deepin-ocr/3rdparty/ncnn/tools/pnnx/tests/test_nn_UpsamplingNearest2d.py

75 lines
2.2 KiB
Python
Raw Normal View History

# Tencent is pleased to support the open source community by making ncnn available.
#
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.up_0 = nn.UpsamplingNearest2d(size=16)
self.up_1 = nn.UpsamplingNearest2d(scale_factor=2)
self.up_2 = nn.UpsamplingNearest2d(size=(20,20))
self.up_3 = nn.UpsamplingNearest2d(scale_factor=(4,4))
self.up_4 = nn.UpsamplingNearest2d(size=(16,24))
self.up_5 = nn.UpsamplingNearest2d(scale_factor=(2,3))
self.up_w = nn.UpsamplingNearest2d(scale_factor=(2.976744,2.976744))
def forward(self, x, w):
x = self.up_0(x)
x = self.up_1(x)
x = self.up_2(x)
x = self.up_3(x)
x = self.up_4(x)
x = self.up_5(x)
w = self.up_w(w)
return x, w
def test():
net = Model()
net.eval()
torch.manual_seed(0)
x = torch.rand(1, 3, 32, 32)
w = torch.rand(1, 8, 86, 86)
a = net(x, w)
# export torchscript
mod = torch.jit.trace(net, (x, w))
mod.save("test_nn_UpsamplingNearest2d.pt")
# torchscript to pnnx
import os
os.system("../src/pnnx test_nn_UpsamplingNearest2d.pt inputshape=[1,3,32,32],[1,8,86,86]")
# pnnx inference
import test_nn_UpsamplingNearest2d_pnnx
b = test_nn_UpsamplingNearest2d_pnnx.test_inference()
for a0, b0 in zip(a, b):
if not torch.equal(a0, b0):
return False
return True
if __name__ == "__main__":
if test():
exit(0)
else:
exit(1)