1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
		
			
				
	
	
		
			185 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			185 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Tencent is pleased to support the open source community by making ncnn available.
 | |
| #
 | |
| # Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
 | |
| #
 | |
| # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
 | |
| # in compliance with the License. You may obtain a copy of the License at
 | |
| #
 | |
| # https://opensource.org/licenses/BSD-3-Clause
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software distributed
 | |
| # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 | |
| # CONDITIONS OF ANY KIND, either express or implied. See the License for the
 | |
| # specific language governing permissions and limitations under the License.
 | |
| 
 | |
| import sys
 | |
| import cv2
 | |
| import numpy as np
 | |
| import ncnn
 | |
| from ncnn.model_zoo import get_model
 | |
| from ncnn.utils import draw_detection_objects
 | |
| 
 | |
| 
 | |
| def draw_result(image, class_names, boxes, masks, classes, scores):
 | |
|     colors = [
 | |
|         [56, 0, 255],
 | |
|         [226, 255, 0],
 | |
|         [0, 94, 255],
 | |
|         [0, 37, 255],
 | |
|         [0, 255, 94],
 | |
|         [255, 226, 0],
 | |
|         [0, 18, 255],
 | |
|         [255, 151, 0],
 | |
|         [170, 0, 255],
 | |
|         [0, 255, 56],
 | |
|         [255, 0, 75],
 | |
|         [0, 75, 255],
 | |
|         [0, 255, 169],
 | |
|         [255, 0, 207],
 | |
|         [75, 255, 0],
 | |
|         [207, 0, 255],
 | |
|         [37, 0, 255],
 | |
|         [0, 207, 255],
 | |
|         [94, 0, 255],
 | |
|         [0, 255, 113],
 | |
|         [255, 18, 0],
 | |
|         [255, 0, 56],
 | |
|         [18, 0, 255],
 | |
|         [0, 255, 226],
 | |
|         [170, 255, 0],
 | |
|         [255, 0, 245],
 | |
|         [151, 255, 0],
 | |
|         [132, 255, 0],
 | |
|         [75, 0, 255],
 | |
|         [151, 0, 255],
 | |
|         [0, 151, 255],
 | |
|         [132, 0, 255],
 | |
|         [0, 255, 245],
 | |
|         [255, 132, 0],
 | |
|         [226, 0, 255],
 | |
|         [255, 37, 0],
 | |
|         [207, 255, 0],
 | |
|         [0, 255, 207],
 | |
|         [94, 255, 0],
 | |
|         [0, 226, 255],
 | |
|         [56, 255, 0],
 | |
|         [255, 94, 0],
 | |
|         [255, 113, 0],
 | |
|         [0, 132, 255],
 | |
|         [255, 0, 132],
 | |
|         [255, 170, 0],
 | |
|         [255, 0, 188],
 | |
|         [113, 255, 0],
 | |
|         [245, 0, 255],
 | |
|         [113, 0, 255],
 | |
|         [255, 188, 0],
 | |
|         [0, 113, 255],
 | |
|         [255, 0, 0],
 | |
|         [0, 56, 255],
 | |
|         [255, 0, 113],
 | |
|         [0, 255, 188],
 | |
|         [255, 0, 94],
 | |
|         [255, 0, 18],
 | |
|         [18, 255, 0],
 | |
|         [0, 255, 132],
 | |
|         [0, 188, 255],
 | |
|         [0, 245, 255],
 | |
|         [0, 169, 255],
 | |
|         [37, 255, 0],
 | |
|         [255, 0, 151],
 | |
|         [188, 0, 255],
 | |
|         [0, 255, 37],
 | |
|         [0, 255, 0],
 | |
|         [255, 0, 170],
 | |
|         [255, 0, 37],
 | |
|         [255, 75, 0],
 | |
|         [0, 0, 255],
 | |
|         [255, 207, 0],
 | |
|         [255, 0, 226],
 | |
|         [255, 245, 0],
 | |
|         [188, 255, 0],
 | |
|         [0, 255, 18],
 | |
|         [0, 255, 75],
 | |
|         [0, 255, 151],
 | |
|         [255, 56, 0],
 | |
|         [245, 255, 0],
 | |
|     ]
 | |
| 
 | |
|     color_index = 0
 | |
| 
 | |
|     for box, mask, label, score in zip(boxes, masks, classes, scores):
 | |
|         if score < 0.15:
 | |
|             continue
 | |
| 
 | |
|         print(
 | |
|             "%s = %.5f at %.2f %.2f %.2f x %.2f\n"
 | |
|             % (label, score, box[0], box[1], box[2], box[3])
 | |
|         )
 | |
| 
 | |
|         cv2.rectangle(
 | |
|             image,
 | |
|             (int(box[0]), int(box[1])),
 | |
|             (int(box[0] + box[2]), int(int(box[1] + box[3]))),
 | |
|             (255, 0, 0),
 | |
|         )
 | |
| 
 | |
|         text = "%s %.1f%%" % (class_names[int(label)], score * 100)
 | |
| 
 | |
|         label_size, baseLine = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
 | |
| 
 | |
|         x = box[0]
 | |
|         y = box[1] - label_size[1] - baseLine
 | |
|         if y < 0:
 | |
|             y = 0
 | |
|         if x + label_size[0] > image.shape[1]:
 | |
|             x = image.shape[1] - label_size[0]
 | |
| 
 | |
|         cv2.rectangle(
 | |
|             image,
 | |
|             (int(x), int(y)),
 | |
|             (int(x + label_size[0]), int(y + label_size[1] + baseLine)),
 | |
|             (255, 255, 255),
 | |
|             -1,
 | |
|         )
 | |
| 
 | |
|         cv2.putText(
 | |
|             image,
 | |
|             text,
 | |
|             (int(x), int(y + label_size[1])),
 | |
|             cv2.FONT_HERSHEY_SIMPLEX,
 | |
|             0.5,
 | |
|             (0, 0, 0),
 | |
|         )
 | |
| 
 | |
|         image[mask] = image[mask] * 0.5 + np.array(colors[color_index]) * 0.5
 | |
|         color_index += 1
 | |
| 
 | |
|     cv2.imshow("image", image)
 | |
|     cv2.waitKey(0)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     if len(sys.argv) != 2:
 | |
|         print("Usage: %s [imagepath]" % (sys.argv[0]))
 | |
|         sys.exit(0)
 | |
| 
 | |
|     imagepath = sys.argv[1]
 | |
|     m = cv2.imread(imagepath)
 | |
|     if m is None:
 | |
|         print("cv2.imread %s failed\n" % (imagepath))
 | |
|         sys.exit(0)
 | |
| 
 | |
|     net = get_model(
 | |
|         "yolact",
 | |
|         target_size=550,
 | |
|         confidence_threshold=0.05,
 | |
|         nms_threshold=0.5,
 | |
|         keep_top_k=200,
 | |
|         num_threads=4,
 | |
|         use_gpu=True,
 | |
|     )
 | |
| 
 | |
|     boxes, masks, classes, scores = net(m)
 | |
| 
 | |
|     draw_result(m, net.class_names, boxes, masks, classes, scores)
 |