1
0

refactor: remove constraint

- remove constraint because we no longer require them. constraints are put into seperate modules.
This commit is contained in:
2025-12-16 20:35:32 +08:00
parent 194f055039
commit 75442061e9
6 changed files with 0 additions and 282 deletions

View File

@ -84,8 +84,6 @@ FILES
yycc/windows/dialog.hpp
yycc/windows/winfct.hpp
yycc/windows/console.hpp
yycc/constraint.hpp
yycc/constraint/builder.hpp
yycc/encoding/stl.hpp
yycc/encoding/windows.hpp
yycc/encoding/iconv.hpp

View File

@ -1,78 +0,0 @@
#pragma once
#include "macro/class_copy_move.hpp"
#include <functional>
#include <stdexcept>
#include <algorithm>
/// @brief The namespace containing generic constraint concept used varied in other modules.
namespace yycc::constraint {
/// @brief Function prototype used in Constraint for checking whether given value is valid.
/// @details Analyze given value, and return true if value is legal, otherwise false.
template<typename T>
using FnCheck = std::function<bool(const T&)>;
/// @brief Function prototype used in Constraint for clamping given value into a valid value.
/// @details Analyze given value, return clamped value.
template<typename T>
using FnClamp = std::function<T(const T&)>;
/**
* @brief The constraint applied to settings to limit its stored value.
* @tparam T The data type this constraint need to be processed with.
* @details
* Constraint class contains various features:
* \li Check: Check whether given value is in range.
* \li Clamp: Clamp given value into valid value.
* Every instances of Constraint can have some, or none of these features.
* So it is essential to check whether instance has corresponding features before using it.
*/
template<typename T>
class Constraint {
public:
Constraint(FnCheck<T>&& fn_check, FnClamp<T>&& fn_clamp) :
fn_check(std::move(fn_check)), fn_clamp(std::move(fn_clamp)) {}
YYCC_DELETE_COPY(Constraint)
YYCC_DEFAULT_MOVE(Constraint)
/**
* @brief Perform Check feature.
* @param[in] value The valid for checking.
* @return True if valid is okey, otherwise false.
* @exception std::logic_error Raised if this feature is not supported.
*/
bool check(const T& value) const {
if (!support_check()) {
throw std::logic_error("this Constraint do not support check operation");
} else {
return fn_check(value);
}
}
/**
* @brief Perform Clamp feature.
* @param[in] value The valid for clamping.
* @return The result after clamping.
* @exception std::logic_error Raised if this feature is not supported.
*/
T clamp(const T& value) const {
if (!support_clamp()) {
throw std::logic_error("this Constraint do not support clamp operation");
} else {
return fn_clamp(value);
}
}
/// @brief Check whether this Constraint support Check feature.
/// @return True if it support, otherwise false.
bool support_check() const noexcept { return this->fn_check != nullptr; }
/// @brief Check whether this Constraint support Clamp feature.
/// @return True if it support, otherwise false.
bool support_clamp() const noexcept { return this->fn_clamp != nullptr; }
private:
/// @brief Pointer to Check feature function.
FnCheck<T> fn_check;
/// @brief Pointer to Clamp feature function.
FnClamp<T> fn_clamp;
};
} // namespace yycc::core::constraint

View File

@ -1,71 +0,0 @@
#pragma once
#include "../constraint.hpp"
#include <set>
/// @brief The namespace containing convenient function building common used Constraint instance.
namespace yycc::constraint::builder {
/**
* @brief Build Constraint for arithmetic values by minimum and maximum value range.
* @tparam T An arithmetic or enum type (except bool) of underlying stored value.
* @param[in] min_value The minimum value of range (inclusive).
* @param[in] max_value The maximum value of range (inclusive).
* @return The generated constraint instance which can be directly applied.
*/
template<typename T, std::enable_if_t<std::is_arithmetic_v<T> && !std::is_same_v<T, bool>, int> = 0>
Constraint<T> min_max_constraint(T min_value, T max_value) {
if (min_value > max_value) throw std::invalid_argument("the max value must be equal or greater than min value");
auto fn_check = [min_value, max_value](const T& val) -> bool { return (val <= max_value) && (val >= min_value); };
auto fn_clamp = [min_value, max_value](const T& val) -> T { return std::clamp(val, min_value, max_value); };
return Constraint<T>(std::move(fn_check), std::move(fn_clamp));
}
/**
* @brief Get constraint for enum values by enumerating all possible values.
* @tparam T An enum type (except bool) of underlying stored value.
* @param[in] il An initializer list storing all possible values.
* @param[in] default_index The index of default value in given list.
* @return The generated constraint instance which can be directly applied.
*/
template<typename T, std::enable_if_t<std::is_enum_v<T>, int> = 0>
Constraint<T> enum_constraint(const std::initializer_list<T>& il, size_t default_index = 0u) {
if (default_index >= il.size()) throw std::invalid_argument("the default index must be a valid index in given list");
T default_entry = il.begin()[default_index];
std::set<T> entries(il);
auto fn_check = [entries](const T& val) -> bool { return entries.contains(val); };
auto fn_clamp = [entries, default_entry](const T& val) -> T {
if (entries.contains(val)) return val;
else return default_entry;
};
return Constraint<T>(std::move(fn_check), fn_clamp);
}
/**
* @brief Get constraint for string values by enumerating all possible values.
* @param[in] il An initializer list storing all possible values.
* @param[in] default_index The index of default value in given list.
* @return The generated constraint instance which can be directly applied.
*/
inline Constraint<std::u8string> strenum_constraint(const std::initializer_list<std::u8string_view>& il, size_t default_index = 0u) {
if (default_index >= il.size()) throw std::invalid_argument("the default index must be a valid index in given list");
std::u8string default_entry = std::u8string(il.begin()[default_index]);
std::set<std::u8string> entries;
for (const auto& i : il) {
entries.emplace(i);
}
auto fn_check = [entries](const std::u8string& val) -> bool { return entries.contains(val); };
auto fn_clamp = [entries, default_entry](const std::u8string& val) -> std::u8string {
if (entries.contains(val)) return val;
else return default_entry;
};
return Constraint<std::u8string>(std::move(fn_check), fn_clamp);
}
} // namespace yycc::constraint::builder
#undef NS_YYCC_STRING

View File

@ -14,8 +14,6 @@ PRIVATE
yycc/macro/ptr_size_detector.cpp
yycc/macro/stl_detector.cpp
yycc/flag_enum.cpp
yycc/constraint.cpp
yycc/constraint/builder.cpp
yycc/patch/ptr_pad.cpp
yycc/patch/fopen.cpp
yycc/patch/stream.cpp

View File

@ -1,50 +0,0 @@
#include <gtest/gtest.h>
#include <yycc.hpp>
#include <yycc/constraint.hpp>
#include <yycc/prelude.hpp>
#define CONSTRAINT ::yycc::constraint::Constraint
namespace yycctest::constraint {
template<typename T>
bool check(const T& value) {
return false;
}
template<typename T>
T clamp(const T& value) {
return value;
}
TEST(Constraint, Normal) {
CONSTRAINT<u32> instance(check<u32>, clamp<u32>);
EXPECT_TRUE(instance.support_check());
EXPECT_TRUE(instance.support_clamp());
EXPECT_FALSE(instance.check(0));
EXPECT_EQ(instance.clamp(0), 0);
}
TEST(Constraint, SomeNone) {
{
CONSTRAINT<u32> instance(check<u32>, nullptr);
EXPECT_TRUE(instance.support_check());
EXPECT_FALSE(instance.support_clamp());
EXPECT_FALSE(instance.check(0));
}
{
CONSTRAINT<u32> instance(nullptr, clamp<u32>);
EXPECT_FALSE(instance.support_check());
EXPECT_TRUE(instance.support_clamp());
EXPECT_EQ(instance.clamp(0), 0);
}
}
TEST(Constraint, AllNone) {
CONSTRAINT<u32> instance(nullptr, nullptr);
EXPECT_FALSE(instance.support_check());
EXPECT_FALSE(instance.support_clamp());
}
}

View File

@ -1,79 +0,0 @@
#include <gtest/gtest.h>
#include <yycc.hpp>
#include <yycc/constraint/builder.hpp>
#include <yycc/prelude.hpp>
#define BUILDER ::yycc::constraint::builder
using namespace std::literals::string_view_literals;
namespace yycctest::constraint::builder {
#define TEST_SUCCESS(constraint, value) \
EXPECT_TRUE(constraint.check(value)); \
EXPECT_EQ(constraint.clamp(value), value);
#define TEST_FAIL(constraint, value, clamped_value) \
EXPECT_FALSE(constraint.check(value)); \
EXPECT_EQ(constraint.clamp(value), clamped_value);
TEST(ConstraintBuilder, MinMaxConstraint) {
// Integral type
{
auto c = BUILDER::min_max_constraint<i32>(5, 61);
ASSERT_TRUE(c.support_check());
ASSERT_TRUE(c.support_clamp());
TEST_SUCCESS(c, 5);
TEST_SUCCESS(c, 6);
TEST_SUCCESS(c, 61);
TEST_FAIL(c, -2, 5);
TEST_FAIL(c, 0, 5);
TEST_FAIL(c, 66, 61);
}
// Unisgned integral type
{
auto c = BUILDER::min_max_constraint<u32>(5, 61);
ASSERT_TRUE(c.support_check());
ASSERT_TRUE(c.support_clamp());
TEST_SUCCESS(c, 5);
TEST_SUCCESS(c, 6);
TEST_SUCCESS(c, 61);
TEST_FAIL(c, 0, 5);
TEST_FAIL(c, 66, 61);
}
// Float point type
{
auto c = BUILDER::min_max_constraint<f32>(5.0f, 61.0f);
ASSERT_TRUE(c.support_check());
ASSERT_TRUE(c.support_clamp());
TEST_SUCCESS(c, 5.0f);
TEST_SUCCESS(c, 6.0f);
TEST_SUCCESS(c, 61.0f);
TEST_FAIL(c, 0.0f, 5.0f);
TEST_FAIL(c, 66.0f, 61.0f);
}
}
enum class TestEnum : u8 { Entry1 = 0, Entry2 = 1, Entry3 = 2 };
TEST(ConstraintBuilder, EnumConstraint) {
auto c = BUILDER::enum_constraint({TestEnum::Entry1, TestEnum::Entry2, TestEnum::Entry3}, 1u);
ASSERT_TRUE(c.support_check());
ASSERT_TRUE(c.support_clamp());
TEST_SUCCESS(c, TestEnum::Entry1);
TEST_SUCCESS(c, TestEnum::Entry2);
TEST_SUCCESS(c, TestEnum::Entry3);
TEST_FAIL(c, static_cast<TestEnum>(UINT8_C(61)), TestEnum::Entry2);
}
TEST(ConstraintBuilder, StrEnumConstraint) {
auto c = BUILDER::strenum_constraint({u8"first-entry"sv, u8"second-entry"sv, u8"third-entry"sv}, 1u);
ASSERT_TRUE(c.support_check());
ASSERT_TRUE(c.support_clamp());
TEST_SUCCESS(c, u8"first-entry");
TEST_SUCCESS(c, u8"second-entry");
TEST_SUCCESS(c, u8"third-entry");
TEST_FAIL(c, u8"wtf?", u8"second-entry");
}
} // namespace yycctest::constraint::builder