deepin-ocr/3rdparty/ncnn/benchmark/benchncnn.cpp
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

328 lines
8.4 KiB
C++

// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2018 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include <float.h>
#include <stdio.h>
#include <string.h>
#ifdef _WIN32
#include <algorithm>
#include <windows.h> // Sleep()
#else
#include <unistd.h> // sleep()
#endif
#ifdef __EMSCRIPTEN__
#include <emscripten.h>
#endif
#include "benchmark.h"
#include "cpu.h"
#include "datareader.h"
#include "net.h"
#include "gpu.h"
class DataReaderFromEmpty : public ncnn::DataReader
{
public:
virtual int scan(const char* format, void* p) const
{
return 0;
}
virtual size_t read(void* buf, size_t size) const
{
memset(buf, 0, size);
return size;
}
};
static int g_warmup_loop_count = 8;
static int g_loop_count = 4;
static bool g_enable_cooling_down = true;
static ncnn::UnlockedPoolAllocator g_blob_pool_allocator;
static ncnn::PoolAllocator g_workspace_pool_allocator;
#if NCNN_VULKAN
static ncnn::VulkanDevice* g_vkdev = 0;
static ncnn::VkAllocator* g_blob_vkallocator = 0;
static ncnn::VkAllocator* g_staging_vkallocator = 0;
#endif // NCNN_VULKAN
void benchmark(const char* comment, const ncnn::Mat& _in, const ncnn::Option& opt)
{
ncnn::Mat in = _in;
in.fill(0.01f);
g_blob_pool_allocator.clear();
g_workspace_pool_allocator.clear();
#if NCNN_VULKAN
if (opt.use_vulkan_compute)
{
g_blob_vkallocator->clear();
g_staging_vkallocator->clear();
}
#endif // NCNN_VULKAN
ncnn::Net net;
net.opt = opt;
#if NCNN_VULKAN
if (net.opt.use_vulkan_compute)
{
net.set_vulkan_device(g_vkdev);
}
#endif // NCNN_VULKAN
#ifdef __EMSCRIPTEN__
#define MODEL_DIR "/working/"
#else
#define MODEL_DIR ""
#endif
char parampath[256];
sprintf(parampath, MODEL_DIR "%s.param", comment);
net.load_param(parampath);
DataReaderFromEmpty dr;
net.load_model(dr);
const std::vector<const char*>& input_names = net.input_names();
const std::vector<const char*>& output_names = net.output_names();
if (g_enable_cooling_down)
{
// sleep 10 seconds for cooling down SOC :(
#ifdef _WIN32
Sleep(10 * 1000);
#elif defined(__unix__) || defined(__APPLE__)
sleep(10);
#elif _POSIX_TIMERS
struct timespec ts;
ts.tv_sec = 10;
ts.tv_nsec = 0;
nanosleep(&ts, &ts);
#else
// TODO How to handle it ?
#endif
}
ncnn::Mat out;
// warm up
for (int i = 0; i < g_warmup_loop_count; i++)
{
ncnn::Extractor ex = net.create_extractor();
ex.input(input_names[0], in);
ex.extract(output_names[0], out);
}
double time_min = DBL_MAX;
double time_max = -DBL_MAX;
double time_avg = 0;
for (int i = 0; i < g_loop_count; i++)
{
double start = ncnn::get_current_time();
{
ncnn::Extractor ex = net.create_extractor();
ex.input(input_names[0], in);
ex.extract(output_names[0], out);
}
double end = ncnn::get_current_time();
double time = end - start;
time_min = std::min(time_min, time);
time_max = std::max(time_max, time);
time_avg += time;
}
time_avg /= g_loop_count;
fprintf(stderr, "%20s min = %7.2f max = %7.2f avg = %7.2f\n", comment, time_min, time_max, time_avg);
}
int main(int argc, char** argv)
{
int loop_count = 4;
int num_threads = ncnn::get_cpu_count();
int powersave = 0;
int gpu_device = -1;
int cooling_down = 1;
if (argc >= 2)
{
loop_count = atoi(argv[1]);
}
if (argc >= 3)
{
num_threads = atoi(argv[2]);
}
if (argc >= 4)
{
powersave = atoi(argv[3]);
}
if (argc >= 5)
{
gpu_device = atoi(argv[4]);
}
if (argc >= 6)
{
cooling_down = atoi(argv[5]);
}
#ifdef __EMSCRIPTEN__
EM_ASM(
FS.mkdir('/working');
FS.mount(NODEFS, {root: '.'}, '/working'););
#endif // __EMSCRIPTEN__
bool use_vulkan_compute = gpu_device != -1;
g_enable_cooling_down = cooling_down != 0;
g_loop_count = loop_count;
g_blob_pool_allocator.set_size_compare_ratio(0.0f);
g_workspace_pool_allocator.set_size_compare_ratio(0.5f);
#if NCNN_VULKAN
if (use_vulkan_compute)
{
g_warmup_loop_count = 10;
g_vkdev = ncnn::get_gpu_device(gpu_device);
g_blob_vkallocator = new ncnn::VkBlobAllocator(g_vkdev);
g_staging_vkallocator = new ncnn::VkStagingAllocator(g_vkdev);
}
#endif // NCNN_VULKAN
// default option
ncnn::Option opt;
opt.lightmode = true;
opt.num_threads = num_threads;
opt.blob_allocator = &g_blob_pool_allocator;
opt.workspace_allocator = &g_workspace_pool_allocator;
#if NCNN_VULKAN
opt.blob_vkallocator = g_blob_vkallocator;
opt.workspace_vkallocator = g_blob_vkallocator;
opt.staging_vkallocator = g_staging_vkallocator;
#endif // NCNN_VULKAN
opt.use_winograd_convolution = true;
opt.use_sgemm_convolution = true;
opt.use_int8_inference = true;
opt.use_vulkan_compute = use_vulkan_compute;
opt.use_fp16_packed = true;
opt.use_fp16_storage = true;
opt.use_fp16_arithmetic = true;
opt.use_int8_storage = true;
opt.use_int8_arithmetic = true;
opt.use_packing_layout = true;
opt.use_shader_pack8 = false;
opt.use_image_storage = false;
ncnn::set_cpu_powersave(powersave);
ncnn::set_omp_dynamic(0);
ncnn::set_omp_num_threads(num_threads);
fprintf(stderr, "loop_count = %d\n", g_loop_count);
fprintf(stderr, "num_threads = %d\n", num_threads);
fprintf(stderr, "powersave = %d\n", ncnn::get_cpu_powersave());
fprintf(stderr, "gpu_device = %d\n", gpu_device);
fprintf(stderr, "cooling_down = %d\n", (int)g_enable_cooling_down);
// run
benchmark("squeezenet", ncnn::Mat(227, 227, 3), opt);
benchmark("squeezenet_int8", ncnn::Mat(227, 227, 3), opt);
benchmark("mobilenet", ncnn::Mat(224, 224, 3), opt);
benchmark("mobilenet_int8", ncnn::Mat(224, 224, 3), opt);
benchmark("mobilenet_v2", ncnn::Mat(224, 224, 3), opt);
// benchmark("mobilenet_v2_int8", ncnn::Mat(224, 224, 3), opt);
benchmark("mobilenet_v3", ncnn::Mat(224, 224, 3), opt);
benchmark("shufflenet", ncnn::Mat(224, 224, 3), opt);
benchmark("shufflenet_v2", ncnn::Mat(224, 224, 3), opt);
benchmark("mnasnet", ncnn::Mat(224, 224, 3), opt);
benchmark("proxylessnasnet", ncnn::Mat(224, 224, 3), opt);
benchmark("efficientnet_b0", ncnn::Mat(224, 224, 3), opt);
benchmark("efficientnetv2_b0", ncnn::Mat(224, 224, 3), opt);
benchmark("regnety_400m", ncnn::Mat(224, 224, 3), opt);
benchmark("blazeface", ncnn::Mat(128, 128, 3), opt);
benchmark("googlenet", ncnn::Mat(224, 224, 3), opt);
benchmark("googlenet_int8", ncnn::Mat(224, 224, 3), opt);
benchmark("resnet18", ncnn::Mat(224, 224, 3), opt);
benchmark("resnet18_int8", ncnn::Mat(224, 224, 3), opt);
benchmark("alexnet", ncnn::Mat(227, 227, 3), opt);
benchmark("vgg16", ncnn::Mat(224, 224, 3), opt);
benchmark("vgg16_int8", ncnn::Mat(224, 224, 3), opt);
benchmark("resnet50", ncnn::Mat(224, 224, 3), opt);
benchmark("resnet50_int8", ncnn::Mat(224, 224, 3), opt);
benchmark("squeezenet_ssd", ncnn::Mat(300, 300, 3), opt);
benchmark("squeezenet_ssd_int8", ncnn::Mat(300, 300, 3), opt);
benchmark("mobilenet_ssd", ncnn::Mat(300, 300, 3), opt);
benchmark("mobilenet_ssd_int8", ncnn::Mat(300, 300, 3), opt);
benchmark("mobilenet_yolo", ncnn::Mat(416, 416, 3), opt);
benchmark("mobilenetv2_yolov3", ncnn::Mat(352, 352, 3), opt);
benchmark("yolov4-tiny", ncnn::Mat(416, 416, 3), opt);
benchmark("nanodet_m", ncnn::Mat(320, 320, 3), opt);
benchmark("yolo-fastest-1.1", ncnn::Mat(320, 320, 3), opt);
benchmark("yolo-fastestv2", ncnn::Mat(352, 352, 3), opt);
#if NCNN_VULKAN
delete g_blob_vkallocator;
delete g_staging_vkallocator;
#endif // NCNN_VULKAN
return 0;
}