mode='zeros')
|
||
|
self.conv_5 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=2, stride=2, padding=3, dilation=1, groups=32, bias=True, padding_mode='reflect')
|
||
|
self.conv_6 = nn.Conv2d(in_channels=32, out_channels=28, kernel_size=2, stride=1, padding=2, dilation=1, groups=1, bias=False, padding_mode='replicate')
|
||
|
#self.conv_7 = nn.Conv2d(in_channels=28, out_channels=24, kernel_size=3, stride=2, padding=(5,6), dilation=2, groups=1, bias=True, padding_mode='circular')
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.conv_0(x)
|
||
|
x = self.conv_1(x)
|
||
|
x = self.conv_2(x)
|
||
|
x = self.conv_3(x)
|
||
|
x = self.conv_4(x)
|
||
|
x = self.conv_5(x)
|
||
|
x = self.conv_6(x)
|
||
|
#x = self.conv_7(x)
|
||
|
|
||
|
return x
|
||
|
|
||
|
def test():
|
||
|
net = Model()
|
||
|
net.eval()
|
||
|
|
||
|
torch.manual_seed(0)
|
||
|
x = torch.rand(1, 12, 64, 64)
|
||
|
|
||
|
a = net(x)
|
||
|
|
||
|
# export torchscript
|
||
|
mod = torch.jit.trace(net, x)
|
||
|
mod.save("test_nn_Conv2d.pt")
|
||
|
|
||
|
# torchscript to pnnx
|
||
|
import os
|
||
|
os.system("../src/pnnx test_nn_Conv2d.pt inputshape=[1,12,64,64]")
|
||
|
|
||
|
# pnnx inference
|
||
|
import test_nn_Conv2d_pnnx
|
||
|
b = test_nn_Conv2d_pnnx.test_inference()
|
||
|
|
||
|
return torch.equal(a, b)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
if test():
|
||
|
exit(0)
|
||
|
else:
|
||
|
exit(1)
|