75 lines
2.2 KiB
Python
75 lines
2.2 KiB
Python
|
# Tencent is pleased to support the open source community by making ncnn available.
|
||
|
#
|
||
|
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||
|
# in compliance with the License. You may obtain a copy of the License at
|
||
|
#
|
||
|
# https://opensource.org/licenses/BSD-3-Clause
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software distributed
|
||
|
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
|
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
# specific language governing permissions and limitations under the License.
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
class Model(nn.Module):
|
||
|
def __init__(self):
|
||
|
super(Model, self).__init__()
|
||
|
|
||
|
self.up_0 = nn.UpsamplingNearest2d(size=16)
|
||
|
self.up_1 = nn.UpsamplingNearest2d(scale_factor=2)
|
||
|
self.up_2 = nn.UpsamplingNearest2d(size=(20,20))
|
||
|
self.up_3 = nn.UpsamplingNearest2d(scale_factor=(4,4))
|
||
|
self.up_4 = nn.UpsamplingNearest2d(size=(16,24))
|
||
|
self.up_5 = nn.UpsamplingNearest2d(scale_factor=(2,3))
|
||
|
|
||
|
self.up_w = nn.UpsamplingNearest2d(scale_factor=(2.976744,2.976744))
|
||
|
|
||
|
def forward(self, x, w):
|
||
|
x = self.up_0(x)
|
||
|
x = self.up_1(x)
|
||
|
x = self.up_2(x)
|
||
|
x = self.up_3(x)
|
||
|
x = self.up_4(x)
|
||
|
x = self.up_5(x)
|
||
|
|
||
|
w = self.up_w(w)
|
||
|
return x, w
|
||
|
|
||
|
def test():
|
||
|
net = Model()
|
||
|
net.eval()
|
||
|
|
||
|
torch.manual_seed(0)
|
||
|
x = torch.rand(1, 3, 32, 32)
|
||
|
w = torch.rand(1, 8, 86, 86)
|
||
|
|
||
|
a = net(x, w)
|
||
|
|
||
|
# export torchscript
|
||
|
mod = torch.jit.trace(net, (x, w))
|
||
|
mod.save("test_nn_UpsamplingNearest2d.pt")
|
||
|
|
||
|
# torchscript to pnnx
|
||
|
import os
|
||
|
os.system("../src/pnnx test_nn_UpsamplingNearest2d.pt inputshape=[1,3,32,32],[1,8,86,86]")
|
||
|
|
||
|
# pnnx inference
|
||
|
import test_nn_UpsamplingNearest2d_pnnx
|
||
|
b = test_nn_UpsamplingNearest2d_pnnx.test_inference()
|
||
|
|
||
|
for a0, b0 in zip(a, b):
|
||
|
if not torch.equal(a0, b0):
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
if test():
|
||
|
exit(0)
|
||
|
else:
|
||
|
exit(1)
|