718c41634f
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
1644 lines
59 KiB
Markdown
1644 lines
59 KiB
Markdown
|
|
* [AbsVal](#absval)
|
|
* [ArgMax](#argmax)
|
|
* [BatchNorm](#batchnorm)
|
|
* [Bias](#bias)
|
|
* [BinaryOp](#binaryop)
|
|
* [BNLL](#bnll)
|
|
* [Cast](#cast)
|
|
* [Clip](#clip)
|
|
* [Concat](#concat)
|
|
* [Convolution](#convolution)
|
|
* [Convolution1D](#convolution1d)
|
|
* [Convolution3D](#convolution3d)
|
|
* [ConvolutionDepthWise](#convolutiondepthwise)
|
|
* [ConvolutionDepthWise1D](#convolutiondepthwise1d)
|
|
* [ConvolutionDepthWise3D](#convolutiondepthwise3d)
|
|
* [Crop](#crop)
|
|
* [Deconvolution](#deconvolution)
|
|
* [Deconvolution1D](#deconvolution1d)
|
|
* [Deconvolution3D](#deconvolution3d)
|
|
* [DeconvolutionDepthWise](#deconvolutiondepthwise)
|
|
* [DeconvolutionDepthWise1D](#deconvolutiondepthwise1d)
|
|
* [DeconvolutionDepthWise3D](#deconvolutiondepthwise3d)
|
|
* [Dequantize](#dequantize)
|
|
* [Dropout](#dropout)
|
|
* [Eltwise](#eltwise)
|
|
* [ELU](#elu)
|
|
* [Exp](#exp)
|
|
* [Flatten](#flatten)
|
|
* [GELU](#gelu)
|
|
* [Gemm](#gemm)
|
|
* [GroupNorm](#groupnorm)
|
|
* [GRU](#gru)
|
|
* [HardSigmoid](#hardsigmoid)
|
|
* [HardSwish](#hardswish)
|
|
* [InnerProduct](#innerproduct)
|
|
* [Input](#input)
|
|
* [InstanceNorm](#instancenorm)
|
|
* [Interp](#interp)
|
|
* [LayerNorm](#layernorm)
|
|
* [Log](#log)
|
|
* [LRN](#lrn)
|
|
* [LSTM](#lstm)
|
|
* [MemoryData](#memorydata)
|
|
* [Mish](#mish)
|
|
* [MultiHeadAttention](#multiheadattention)
|
|
* [MVN](#mvn)
|
|
* [Noop](#noop)
|
|
* [Normalize](#normalize)
|
|
* [Packing](#packing)
|
|
* [Padding](#padding)
|
|
* [Permute](#permute)
|
|
* [PixelShuffle](#pixelshuffle)
|
|
* [Pooling](#pooling)
|
|
* [Pooling1D](#pooling1d)
|
|
* [Pooling3D](#pooling3d)
|
|
* [Power](#power)
|
|
* [PReLU](#prelu)
|
|
* [Quantize](#quantize)
|
|
* [Reduction](#reduction)
|
|
* [ReLU](#relu)
|
|
* [Reorg](#reorg)
|
|
* [Requantize](#requantize)
|
|
* [Reshape](#reshape)
|
|
* [RNN](#rnn)
|
|
* [Scale](#scale)
|
|
* [SELU](#selu)
|
|
* [ShuffleChannel](#shufflechannel)
|
|
* [Sigmoid](#sigmoid)
|
|
* [Slice](#slice)
|
|
* [Softmax](#softmax)
|
|
* [Softplus](#softplus)
|
|
* [Split](#split)
|
|
* [Swish](#swish)
|
|
* [TanH](#tanh)
|
|
* [Threshold](#threshold)
|
|
* [Tile](#tile)
|
|
* [UnaryOp](#unaryop)
|
|
|
|
# AbsVal
|
|
```
|
|
y = abs(x)
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
# ArgMax
|
|
```
|
|
y = argmax(x, out_max_val, topk)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | out_max_val | int | 0 | |
|
|
| 1 | topk | int | 1 | |
|
|
|
|
# BatchNorm
|
|
```
|
|
y = (x - mean) / sqrt(var + eps) * slope + bias
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | channels | int | 0 | |
|
|
| 1 | eps | float | 0.f | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| slope_data | float | [channels] |
|
|
| mean_data | float | [channels] |
|
|
| var_data | float | [channels] |
|
|
| bias_data | float | [channels] |
|
|
|
|
# Bias
|
|
```
|
|
y = x + bias
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | bias_data_size| int | 0 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| bias_data | float | [channels] |
|
|
|
|
# BinaryOp
|
|
This operation is used for binary computation, and the calculation rule depends on the [broadcasting rule](https://github.com/Tencent/ncnn/wiki/binaryop-broadcasting).
|
|
```
|
|
C = binaryop(A, B)
|
|
```
|
|
if with_scalar = 1:
|
|
- one_blob_only
|
|
- support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | op_type | int | 0 | Operation type as follows |
|
|
| 1 | with_scalar | int | 0 | with_scalar=0 B is a matrix, with_scalar=1 B is a scalar |
|
|
| 2 | b | float | 0.f | When B is a scalar, B = b |
|
|
|
|
Operation type:
|
|
- 0 = ADD
|
|
- 1 = SUB
|
|
- 2 = MUL
|
|
- 3 = DIV
|
|
- 4 = MAX
|
|
- 5 = MIN
|
|
- 6 = POW
|
|
- 7 = RSUB
|
|
- 8 = RDIV
|
|
|
|
# BNLL
|
|
```
|
|
y = log(1 + e^(-x)) , x > 0
|
|
y = log(1 + e^x), x < 0
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
# Cast
|
|
```
|
|
y = cast(x)
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_packing
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | type_from | int | 0 | |
|
|
| 1 | type_to | int | 0 | |
|
|
|
|
Element type:
|
|
- 0 = auto
|
|
- 1 = float32
|
|
- 2 = float16
|
|
- 3 = int8
|
|
- 4 = bfloat16
|
|
|
|
# Clip
|
|
```
|
|
y = clamp(x, min, max)
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | min | float | -FLT_MAX | |
|
|
| 1 | max | float | FLT_MAX | |
|
|
|
|
# Concat
|
|
```
|
|
y = concat(x0, x1, x2, ...) by axis
|
|
```
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | axis | int | 0 | |
|
|
|
|
# Convolution
|
|
```
|
|
x2 = pad(x, pads, pad_value)
|
|
x3 = conv(x2, weight, kernel, stride, dilation) + bias
|
|
y = activation(x3, act_type, act_params)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | dilation_w | int | 1 | |
|
|
| 3 | stride_w | int | 1 | |
|
|
| 4 | pad_left | int | 0 | |
|
|
| 5 | bias_term | int | 0 | |
|
|
| 6 | weight_data_size| int | 0 | |
|
|
| 8 | int8_scale_term| int | 0 | |
|
|
| 9 | activation_type| int | 0 | |
|
|
| 10 | activation_params| array | [ ] | |
|
|
| 11 | kernel_h | int | kernel_w | |
|
|
| 12 | dilation_h | int | dilation_w | |
|
|
| 13 | stride_h | int | stride_w | |
|
|
| 14 | pad_top | int | pad_left | |
|
|
| 15 | pad_right | int | pad_left | |
|
|
| 16 | pad_bottom | int | pad_top | |
|
|
| 18 | pad_value | float | 0.f | |
|
|
| 19 | dynamic_weight| int | 0 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input, num_output] |
|
|
| bias_data | float | [num_output] |
|
|
| weight_data_int8_scales| float | [num_output] |
|
|
| bottom_blob_int8_scales| float | [1] |
|
|
| top_blob_int8_scales| float | [1] |
|
|
|
|
# Convolution1D
|
|
```
|
|
x2 = pad(x, pads, pad_value)
|
|
x3 = conv1d(x2, weight, kernel, stride, dilation) + bias
|
|
y = activation(x3, act_type, act_params)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | dilation_w | int | 1 | |
|
|
| 3 | stride_w | int | 1 | |
|
|
| 4 | pad_left | int | 0 | |
|
|
| 5 | bias_term | int | 0 | |
|
|
| 6 | weight_data_size| int | 0 | |
|
|
| 9 | activation_type| int | 0 | |
|
|
| 10 | activation_params| array | [ ] | |
|
|
| 15 | pad_right | int | pad_left | |
|
|
| 18 | pad_value | float | 0.f | |
|
|
| 19 | dynamic_weight| int | 0 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_data | float/fp16/int8 | [kernel_w, num_input, num_output] |
|
|
| bias_data | float | [num_output] |
|
|
|
|
# Convolution3D
|
|
```
|
|
x2 = pad(x, pads, pad_value)
|
|
x3 = conv3d(x2, weight, kernel, stride, dilation) + bias
|
|
y = activation(x3, act_type, act_params)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | dilation_w | int | 1 | |
|
|
| 3 | stride_w | int | 1 | |
|
|
| 4 | pad_left | int | 0 | |
|
|
| 5 | bias_term | int | 0 | |
|
|
| 6 | weight_data_size| int | 0 | |
|
|
| 9 | activation_type| int | 0 | |
|
|
| 10 | activation_params| array | [ ] | |
|
|
| 11 | kernel_h | int | kernel_w | |
|
|
| 12 | dilation_h | int | dilation_w | |
|
|
| 13 | stride_h | int | stride_w | |
|
|
| 14 | pad_top | int | pad_left | |
|
|
| 15 | pad_right | int | pad_left | |
|
|
| 16 | pad_bottom | int | pad_top | |
|
|
| 17 | pad_behind | int | pad_front | |
|
|
| 18 | pad_value | float | 0.f | |
|
|
| 21 | kernel_d | int | kernel_w | |
|
|
| 22 | dilation_d | int | dilation_w | |
|
|
| 23 | stride_d | int | stride_w | |
|
|
| 24 | pad_front | int | pad_left | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_data | float/fp16/int8 | [kernel_w, kernel_h, kernel_d, num_input, num_output] |
|
|
| bias_data | float | [num_output] |
|
|
|
|
# ConvolutionDepthWise
|
|
```
|
|
x2 = pad(x, pads, pad_value)
|
|
x3 = conv(x2, weight, kernel, stride, dilation, group) + bias
|
|
y = activation(x3, act_type, act_params)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | dilation_w | int | 1 | |
|
|
| 3 | stride_w | int | 1 | |
|
|
| 4 | pad_left | int | 0 | |
|
|
| 5 | bias_term | int | 0 | |
|
|
| 6 | weight_data_size| int | 0 | |
|
|
| 7 | group | int | 1 | |
|
|
| 8 | int8_scale_term| int | 0 | |
|
|
| 9 | activation_type| int | 0 | |
|
|
| 10 | activation_params| array | [ ] | |
|
|
| 11 | kernel_h | int | kernel_w | |
|
|
| 12 | dilation_h | int | dilation_w | |
|
|
| 13 | stride_h | int | stride_w | |
|
|
| 14 | pad_top | int | pad_left | |
|
|
| 15 | pad_right | int | pad_left | |
|
|
| 16 | pad_bottom | int | pad_top | |
|
|
| 18 | pad_value | float | 0.f | |
|
|
| 19 | dynamic_weight| int | 0 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input / group, num_output / group, group] |
|
|
| bias_data | float | [num_output] |
|
|
| weight_data_int8_scales| float | [group] |
|
|
| bottom_blob_int8_scales| float | [1] |
|
|
| top_blob_int8_scales| float | [1] |
|
|
|
|
# ConvolutionDepthWise1D
|
|
```
|
|
x2 = pad(x, pads, pad_value)
|
|
x3 = conv1d(x2, weight, kernel, stride, dilation, group) + bias
|
|
y = activation(x3, act_type, act_params)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | dilation_w | int | 1 | |
|
|
| 3 | stride_w | int | 1 | |
|
|
| 4 | pad_left | int | 0 | |
|
|
| 5 | bias_term | int | 0 | |
|
|
| 6 | weight_data_size| int | 0 | |
|
|
| 7 | group | int | 1 | |
|
|
| 9 | activation_type| int | 0 | |
|
|
| 10 | activation_params| array | [ ] | |
|
|
| 15 | pad_right | int | pad_left | |
|
|
| 18 | pad_value | float | 0.f | |
|
|
| 19 | dynamic_weight| int | 0 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_data | float/fp16/int8 | [kernel_w, num_input / group, num_output / group, group] |
|
|
| bias_data | float | [num_output] |
|
|
|
|
# ConvolutionDepthWise3D
|
|
```
|
|
x2 = pad(x, pads, pad_value)
|
|
x3 = conv3d(x2, weight, kernel, stride, dilation, group) + bias
|
|
y = activation(x3, act_type, act_params)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | dilation_w | int | 1 | |
|
|
| 3 | stride_w | int | 1 | |
|
|
| 4 | pad_left | int | 0 | |
|
|
| 5 | bias_term | int | 0 | |
|
|
| 6 | weight_data_size| int | 0 | |
|
|
| 7 | group | int | 1 | |
|
|
| 9 | activation_type| int | 0 | |
|
|
| 10 | activation_params| array | [ ] | |
|
|
| 11 | kernel_h | int | kernel_w | |
|
|
| 12 | dilation_h | int | dilation_w | |
|
|
| 13 | stride_h | int | stride_w | |
|
|
| 14 | pad_top | int | pad_left | |
|
|
| 15 | pad_right | int | pad_left | |
|
|
| 16 | pad_bottom | int | pad_top | |
|
|
| 17 | pad_behind | int | pad_front | |
|
|
| 18 | pad_value | float | 0.f | |
|
|
| 21 | kernel_d | int | kernel_w | |
|
|
| 22 | dilation_d | int | dilation_w | |
|
|
| 23 | stride_d | int | stride_w | |
|
|
| 24 | pad_front | int | pad_left | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_data | float/fp16/int8 | [kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] |
|
|
| bias_data | float | [num_output] |
|
|
|
|
# Crop
|
|
```
|
|
y = crop(x)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | woffset | int | 0 | |
|
|
| 1 | hoffset | int | 0 | |
|
|
| 2 | coffset | int | 1 | |
|
|
| 3 | outw | int | 1 | |
|
|
| 4 | outh | int | 0 | |
|
|
| 5 | outc | int | 0 | |
|
|
| 6 | woffset2 | int | 0 | |
|
|
| 7 | hoffset2 | int | 1 | |
|
|
| 8 | coffset2 | int | 0 | |
|
|
| 9 | starts | array | [ ] | |
|
|
| 10 | ends | array | [ ] | |
|
|
| 11 | axes | array | [ ] | |
|
|
|
|
# Deconvolution
|
|
```
|
|
x2 = deconv(x, weight, kernel, stride, dilation) + bias
|
|
x3 = depad(x2, pads, pad_value)
|
|
y = activation(x3, act_type, act_params)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | dilation_w | int | 1 | |
|
|
| 3 | stride_w | int | 1 | |
|
|
| 4 | pad_left | int | 0 | |
|
|
| 5 | bias_term | int | 0 | |
|
|
| 6 | weight_data_size| int | 0 | |
|
|
| 9 | activation_type| int | 0 | |
|
|
| 10 | activation_params| array | [ ] | |
|
|
| 11 | kernel_h | int | kernel_w | |
|
|
| 12 | dilation_h | int | dilation_w | |
|
|
| 13 | stride_h | int | stride_w | |
|
|
| 14 | pad_top | int | pad_left | |
|
|
| 15 | pad_right | int | pad_left | |
|
|
| 16 | pad_bottom | int | pad_top | |
|
|
| 18 | output_pad_right| int | 0 | |
|
|
| 19 | output_pad_bottom| int | output_pad_right | |
|
|
| 20 | output_w | int | 0 | |
|
|
| 21 | output_h | int | output_w | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_data | float/fp16 | [kernel_w, kernel_h, num_input, num_output] |
|
|
| bias_data | float | [num_output] |
|
|
|
|
# Deconvolution1D
|
|
```
|
|
x2 = deconv1d(x, weight, kernel, stride, dilation) + bias
|
|
x3 = depad(x2, pads, pad_value)
|
|
y = activation(x3, act_type, act_params)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | dilation_w | int | 1 | |
|
|
| 3 | stride_w | int | 1 | |
|
|
| 4 | pad_left | int | 0 | |
|
|
| 5 | bias_term | int | 0 | |
|
|
| 6 | weight_data_size| int | 0 | |
|
|
| 9 | activation_type| int | 0 | |
|
|
| 10 | activation_params| array | [ ] | |
|
|
| 15 | pad_right | int | pad_left | |
|
|
| 18 | output_pad_right| int | 0 | |
|
|
| 20 | output_w | int | 0 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_data | float/fp16 | [kernel_w, num_input, num_output] |
|
|
| bias_data | float | [num_output] |
|
|
|
|
# Deconvolution3D
|
|
```
|
|
x2 = deconv3d(x, weight, kernel, stride, dilation) + bias
|
|
x3 = depad(x2, pads, pad_value)
|
|
y = activation(x3, act_type, act_params)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | dilation_w | int | 1 | |
|
|
| 3 | stride_w | int | 1 | |
|
|
| 4 | pad_left | int | 0 | |
|
|
| 5 | bias_term | int | 0 | |
|
|
| 6 | weight_data_size| int | 0 | |
|
|
| 9 | activation_type| int | 0 | |
|
|
| 10 | activation_params| array | [ ] | |
|
|
| 11 | kernel_h | int | kernel_w | |
|
|
| 12 | dilation_h | int | dilation_w | |
|
|
| 13 | stride_h | int | stride_w | |
|
|
| 14 | pad_top | int | pad_left | |
|
|
| 15 | pad_right | int | pad_left | |
|
|
| 16 | pad_bottom | int | pad_top | |
|
|
| 17 | pad_behind | int | pad_front | |
|
|
| 18 | output_pad_right| int | 0 | |
|
|
| 19 | output_pad_bottom| int | output_pad_right | |
|
|
| 20 | output_pad_behind| int | output_pad_right | |
|
|
| 21 | kernel_d | int | kernel_w | |
|
|
| 22 | dilation_d | int | dilation_w | |
|
|
| 23 | stride_d | int | stride_w | |
|
|
| 24 | pad_front | int | pad_left | |
|
|
| 25 | output_w | int | 0 | |
|
|
| 26 | output_h | int | output_w | |
|
|
| 27 | output_d | int | output_w | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_data | float/fp16 | [kernel_w, kernel_h, kernel_d, num_input, num_output] |
|
|
| bias_data | float | [num_output] |
|
|
|
|
# DeconvolutionDepthWise
|
|
```
|
|
x2 = deconv(x, weight, kernel, stride, dilation, group) + bias
|
|
x3 = depad(x2, pads, pad_value)
|
|
y = activation(x3, act_type, act_params)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | dilation_w | int | 1 | |
|
|
| 3 | stride_w | int | 1 | |
|
|
| 4 | pad_left | int | 0 | |
|
|
| 5 | bias_term | int | 0 | |
|
|
| 6 | weight_data_size| int | 0 | |
|
|
| 7 | group | int | 1 | |
|
|
| 9 | activation_type| int | 0 | |
|
|
| 10 | activation_params| array | [ ] | |
|
|
| 11 | kernel_h | int | kernel_w | |
|
|
| 12 | dilation_h | int | dilation_w | |
|
|
| 13 | stride_h | int | stride_w | |
|
|
| 14 | pad_top | int | pad_left | |
|
|
| 15 | pad_right | int | pad_left | |
|
|
| 16 | pad_bottom | int | pad_top | |
|
|
| 18 | output_pad_right| int | 0 | |
|
|
| 19 | output_pad_bottom| int | output_pad_right | |
|
|
| 20 | output_w | int | 0 | |
|
|
| 21 | output_h | int | output_w | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_data | float/fp16 | [kernel_w, kernel_h, num_input / group, num_output / group, group] |
|
|
| bias_data | float | [num_output] |
|
|
|
|
# DeconvolutionDepthWise1D
|
|
```
|
|
x2 = deconv1d(x, weight, kernel, stride, dilation, group) + bias
|
|
x3 = depad(x2, pads, pad_value)
|
|
y = activation(x3, act_type, act_params)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | dilation_w | int | 1 | |
|
|
| 3 | stride_w | int | 1 | |
|
|
| 4 | pad_left | int | 0 | |
|
|
| 5 | bias_term | int | 0 | |
|
|
| 6 | weight_data_size| int | 0 | |
|
|
| 7 | group | int | 1 | |
|
|
| 9 | activation_type| int | 0 | |
|
|
| 10 | activation_params| array | [ ] | |
|
|
| 15 | pad_right | int | pad_left | |
|
|
| 18 | output_pad_right| int | 0 | |
|
|
| 20 | output_w | int | 0 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_data | float/fp16 | [kernel_w, num_input / group, num_output / group, group] |
|
|
| bias_data | float | [num_output] |
|
|
|
|
# DeconvolutionDepthWise3D
|
|
```
|
|
x2 = deconv3d(x, weight, kernel, stride, dilation, group) + bias
|
|
x3 = depad(x2, pads, pad_value)
|
|
y = activation(x3, act_type, act_params)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | dilation_w | int | 1 | |
|
|
| 3 | stride_w | int | 1 | |
|
|
| 4 | pad_left | int | 0 | |
|
|
| 5 | bias_term | int | 0 | |
|
|
| 6 | weight_data_size| int | 0 | |
|
|
| 7 | group | int | 1 | |
|
|
| 9 | activation_type| int | 0 | |
|
|
| 10 | activation_params| array | [ ] | |
|
|
| 11 | kernel_h | int | kernel_w | |
|
|
| 12 | dilation_h | int | dilation_w | |
|
|
| 13 | stride_h | int | stride_w | |
|
|
| 14 | pad_top | int | pad_left | |
|
|
| 15 | pad_right | int | pad_left | |
|
|
| 16 | pad_bottom | int | pad_top | |
|
|
| 17 | pad_behind | int | pad_front | |
|
|
| 18 | output_pad_right| int | 0 | |
|
|
| 19 | output_pad_bottom| int | output_pad_right | |
|
|
| 20 | output_pad_behind| int | output_pad_right | |
|
|
| 21 | kernel_d | int | kernel_w | |
|
|
| 22 | dilation_d | int | dilation_w | |
|
|
| 23 | stride_d | int | stride_w | |
|
|
| 24 | pad_front | int | pad_left | |
|
|
| 25 | output_w | int | 0 | |
|
|
| 26 | output_h | int | output_w | |
|
|
| 27 | output_d | int | output_w | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_data | float/fp16 | [kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] |
|
|
| bias_data | float | [num_output] |
|
|
|
|
# Dequantize
|
|
```
|
|
y = x * scale + bias
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | scale_data_size| int | 1 | |
|
|
| 1 | bias_data_size| int | 0 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| scale_data | float | [scale_data_size] |
|
|
| bias_data | float | [bias_data_size] |
|
|
|
|
# Dropout
|
|
```
|
|
y = x * scale
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | scale | float | 1.f | |
|
|
|
|
# Eltwise
|
|
```
|
|
y = elementwise_op(x0, x1, ...)
|
|
```
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | op_type | int | 0 | |
|
|
| 1 | coeffs | array | [ ] | |
|
|
|
|
Operation type:
|
|
- 0 = PROD
|
|
- 1 = SUM
|
|
- 2 = MAX
|
|
|
|
# ELU
|
|
```
|
|
if x < 0 y = (exp(x) - 1) * alpha
|
|
else y = x
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | alpha | float | 0.1f | |
|
|
|
|
# Exp
|
|
```
|
|
if base == -1 y = exp(shift + x * scale)
|
|
else y = pow(base, (shift + x * scale))
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | base | float | -1.f | |
|
|
| 1 | scale | float | 1.f | |
|
|
| 2 | shift | float | 0.f | |
|
|
|
|
# Flatten
|
|
Reshape blob to 1 dimension
|
|
|
|
* one_blob_only
|
|
|
|
# GELU
|
|
```
|
|
if fast_gelu == 1 y = 0.5 * x * (1 + tanh(0.79788452 * (x + 0.044715 * x * x * x)));
|
|
else y = 0.5 * x * erfc(-0.70710678 * x)
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | fast_gelu | int | 0 | use approximation |
|
|
|
|
# Gemm
|
|
```
|
|
a = transA ? transpose(x0) : x0
|
|
b = transb ? transpose(x1) : x1
|
|
c = x2
|
|
y = gemm(a, b) * alpha + c * beta
|
|
```
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | alpha | float | 1.f | |
|
|
| 1 | beta | float | 1.f | |
|
|
| 2 | transA | int | 0 | |
|
|
| 3 | transb | int | 0 | |
|
|
|
|
# GroupNorm
|
|
```
|
|
split x along channel axis into group x0, x1 ...
|
|
l2 normalize for each group x0, x1 ...
|
|
y = x * gamma + beta
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | group | int | 1 | |
|
|
| 1 | channels | int | 0 | |
|
|
| 2 | eps | float | 0.001f | x = x / sqrt(var + eps) |
|
|
| 3 | affine | int | 1 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| gamma_data | float | [channels] |
|
|
| beta_data | float | [channels] |
|
|
|
|
# GRU
|
|
Apply a single-layer GRU to a feature sequence of `T` timesteps. The input blob shape is `[w=input_size, h=T]` and the output blob shape is `[w=num_output, h=T]`.
|
|
|
|
```
|
|
y = gru(x)
|
|
y0, hidden y1 = gru(x0, hidden x1)
|
|
```
|
|
|
|
* one_blob_only if bidirectional
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | hidden size of output |
|
|
| 1 | weight_data_size| int | 0 | total size of weight matrix |
|
|
| 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_xc_data| float/fp16/int8 | [input_size, num_output * 3, num_directions] |
|
|
| bias_c_data | float/fp16/int8 | [num_output, 4, num_directions] |
|
|
| weight_hc_data| float/fp16/int8 | [num_output, num_output * 3, num_directions] |
|
|
|
|
Direction flag:
|
|
- 0 = forward only
|
|
- 1 = reverse only
|
|
- 2 = bidirectional
|
|
|
|
# HardSigmoid
|
|
```
|
|
y = clamp(x * alpha + beta, 0, 1)
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | alpha | float | 0.2f | |
|
|
| 1 | beta | float | 0.5f | |
|
|
|
|
# HardSwish
|
|
```
|
|
y = x * clamp(x * alpha + beta, 0, 1)
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | alpha | float | 0.2f | |
|
|
| 1 | beta | float | 0.5f | |
|
|
|
|
# InnerProduct
|
|
```
|
|
x2 = innerproduct(x, weight) + bias
|
|
y = activation(x2, act_type, act_params)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | |
|
|
| 1 | bias_term | int | 0 | |
|
|
| 2 | weight_data_size| int | 0 | |
|
|
| 8 | int8_scale_term| int | 0 | |
|
|
| 9 | activation_type| int | 0 | |
|
|
| 10 | activation_params| array | [ ] | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_data | float/fp16/int8 | [num_input, num_output] |
|
|
| bias_data | float | [num_output] |
|
|
| weight_data_int8_scales| float | [num_output] |
|
|
| bottom_blob_int8_scales| float | [1] |
|
|
|
|
# Input
|
|
```
|
|
y = input
|
|
```
|
|
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | w | int | 0 | |
|
|
| 1 | h | int | 0 | |
|
|
| 11 | d | int | 0 | |
|
|
| 2 | c | int | 0 | |
|
|
|
|
# InstanceNorm
|
|
```
|
|
split x along channel axis into instance x0, x1 ...
|
|
l2 normalize for each channel instance x0, x1 ...
|
|
y = x * gamma + beta
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | channels | int | 0 | |
|
|
| 1 | eps | float | 0.001f | x = x / sqrt(var + eps) |
|
|
| 2 | affine | int | 1 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| gamma_data | float | [channels] |
|
|
| beta_data | float | [channels] |
|
|
|
|
# Interp
|
|
```
|
|
if dynamic_target_size == 0 y = resize(x) by fixed size or scale
|
|
else y = resize(x0, size(x1))
|
|
```
|
|
|
|
* one_blob_only if dynamic_target_size == 0
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | resize_type | int | 0 | |
|
|
| 1 | height_scale | float | 1.f | |
|
|
| 2 | width_scale | float | 1.f | |
|
|
| 3 | output_height | int | 0 | |
|
|
| 4 | output_width | int | 0 | |
|
|
| 5 | dynamic_target_size| int | 0 | |
|
|
| 6 | align_corner | int | 0 | |
|
|
|
|
Resize type:
|
|
- 1 = Nearest
|
|
- 2 = Bilinear
|
|
- 3 = Bicubic
|
|
|
|
# LayerNorm
|
|
```
|
|
split x along outmost axis into part x0, x1 ...
|
|
l2 normalize for each part x0, x1 ...
|
|
y = x * gamma + beta by elementwise
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | affine_size | int | 0 | |
|
|
| 1 | eps | float | 0.001f | x = x / sqrt(var + eps) |
|
|
| 2 | affine | int | 1 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| gamma_data | float | [affine_size] |
|
|
| beta_data | float | [affine_size] |
|
|
|
|
# Log
|
|
```
|
|
if base == -1 y = log(shift + x * scale)
|
|
else y = log(shift + x * scale) / log(base)
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | base | float | -1.f | |
|
|
| 1 | scale | float | 1.f | |
|
|
| 2 | shift | float | 0.f | |
|
|
|
|
# LRN
|
|
```
|
|
if region_type == ACROSS_CHANNELS square_sum = sum of channel window of local_size
|
|
if region_type == WITHIN_CHANNEL square_sum = sum of spatial window of local_size
|
|
y = x * pow(bias + alpha * square_sum / (local_size * local_size), -beta)
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | region_type | int | 0 | |
|
|
| 1 | local_size | int | 5 | |
|
|
| 2 | alpha | float | 1.f | |
|
|
| 3 | beta | float | 0.75f | |
|
|
| 4 | bias | float | 1.f | |
|
|
|
|
Region type:
|
|
- 0 = ACROSS_CHANNELS
|
|
- 1 = WITHIN_CHANNEL
|
|
|
|
# LSTM
|
|
Apply a single-layer LSTM to a feature sequence of `T` timesteps. The input blob shape is `[w=input_size, h=T]` and the output blob shape is `[w=num_output, h=T]`.
|
|
|
|
```
|
|
y = lstm(x)
|
|
y0, hidden y1, cell y2 = lstm(x0, hidden x1, cell x2)
|
|
```
|
|
|
|
* one_blob_only if bidirectional
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | hidden size of output |
|
|
| 1 | weight_data_size| int | 0 | total size of IFOG weight matrix |
|
|
| 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_xc_data| float/fp16/int8 | [input_size, num_output * 4, num_directions] |
|
|
| bias_c_data | float/fp16/int8 | [num_output, 4, num_directions] |
|
|
| weight_hc_data| float/fp16/int8 | [num_output, num_output * 4, num_directions] |
|
|
|
|
Direction flag:
|
|
- 0 = forward only
|
|
- 1 = reverse only
|
|
- 2 = bidirectional
|
|
|
|
# MemoryData
|
|
```
|
|
y = data
|
|
```
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | w | int | 0 | |
|
|
| 1 | h | int | 0 | |
|
|
| 11 | d | int | 0 | |
|
|
| 2 | c | int | 0 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| data | float | [w, h, d, c] |
|
|
|
|
# Mish
|
|
```
|
|
y = x * tanh(log(exp(x) + 1))
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
# MultiHeadAttention
|
|
```
|
|
split q k v into num_head part q0, k0, v0, q1, k1, v1 ...
|
|
for each num_head part
|
|
xq = affine(q) / (embed_dim / num_head)
|
|
xk = affine(k)
|
|
xv = affine(v)
|
|
xqk = xq * xk
|
|
softmax_inplace(xqk)
|
|
xqkv = xqk * xv
|
|
merge xqkv to out
|
|
y = affine(out)
|
|
```
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | embed_dim | int | 0 | |
|
|
| 1 | num_head | int | 1 | |
|
|
| 2 | weight_data_size| int | 0 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| q_weight_data | float/fp16/int8 | [weight_data_size] |
|
|
| q_bias_data | float | [embed_dim] |
|
|
| k_weight_data | float/fp16/int8 | [weight_data_size] |
|
|
| k_bias_data | float | [embed_dim] |
|
|
| v_weight_data | float/fp16/int8 | [weight_data_size] |
|
|
| v_bias_data | float | [embed_dim] |
|
|
| out_weight_data| float/fp16/int8 | [weight_data_size] |
|
|
| out_bias_data | float | [embed_dim] |
|
|
|
|
# MVN
|
|
```
|
|
if normalize_variance == 1 && across_channels == 1 y = (x - mean) / (sqrt(var) + eps) of whole blob
|
|
if normalize_variance == 1 && across_channels == 0 y = (x - mean) / (sqrt(var) + eps) of each channel
|
|
if normalize_variance == 0 && across_channels == 1 y = x - mean of whole blob
|
|
if normalize_variance == 0 && across_channels == 0 y = x - mean of each channel
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | normalize_variance| int | 0 | |
|
|
| 1 | across_channels| int | 0 | |
|
|
| 2 | eps | float | 0.0001f | x = x / (sqrt(var) + eps) |
|
|
|
|
# Noop
|
|
```
|
|
y = x
|
|
```
|
|
|
|
# Normalize
|
|
```
|
|
if across_spatial == 1 && across_channel == 1 x2 = normalize(x) of whole blob
|
|
if across_spatial == 1 && across_channel == 0 x2 = normalize(x) of each channel
|
|
if across_spatial == 0 && across_channel == 1 x2 = normalize(x) of each position
|
|
y = x2 * scale
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | across_spatial| int | 0 | |
|
|
| 1 | channel_shared| int | 0 | |
|
|
| 2 | eps | float | 0.0001f | see eps mode |
|
|
| 3 | scale_data_size| int | 0 | |
|
|
| 4 | across_channel| int | 0 | |
|
|
| 9 | eps_mode | int | 0 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| scale_data | float | [scale_data_size] |
|
|
|
|
Eps Mode:
|
|
- 0 = caffe/mxnet x = x / sqrt(var + eps)
|
|
- 1 = pytorch x = x / max(sqrt(var), eps)
|
|
- 2 = tensorflow x = x / sqrt(max(var, eps))
|
|
|
|
# Packing
|
|
```
|
|
y = wrap_packing(x)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | out_elempack | int | 1 | |
|
|
| 1 | use_padding | int | 0 | |
|
|
| 2 | cast_type_from| int | 0 | |
|
|
| 3 | cast_type_to | int | 0 | |
|
|
| 4 | storage_type_from| int | 0 | |
|
|
| 5 | storage_type_to| int | 0 | |
|
|
|
|
# Padding
|
|
```
|
|
y = pad(x, pads)
|
|
```
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ---- | --------- | ----------------- |
|
|
| 0 | top | int | 0 | |
|
|
| 1 | bottom | int | 0 | |
|
|
| 2 | left | int | 0 | |
|
|
| 3 | right | int | 0 | |
|
|
| 4 | type | int | 0 | |
|
|
| 5 | value | float | 0 | |
|
|
| 6 | per_channel_pad_data_size| int | 0 | |
|
|
| 7 | front | int | stride_w | |
|
|
| 8 | behind | int | pad_left | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| per_channel_pad_data| float | [per_channel_pad_data_size] |
|
|
|
|
Padding type:
|
|
- 0 = CONSTANT
|
|
- 1 = REPLICATE
|
|
- 2 = REFLECT
|
|
|
|
# Permute
|
|
```
|
|
y = reorder(x)
|
|
```
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ---- | --------- | ----------------- |
|
|
| 0 | order_type | int | 0 | |
|
|
|
|
Order Type:
|
|
- 0 = WH WHC WHDC
|
|
- 1 = HW HWC HWDC
|
|
- 2 = WCH WDHC
|
|
- 3 = CWH DWHC
|
|
- 4 = HCW HDWC
|
|
- 5 = CHW DHWC
|
|
- 6 = WHCD
|
|
- 7 = HWCD
|
|
- 8 = WCHD
|
|
- 9 = CWHD
|
|
- 10 = HCWD
|
|
- 11 = CHWD
|
|
- 12 = WDCH
|
|
- 13 = DWCH
|
|
- 14 = WCDH
|
|
- 15 = CWDH
|
|
- 16 = DCWH
|
|
- 17 = CDWH
|
|
- 18 = HDCW
|
|
- 19 = DHCW
|
|
- 20 = HCDW
|
|
- 21 = CHDW
|
|
- 22 = DCHW
|
|
- 23 = CDHW
|
|
|
|
# PixelShuffle
|
|
```
|
|
if mode == 0 y = depth_to_space(x) where x channel order is sw-sh-outc
|
|
if mode == 1 y = depth_to_space(x) where x channel order is outc-sw-sh
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ---- | --------- | ----------------- |
|
|
| 0 | upscale_factor| int | 1 | |
|
|
| 1 | mode | int | 0 | |
|
|
|
|
# Pooling
|
|
```
|
|
x2 = pad(x, pads)
|
|
x3 = pooling(x2, kernel, stride)
|
|
```
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | --------------| ---- | --------- | ----------------- |
|
|
| 0 | pooling_type | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | stride_w | int | 1 | |
|
|
| 3 | pad_left | int | 0 | |
|
|
| 4 | global_pooling| int | 0 | |
|
|
| 5 | pad_mode | int | 0 | |
|
|
| 6 | avgpool_count_include_pad| int | 0 | |
|
|
| 7 | adaptive_pooling| int | 0 | |
|
|
| 8 | out_w | int | 0 | |
|
|
| 11 | kernel_h | int | kernel_w | |
|
|
| 12 | stride_h | int | stride_w | |
|
|
| 13 | pad_top | int | pad_left | |
|
|
| 14 | pad_right | int | pad_left | |
|
|
| 15 | pad_bottom | int | pad_top | |
|
|
| 18 | out_h | int | out_w | |
|
|
|
|
Pooling type:
|
|
- 0 = MAX
|
|
- 1 = AVG
|
|
|
|
Pad mode:
|
|
- 0 = full padding
|
|
- 1 = valid padding
|
|
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
|
|
- 3 = onnx padding=SAME_LOWER
|
|
|
|
# Pooling1D
|
|
```
|
|
x2 = pad(x, pads)
|
|
x3 = pooling1d(x2, kernel, stride)
|
|
```
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | --------------| ---- | --------- | ----------------- |
|
|
| 0 | pooling_type | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | stride_w | int | 1 | |
|
|
| 3 | pad_left | int | 0 | |
|
|
| 4 | global_pooling| int | 0 | |
|
|
| 5 | pad_mode | int | 0 | |
|
|
| 6 | avgpool_count_include_pad| int | 0 | |
|
|
| 7 | adaptive_pooling| int | 0 | |
|
|
| 8 | out_w | int | 0 | |
|
|
| 14 | pad_right | int | pad_left | |
|
|
|
|
Pooling type:
|
|
- 0 = MAX
|
|
- 1 = AVG
|
|
|
|
Pad mode:
|
|
- 0 = full padding
|
|
- 1 = valid padding
|
|
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
|
|
- 3 = onnx padding=SAME_LOWER
|
|
|
|
# Pooling3D
|
|
```
|
|
x2 = pad(x, pads)
|
|
x3 = pooling3d(x2, kernel, stride)
|
|
```
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | --------------| ---- | --------- | ----------------- |
|
|
| 0 | pooling_type | int | 0 | |
|
|
| 1 | kernel_w | int | 0 | |
|
|
| 2 | stride_w | int | 1 | |
|
|
| 3 | pad_left | int | 0 | |
|
|
| 4 | global_pooling| int | 0 | |
|
|
| 5 | pad_mode | int | 0 | |
|
|
| 6 | avgpool_count_include_pad| int | 0 | |
|
|
| 7 | adaptive_pooling| int | 0 | |
|
|
| 8 | out_w | int | 0 | |
|
|
| 11 | kernel_h | int | kernel_w | |
|
|
| 12 | stride_h | int | stride_w | |
|
|
| 13 | pad_top | int | pad_left | |
|
|
| 14 | pad_right | int | pad_left | |
|
|
| 15 | pad_bottom | int | pad_top | |
|
|
| 16 | pad_behind | int | pad_front | |
|
|
| 18 | out_h | int | out_w | |
|
|
| 21 | kernel_d | int | kernel_w | |
|
|
| 22 | stride_d | int | stride_w | |
|
|
| 23 | pad_front | int | pad_left | |
|
|
| 28 | out_d | int | out_w | |
|
|
|
|
Pooling type:
|
|
- 0 = MAX
|
|
- 1 = AVG
|
|
|
|
Pad mode:
|
|
- 0 = full padding
|
|
- 1 = valid padding
|
|
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
|
|
- 3 = onnx padding=SAME_LOWER
|
|
|
|
# Power
|
|
```
|
|
y = pow((shift + x * scale), power)
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | power | float | 1.f | |
|
|
| 1 | scale | float | 1.f | |
|
|
| 2 | shift | float | 0.f | |
|
|
|
|
# PReLU
|
|
```
|
|
if x < 0 y = x * slope
|
|
else y = x
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_slope | int | 0 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| slope_data | float | [num_slope] |
|
|
|
|
# Quantize
|
|
```
|
|
y = float2int8(x * scale)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | scale_data_size| int | 1 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| scale_data | float | [scale_data_size] |
|
|
|
|
# Reduction
|
|
```
|
|
y = reduce_op(x * coeff)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | operation | int | 0 | |
|
|
| 1 | reduce_all | int | 1 | |
|
|
| 2 | coeff | float | 1.f | |
|
|
| 3 | axes | array | [ ] | |
|
|
| 4 | keepdims | int | 0 | |
|
|
|
|
Operation type:
|
|
- 0 = SUM
|
|
- 1 = ASUM
|
|
- 2 = SUMSQ
|
|
- 3 = MEAN
|
|
- 4 = MAX
|
|
- 5 = MIN
|
|
- 6 = PROD
|
|
- 7 = L1
|
|
- 8 = L2
|
|
- 9 = LogSum
|
|
- 10 = LogSumExp
|
|
|
|
# ReLU
|
|
```
|
|
if x < 0 y = x * slope
|
|
else y = x
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | slope | float | 0.f | |
|
|
|
|
# Reorg
|
|
```
|
|
if mode == 0 y = space_to_depth(x) where x channel order is sw-sh-outc
|
|
if mode == 1 y = space_to_depth(x) where x channel order is outc-sw-sh
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ---- | --------- | ----------------- |
|
|
| 0 | stride | int | 1 | |
|
|
| 1 | mode | int | 0 | |
|
|
|
|
# Requantize
|
|
```
|
|
x2 = x * scale_in + bias
|
|
x3 = activation(x2)
|
|
y = float2int8(x3 * scale_out)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | scale_in_data_size| int | 1 | |
|
|
| 1 | scale_out_data_size| int | 1 | |
|
|
| 2 | bias_data_size| int | 0 | |
|
|
| 3 | activation_type| int | 0 | |
|
|
| 4 | activation_params| int | [ ] | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| scale_in_data | float | [scale_in_data_size] |
|
|
| scale_out_data| float | [scale_out_data_size] |
|
|
| bias_data | float | [bias_data_size] |
|
|
|
|
# Reshape
|
|
```
|
|
if permute == 1 y = hwc2chw(reshape(chw2hwc(x)))
|
|
else y = reshape(x)
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | w | int | -233 | |
|
|
| 1 | h | int | -233 | |
|
|
| 11 | d | int | -233 | |
|
|
| 2 | c | int | -233 | |
|
|
| 3 | permute | int | 0 | |
|
|
|
|
Reshape flag:
|
|
- 0 = copy from bottom
|
|
- -1 = remaining
|
|
- -233 = drop this dim(default)
|
|
|
|
# RNN
|
|
Apply a single-layer RNN to a feature sequence of `T` timesteps. The input blob shape is `[w=input_size, h=T]` and the output blob shape is `[w=num_output, h=T]`.
|
|
|
|
```
|
|
y = rnn(x)
|
|
y0, hidden y1 = rnn(x0, hidden x1)
|
|
```
|
|
|
|
* one_blob_only if bidirectional
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | num_output | int | 0 | hidden size of output |
|
|
| 1 | weight_data_size| int | 0 | total size of weight matrix |
|
|
| 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| weight_xc_data| float/fp16/int8 | [input_size, num_output, num_directions] |
|
|
| bias_c_data | float/fp16/int8 | [num_output, 1, num_directions] |
|
|
| weight_hc_data| float/fp16/int8 | [num_output, num_output, num_directions] |
|
|
|
|
Direction flag:
|
|
- 0 = forward only
|
|
- 1 = reverse only
|
|
- 2 = bidirectional
|
|
|
|
# Scale
|
|
```
|
|
if scale_data_size == -233 y = x0 * x1
|
|
else y = x * scale + bias
|
|
```
|
|
|
|
* one_blob_only if scale_data_size != -233
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | scale_data_size| int | 0 | |
|
|
| 1 | bias_term | int | 0 | |
|
|
|
|
| weight | type | shape |
|
|
| ------------- | ----- | --------------------- |
|
|
| scale_data | float | [scale_data_size] |
|
|
| bias_data | float | [scale_data_size] |
|
|
|
|
# SELU
|
|
```
|
|
if x < 0 y = (exp(x) - 1.f) * alpha * lambda
|
|
else y = x * lambda
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | alpha | float | 1.67326324f| |
|
|
| 1 | lambda | float | 1.050700987f| |
|
|
|
|
# ShuffleChannel
|
|
```
|
|
if reverse == 0 y = shufflechannel(x) by group
|
|
if reverse == 1 y = shufflechannel(x) by channel / group
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ---- | --------- | ----------------- |
|
|
| 0 | group | int | 1 | |
|
|
| 1 | reverse | int | 0 | |
|
|
|
|
# Sigmoid
|
|
```
|
|
y = 1 / (1 + exp(-x))
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
# Slice
|
|
```
|
|
split x along axis into slices, each part slice size is based on slices array
|
|
```
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | slices | array | [ ] | |
|
|
| 1 | axis | int | 0 | |
|
|
|
|
# Softmax
|
|
```
|
|
softmax(x, axis)
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | axis | int | 0 | |
|
|
| 1 | fixbug0 | int | 0 | hack for bug fix, should be 1 |
|
|
|
|
# Softplus
|
|
```
|
|
y = log(exp(x) + 1)
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
# Split
|
|
```
|
|
y0, y1 ... = x
|
|
```
|
|
|
|
# Swish
|
|
```
|
|
y = x / (1 + exp(-x))
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
# TanH
|
|
```
|
|
y = tanh(x)
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
# Threshold
|
|
```
|
|
if x > threshold y = 1
|
|
else y = 0
|
|
```
|
|
|
|
* one_blob_only
|
|
* support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | threshold | float | 0.f | |
|
|
|
|
# Tile
|
|
```
|
|
y = repeat tiles along axis for x
|
|
```
|
|
|
|
* one_blob_only
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | axis | int | 0 | |
|
|
| 1 | tiles | int | 1 | |
|
|
| 2 | repeats | array | [ ] | |
|
|
|
|
# UnaryOp
|
|
```
|
|
y = unaryop(x)
|
|
```
|
|
|
|
- one_blob_only
|
|
- support_inplace
|
|
|
|
| param id | name | type | default | description |
|
|
| --------- | ------------- | ----- | --------- | ----------------- |
|
|
| 0 | op_type | int | 0 | Operation type as follows |
|
|
|
|
Operation type:
|
|
- 0 = ABS
|
|
- 1 = NEG
|
|
- 2 = FLOOR
|
|
- 3 = CEIL
|
|
- 4 = SQUARE
|
|
- 5 = SQRT
|
|
- 6 = RSQ
|
|
- 7 = EXP
|
|
- 8 = LOG
|
|
- 9 = SIN
|
|
- 10 = COS
|
|
- 11 = TAN
|
|
- 12 = ASIN
|
|
- 13 = ACOS
|
|
- 14 = ATAN
|
|
- 15 = RECIPROCAL
|
|
- 16 = TANH
|